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Introduction

Robert	Batterman

The	Oxford	Handbook	of	Philosophy	of	Physics
Edited	by	Robert	Batterman

Abstract	and	Keywords

This	chapter	discusses	the	theme	of	this	book,	which	is	about	the	philosophy	of	physics.	The	book	provides	an

overview	of	the	topics	being	studied	by	philosophers	of	physics	and	identifies	theories	that	would	not	have	been

considered	fundamental	during	the	1980s.	It	describes	new	problems	and	issues	that	became	the	focus	of	the

philosophy	of	physics	in	recent	years,	which	include	the	philosophy	of	hydrodynamics,	classical	mechanics,

effective	field	theories,	and	measurement	in	quantum	mechanics.

Keywords:	philosophy	of	physics,	hydrodynamics,	classical	mechanics,	effective	field	theories,	quantum	mechanics

When	I	was	in	graduate	school	in	the	1980s,	philosophy	of	physics	was	focused	primarily	on	two	dominant

reasonably	self-contained	theories:	Orthodox	nonrel-ativisitic	quantum	mechanics	and	relativistic	spacetime

theories.	Of	course,	there	were	a	few	papers	published	on	certain	questions	in	other	fields	of	physics	such	as

statistical	mechanics	and	its	relation	to	thermodynamics.	These	latter,	however,	primarily	targeted	the	extent	to

which	the	reductive	relations	between	the	two	theories	could	be	considered	a	straightforward	implementation	of	the

orthodox	strategy	outlined	by	Ernest	Nagel.

Philosophical	questions	about	the	measurement	problem,	the	question	of	the	possibility	of	hidden	variables,	and	the

nature	of	quantum	locality	dominated	the	philosophy	of	physics	literature	on	the	quantum	side.	Questions	about

relationalism	vs.	substantivalism,	the	causal	and	temporal	structure	of	the	world,	as	well	as	issues	about

underdetermination	of	theories	dominated	the	literature	on	the	spacetime	side.	Some	worries	about	determinism	vs.

indeterminism	crossed	the	divide	between	these	theories	and	played	a	significant	role	in	shaping	the	development

of	the	field.	(Here	I	am	thinking	of	Earman's	A	Primer	on	Determinism	(1986)	as	a	particular	driving	force.)

These	issues	still	receive	considerable	attention	from	philosophers	of	physics.	But	many	philosophers	have	shifted

their	attention	to	other	questions	related	to	quantum	mechanics	and	to	spacetime	theories.	In	particular,	there	has

been	considerable	work	on	understanding	quantum	field	theory,	particularly	from	the	point	of	view	of	algebraic	or

axiomatic	formulations.	New	attention	has	also	been	given	to	philosophical	issues	surrounding	quantum	information

theory	and	quantum	computing.	And	there	has,	naturally,	been	considerable	interest	in	understanding	the	relations

between	quantum	theory	and	relativity	theory.	Questions	about	the	possibility	of	unifying	these	two	fundamental

theories	arise.	Relatedly,	there	has	been	a	focus	on	understanding	gauge	invariance	and	symmetries.

However,	I	believe	philosophy	of	physics	has	evolved	even	further,	and	this	belief	prompts	the	publication	of	this

volume.	Recently,	many	philosophers	have	focused	their	attentions	on	theories	that,	for	the	most	part,	were	largely

ignored	in	the	past.	As	noted	above,	the	relationship	between	thermodynamics	and	statistical	mechanics—once

thought	to	be	a	paradigm	instance	of	unproblematic	theory	reduction—is	now	a	hotly	debated	topic.	Philosophers

and	physicists	have	long	implicitly	or	explicitly	adopted	a	reductionist	methodological	bent.	Yet,	over	the	years	this

methodological	slant	has	been	questioned	dramatically.	Attention	has	been	focused	on	the	explanatory	and

descriptive	roles	of	“non-fundamental,”	phenomenological	theories.	In	large	part	because	of	this	shift	of	focus,
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“old”	theories	such	as	classical	mechanics,	once	deemed	to	be	of	little	philosophical	interest,	have	increasingly

become	the	focus	of	deep	methodological	investigations.

Furthermore,	some	philosophers	have	become	more	interested	in	less	“fundamental”	contemporary	physics.	For

instance,	there	are	deep	questions	that	arise	in	condensed	matter	theory.	These	questions	have	interesting	and

important	implications	for	the	nature	of	models,	idealizations,	and	explanation	in	physics.	For	example,	model

systems,	such	as	the	Ising	model,	play	important	computational	and	conceptual	roles	in	understanding	how	there

can	be	phase	transitions	with	specific	characteristics.	And,	the	use	of	the	thermodynamic	limit	is	an	idealization

that	(some	have	argued)	plays	an	essential,	ineliminable	role	in	understanding	and	explaining	the	observed

universality	of	critical	phenomena.	These	specific	issues	are	discussed	in	several	of	the	chapters	in	this	volume.

In	the	United	States	during	the	1970s	and	1980s,	there	was	a	great	debate	between	particle	physicists	who	pushed

for	funding	of	high-energy	particle	accelerators	and	solid-state	or	condensed-matter	theorists	for	whom	the

siphoning	off	of	so	much	government	funding	to	“fundamental”	physics	was	unacceptable.	A	famous	paper

championing	the	latter	position	is	Philip	Anderson's	“More	Is	Different”	(1972).	Not	only	was	this	a	debate	over

funding,	but	it	raised	issues	about	exactly	what	should	count	as	“fundamental”	physics.	While	historians	of	physics

have	focused	considerable	attention	on	this	public	debate,	philosophers	of	physics	have	really	only	recently

begun	to	engage	with	the	conceptual	implications	of	the	possibility	that	condensed	matter	theory	is	in	some	sense

just	as	fundamental	as	high-energy	particle	physics.

This	collection	aims	to	do	two	things.	First,	it	tries	to	provide	an	overview	of	many	of	the	topics	that	currently

engage	philosophers	of	physics.	And	second,	it	focuses	attention	on	some	theories	that	by	orthodox	1980s

standards	would	not	have	been	considered	fundamental.	It	strives	to	survey	some	of	these	new	issues	and	the

problems	that	have	become	a	focus	of	attention	in	recent	years.	Additionally,	it	aims	to	provide	up-to-date

discussions	of	the	deep	problems	that	dominated	the	field	in	the	past.

In	the	first	chapter,	“For	a	Philosophy	of	Hydrodynamics,”	Olivier	Darrigol	focuses	attention	on	lessons	that	can	be

learned	from	the	historical	development	of	fluid	mechanics.	He	notes	that	hydrodynamics	has	probably	received

the	least	attention	of	any	physical	theory	from	philosophers	of	physics.	Hydrodynamics	is	not	a	“fundamental”

theory	along	the	lines	of	quantum	mechanics	and	relativity	theory,	and	its	basic	formulation	has	not	evolved	much

for	two	centuries.	These	facts,	together	with	a	lack	of	detailed	historical	studies	of	hydrodynamics,	have	kept	the

theory	off	the	radar. 	Darrigol	provides	an	account	of	the	development	of	hydrodynamics	as	a	complex	theory—

one	that	is	not	fully	captured	by	the	basic	Navier-Stokes	equations.	For	the	theory	to	be	applicable,	particularly	for

it	to	play	an	explanatory	role,	a	host	of	techniques—idealizations,	modeling	strategies,	and	empirically	determined

data	must	come	into	play.	This	discussion	shows	clearly	how	intricate,	sophisticated,	and	modern	the	theory	of

hydrodynamics	actually	is.	Darrigol	draws	a	number	of	lessons	about	the	structures	of	phenomenological	theories

from	his	detailed	discussion,	focusing	particularly	on	what	he	calls	the	“modular	structure”	of	hydrodynamics.

Continuing	the	discussion	of	“old”—but	by	no	means	dead	or	eliminated—	theories,	Mark	Wilson	takes	on	the

formidable	task	of	trying	to	say	exactly	what	is	the	nature	of	classical	mechanics.	A	common	initial	reaction	to	this

topic	is	to	dismiss	it:	“Surely	we	all	know	what	classical	mechanics	is!	Just	look	at	any	textbook.”	But	as	Wilson

shows	in	“What	Is	‘Classical	Mechanics’	Anyway?”,	this	dismissive	attitude	is	misleading	on	a	number	of	important

levels.	Classical	mechanics	is	like	a	five-legged	stool	on	a	very	uneven	floor.	It	shifts	dramatically	from	one	founda-

tional	perspective	to	another	depending	upon	the	problem	at	hand,	which	in	turn	is	often	a	function	of	the	scale

length	at	which	the	phenomenon	is	investigated.	In	the	context	of	planetary	motions,	billiards,	and	simplified	ideal

gases	in	boxes,	the	point-particle	interpretation	of	classical	mechanics	will	most	likely	provide	an	appropriate

theoretical	setting.	However,	as	soon	as	one	tries	to	provide	a	more	realistic	description	of	what	goes	on	inside

actual	billiard	ball	collisions,	one	must	consider	the	fact	that	the	balls	will	deform	and	build	up	internal	stresses

upon	collision.	In	such	situations,	the	point-particle	foundation	will	fail	and	one	will	need	to	shift	to	an	alternative

foundation,	provided	by	classical	continuum	mechanics.	Yet	a	third	potential	foundation	for	classical	mechanics

can	be	found	within	so-called	analytic	mechanics,	in	which	the	notion	of	a	rigid	body	becomes	central.	Here

constraint	forces	(such	as	the	connections	that	allow	a	ball	to	roll,	rather	than	skid,	down	an	inclined	plane)	play	a

crucial	role.	Forces	of	this	type	are	not	wholly	consistent	with	the	suppositions	central	to	either	the	point-particle	or

continuum	points	of	view.	A	major	lesson	from	Wilson's	discussion	is	that	classical	mechanics	should	best	be

thought	of	as	constituted	by	various	foundational	methodologies	that	do	not	fit	particularly	well	with	one	another.

This	goes	against	current	orthodoxy	that	a	theory	must	be	seen	as	a	formally	axiomatizable	consistent	structure.

1
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On	the	contrary,	to	properly	employ	classical	mechanics	for	descriptive	and	explanatory	purposes,	one	pushes	a

foundational	methodology	appropriate	at	one	scale	of	investigation	to	its	limiting	utility,	after	which	one	shifts	to	a

different	set	of	classical	modeling	tools	in	order	to	capture	the	physics	active	at	a	lower	size	scale.	Wilson	argues

that	a	good	deal	of	philosophical	confusion	has	arisen	from	failing	to	recognize	the	complicated	scale-dependent

structures	of	classical	physics.

Sheldon	Smith's	contribution	adds	to	our	understanding	of	a	particular	aspect	of	classical	physics.	In	“Causation	in

Classical	Mechanics,”	he	addresses	skeptical	arguments	initiated	by	Bertrand	Russell	to	the	effect	that	causation	is

not	a	fundamental	feature	of	the	world.	In	the	context	of	classical	physics,	one	way	of	making	this	claim	more

precise	is	to	argue	that	there	is	no	reason	to	privilege	retarded	over	advanced	Green's	functions	for	a	system.

Green's	functions,	crudely,	describe	the	effect	of	an	instantaneous,	localized	disturbance	that	acts	upon	the

system.	It	seems	that	the	laws	of	motion	for	electromagnetism	or	for	the	behavior	of	a	harmonic	oscillator	do	not

distinguish	between	retarded	(presumably	“causal”)	and	advanced	(presumably	“acausal”)	solutions.	If	there	is	to

be	room	for	a	principle	of	causality	in	classical	physics,	then	it	looks	like	we	need	to	find	extra-nomological	reasons

to	privilege	the	retarded	solutions.	Smith	surveys	a	wide	range	of	attempts	to	answer	the	causal	skeptic	in	the

contexts	of	the	use	of	Green's	functions	and	the	imposition	of	(Sommerfeld)	radiation	conditions,	among	other

attempts.	The	upshot	is	that	it	is	remarkably	difficult	to	find	justification	within	physical	theory	for	the	maxim	that

causes	precede	their	effects.

The	next	chapter,	by	Leo	Kadanoff,	focuses	on	condensed	matter	physics.	In	particular,	Kadanoff	discusses

progress	in	physically	understanding	the	fact	that	matter	can	abruptly	change	its	qualitative	state	as	it	undergoes	a

phase	transition.	An	everyday	example	occurs	with	the	boiling	water	in	a	teakettle.	As	the	temperature	increases,

the	water	changes	from	its	liquid	phase	to	its	vapor	phase	in	the	form	of	steam.	Mathematically,	such	transitions	are

described	by	an	important	concept	called	an	order	parameter.	In	a	first-order	phase	transition,	such	as	the	liquid

vapor	transition,	the	order	parameter	changes	discontinuously.	Certain	phase	transitions,	however,	are	continuous

in	the	sense	that	the	discontinuity	in	the	behavior	of	the	order	parameter	approaches	zero	at	some	specific	critical

value	of	the	relevant	parameters	such	as	temperature	and	pressure.	For	a	long	time	there	were	theoretical

attempts	to	understand	the	physics	involved	in	such	continuous	transitions	that	failed	to	adequately	represent	the

actual	behavior	of	the	order	parameter	as	it	approached	its	critical	value.	The	development	of	the	renormalization

group	in	the	1970s	remedied	this	situation.	Kadanoff	played	a	pivotal	role	in	the	conceptual	development	of

renormalization	group	theory.	In	this	chapter,	he	focuses	on	these	developments	(particularly,	the	improvement

upon	early	mean	field	theories)	and	on	a	deeply	interesting	feature	he	calls	the	“extended	singularity	theorem.”

This	is	the	idea	that	sharp,	qualitatively	distinct,	changes	in	phase	involve	the	presence	of	a	mathematical

singularity.	This	singularity	typically	emerges	in	the	limit	in	which	the	system	size	becomes	infinite.	The

understanding	of	the	behavior	of	systems	at	and	near	phase	transitions	requires	radically	different	conceptual

apparatuses.	It	involves	a	synthesis	between	standard	statistical	mechanical	uses	of	probabilities	and	concepts

from	dynamical	systems	theory—particularly,	the	topological	conceptions	of	basins	of	attraction	and	fixed	points	of

a	dynamical	transformation.

The	discussion	of	the	renormalization	group	and	phase	transitions	continues	as	Tarun	Menon	and	Craig	Callender

examine	several	philosophical	questions	raised	by	phase	transitions.	Their	chapter,	“Turn	and	Face	the	Strange	…

Ch-ch-changes,”	focuses	on	the	question	of	whether	phase	transitions	are	to	be	understood	as	genuinely

emergent	phenomena.	The	term	“emergent”	is	much	abused	and	confused	in	both	the	philosophical	and	physics

literatures	and	so	Menon	and	Callender	provide	a	kind	of	road	map	to	several	concepts	that	have	been	invoked	in

the	increasing	number	of	papers	on	emergence	and	phase	transitions.	In	particular,	they	discuss	conceptions	of

reduction	and	corresponding	notions	of	emergence:	conceptual	novelty,	explanatory	irreducibility,	and	ontological

irreducibility.	Their	goal	is	to	establish	that	for	any	reasonable	senses	of	reducibility	and	emergence,	phase

transitions	are	not	emergent	phenomena,	and	they	do	not	present	problems	for	those	of	a	reductionist	explanatory

bent.	In	a	sense,	their	discussion	can	be	seen	as	challenging	the	importance	of	the	extended	singularity	theorem

mentioned	above.	Menon	and	Callender	also	consider	some	recent	work	in	physics	that	attempts	to	provide	well-

defined	notions	of	phase	transition	for	finite	systems.	Their	contribution	serves	to	highlight	the	controversial	and

evolving	nature	of	our	philosophical	understanding	of	phase	transitions,	emergence,	and	reductionism.

Jonathan	Bain's	contribution	on	“Effective	Field	Theories”	looks	at	several	physical	and	methodological

consequences	of	the	fact	that	some	theories	at	low-energy	scales	are	effectively	independent	of,	or	decoupled

from,	theories	describing	systems	at	higher	energies.	Sometimes	we	know	what	the	high-energy	theory	looks	like
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and	can	follow	a	recipe	for	constructing	low-energy	effective	theories	by	systematically	eliminating	high-energy

interactions	that	are	essentially	“unobservable”	at	the	lower	energies.	But,	at	other	times,	we	simply	do	not	know

the	correct	high-energy	theory,	yet	nonetheless,	we	still	can	have	effective	low-energy	theories.	Broadly

construed,	hydrodynamics	is	an	example	of	the	latter	type	of	effective	theory,	if	we	consider	it	as	a	nineteenth

century	theory	constructed	before	we	knew	about	the	atomic	constitution	of	matter.	Bain's	focus	is	on	effective

theories	in	quantum	field	theory	and	condensed	matter	physics.	His	discussion	concentrates	on	the	intertheoretic

relations	between	low-energy	effective	theories	and	their	high-energy	counterparts.	Given	the	effective

independence	of	the	former	from	the	latter,	should	one	think	of	this	relation	as	autonomous	or	emergent?	Bain

contends	that	an	answer	to	this	question	is	quite	subtle	and	depends	upon	the	type	of	renormalization	scheme

employed	in	constructing	the	effective	theory.

My	own	contribution	to	the	volume	concerns	a	general	problem	in	physical	theorizing.	This	is	the	problem	of

relating	theories	or	models	of	systems	that	appear	at	widely	separated	scales.	Of	course,	the	renormalization

group	theory	(discussed	by	Kadanoff,	Menon	and	Callender,	and	Bain	in	this	volume)	is	one	instance	of	bridging

across	scales.	But	more	generally,	we	may	try	to	address	the	relations	between	finite	statistical	theories	at	atomic

and	nanoscales	and	continuum	theories	that	apply	at	scales	10+	orders	of	magnitude	higher.	One	can	ask,	for

example,	why	the	Navier-Cauchy	equations	for	isotropic	elastic	solids	work	so	well	to	describe	the	bending

behavior	of	steel	beams	at	the	macroscale.	At	the	microscale	the	lattice	structure	of	iron	and	carbon	atoms	looks

nothing	like	the	homogeneous	macroscale	theory.	Nevertheless,	the	latter	theory	is	remarkably	robust	and	safe.

The	chapter	discusses	strategies	for	upscaling	from	theories	or	models	at	small	scales	to	those	at	higher	scales.	It

examines	the	philosophical	consequences	of	having	to	consider,	in	one's	modeling	practice,	structures	that

appear	at	scales	intermediate	between	the	micro	and	the	macro.

There	has	been	considerable	debate	about	the	nature	of	symmetries	in	physical	theories.	Recent	focus	on	gauge

symmetries	has	led	philosophers	to	a	deeper	understanding	of	the	role	of	local	invariances	in	electromagnetism,

particle	physics,	and	the	hunt	for	the	Higgs’	particle.	Sorin	Bangu	provides	a	broad	and	comprehensive	survey	of

concepts	of	symmetry	and	invariance	in	his	contribution	to	this	volume.	One	of	the	most	seductive	features	of

symmetry	considerations	comes	out	of	Wigner's	suggestion	that	one	might	be	able	to	understand,	explain,	or

ground	laws	of	nature	by	appeal	to	a	kind	of	superprinciple	expressing	symmetries	and	invariances	that	constrain

laws	to	have	the	forms	that	they	do.	On	this	conception	symmetries	are,	perhaps,	ontologically	and	epistemically

prior	to	laws	of	nature.	This	raises	deep	questions	for	further	research	on	the	relationship	between	formal

mathematical	structures	and	our	physical	understanding	of	the	world.

Gordon	Belot	also	considers	issues	of	symmetry	and	invariance.	His	contribution	explores	the	connections

between	being	a	symmetry	of	a	theory—a	map	that	leaves	invariant	certain	structures	that	encode	the	laws	of	the

theory—and	what	it	is	for	solutions	to	a	theory	to	be	physically	equivalent.	It	is	fairly	commonplace	for	philosophers

to	adopt	the	idea	that,	in	effect,	these	two	notions	coincide.	And	if	they	do,	then	we	have	tight	connection	between

a	purely	formal	conception	of	the	symmetries	of	a	theory	and	a	methodological/interpretive	conception	of	what	it	is

for	two	solutions	to	represent	the	same	physical	state	of	affairs.	Belot	notes	that	in	the	context	of	spacetime

theories	there	seem	to	be	well-established	arguments	supporting	this	tight	connection	between	symmetries	and

physical	equivalence.	However,	he	explores	the	difficulties	in	attempting	to	generalize	this	connection	in	contexts

that	include	classical	dynamical	theories.	Belot	examines	different	ways	one	might	make	precise	the	notion	of	the

symmetries	of	a	classical	theory	and	shows	that	they	do	not	comport	well	with	reasonable	conceptions	of	physical

equivalence.	The	challenge	to	the	reader	is	then	to	find	appropriate,	nontrivial	notions	of	symmetries	for	classical

theories	that	will	respect	reasonable	notions	of	physical	equivalence.

Yet	another	type	of	symmetry,	permutation	symmetry,	is	the	subject	of	the	chapter	by	Simon	Saunders,	entitled

“Indistinguishability.”	He	focuses	on	the	proper	understanding	of	particle	indistinguishability	in	classical	statistical

mechanics	and	in	quantum	theory.	In	the	classical	case,	Gibbs	had	already	(prior	to	quantum	mechanics)

recognized	a	need	to	treat	particles,	at	least	sometimes,	as	indistinguishable.	This	is	related	to	the	infamous	Gibbs

paradox	that	Saunders	discusses	in	detail.	The	concept	of	“indistinguishability”	had	meanwhile	entered	physics	in

a	completely	new	way,	involving	a	new	kind	of	statistics.	This	came	with	the	derivation	of	Planck's	spectral

distribution,	in	which	Planck's	quantum	of	action	h	first	entered	physics.	Common	wisdom	has	long	held	that	particle

indistinguisha-bility	is	strictly	a	quantum	concept,	inapplicable	to	the	classical	realm;	and	that	classical	statistical

mechanics	is	anyway	only	the	classical	limit	of	a	quantum	theory.	This	fits	with	the	standard	view	of	the

explanation	of	quantum	statistics	(Bose-Einstein	or	Fermi-Dirac	statistics):	departures	from	classical	(Maxwell-
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Boltzmann)	statistics	are	explained	by	particle	indistinguishability.	With	this	Saunders	takes	issue.	He	shows	how	it

is	possible	to	treat	the	statistical	mechanical	statistics	for	classical	particles	as	invariant	under	permutation

symmetry	in	exactly	the	same	way	that	it	is	treated	in	the	quantum	case.	He	argues	that	the	conception	of

permutation	symmetry	deserves	a	place	alongside	all	the	other	symmetries	and	invariances	of	physical	theories.

Specifically,	he	argues	that	the	concept	of	indistinguishable,	permutation	invariant,	classical	particles	is	coherent

and	reasonable	contrary	to	many	claims	found	in	the	literature.

Margaret	Morrison's	topic	is	“Unification	in	Physics.”	She	argues	that	there	are	a	number	of	distinct	senses	of

unification	in	physics,	each	of	which	has	different	implications	for	how	we	view	unified	theories	and	phenomena.

On	the	one	hand,	there	is	a	type	of	unification	that	is	achieved	via	reductionist	programs.	Here	a	paradigm

example	is	the	unification	provided	by	Maxwellian	electrodynamics.	Maxwell's	emphasis	on	mechanical	models	in

his	early	work	involved	the	introduction	of	the	displacement	current,	which	was	necessary	for	a	field	theoretic

representation	of	the	phenomena.	These	models	also	enabled	him	to	identify	the	luminiferous	aether	with	the

medium	of	transmission	of	electromagnetic	phenomena.	Two	aethers	were	essentially	reduced	to	one.	When	these

models	were	abandoned	in	his	later	derivation	of	the	field	equations,	the	displacement	current	provided	the

unifying	parameter	or	theoretical	quantity	that	allowed	for	the	identification	of	electromagnetic	and	optical

phenomena	within	the	framework	of	a	single	field	theoretic	account.	This	type	of	unification	was	analogous	to

Newton's	unification	of	the	motions	of	the	planets	and	terrestrial	trajectories	under	the	same	(gravitational)

theoretical	framework.	However,	not	all	cases	of	unification	are	of	this	type.	Morrison	discusses	the	example	of	the

electroweak	theory	in	some	detail,	arguing	that	this	unificatory	success	represents	a	kind	of	synthetic,	rather	than

reductive,	unity.	The	electroweak	theory	also	involves	a	unifying	parameter,	namely,	the	“Weinberg	angle.”

However,	the	unity	achieved	through	gauge	symmetry	is	a	synthesis	of	structure,	rather	than	of	substance,	as

exemplified	by	the	reductive	cases.	Finally,	in	calling	attention	to	the	difficulties	with	the	Standard	Model	more

generally,	Morrison	notes	that	yet	a	different	kind	of	unification	is	achieved	in	the	framework	of	effective	field

theory.	This	provides	another	vantage	point	from	which	to	understand	the	importance	of	the	renormalization	group.

Morrison	argues	for	a	third	type	of	unification	in	terms	of	the	universality	classes,	one	that	focuses	on	unification	of

phenomena	but	should	be	understood	independently	of	the	type	of	micro-reduction	characteristic	of	unified	field

theory	approaches.

As	noted	earlier,	there	continues	to	be	significant	research	on	foundational	problems	in	quantum	mechanics.	Guido

Bacciagaluppi's	chapter	provides	an	up-to-date	discussion	of	work	on	two	distinct	problems	in	the	foundations	of

quantum	mechanics	that	are	typically	conflated	in	the	literature.	These	are	the	problem	of	the	classical	regime	and

the	measurement	problem.	Both	problems	arise	from	deep	issues	involving	entanglement	and	the	failure	of	an

ignorance	interpretation	of	reduced	quantum	states.	Bacciagaluppi	provides	a	contemporary	and	thorough

introduction	to	these	issues.	The	problem	of	the	classical	regime	is	that	of	providing	a	quantum	mechanical

explanation	or	account	of	the	success	of	classical	physics	at	the	macroscale.	It	is,	in	essence,	a	problem	of

intertheoretic	relations.	Contemporary	work	has	concentrated	on	the	role	of	environmental	decoherence	in	the

emergence	of	classical	kinetics	and	dynamics.	Bacciagaluppi	argues	that	the	success	of	appeals	to	decoherence

to	solve	this	problem	will	depend	upon	one's	interpretation	of	quantum	mechanics.	He	surveys	an	ontologically

minimalist	instrumental	interpretation	and	a	standard,	ontologically	more	robust	or	realistic	interpretation.

The	measurement	problem	is	the	distinct	problem	of	deriving	the	collapse	postulate	and	the	Born	rule	from	the	first

principles	(Schrödinger	evolution)	of	the	quantum	theory.	In	examining	the	measurement	problem,	Bacciagaluppi

provides	a	detailed	presentation	of	a	modern,	realistic	theory	of	measurement	that	goes	beyond	the	usual	idealized

discussions	of	spin	measurements	using	Stern-Gerlach	magnets.	This	discussion	generalizes	the	usual	collapse

postulate	and	the	Born	rule	to	take	into	account	the	fact	that	real	measurements	are	unsharp.	It	does	so	by

employing	the	apparatus	of	positive	operator	value	(POV)	measures	and	observables.	The	upshot	is	that	the

measurement	problem	remains	a	real	worry	for	someone	who	wants	to	maintain	a	standard,	reasonably	orthodox

interpretation	of	quantum	theory.	Perhaps	Everett	theories,	GRW-like	spontaneous	collapse	theories,	and	so	on	are

required	for	a	solution.

The	Everett,	or	Many	Worlds,	interpretation	of	quantum	mechanics	is	the	subject	of	David	Wallace's	chapter.	It	is

well	known	that	the	linearity	of	quantum	mechanics	leads,	via	the	principle	of	superposition,	to	the	possibility	that

macroscopic	objects	such	as	cats	can	be	found	in	bizarre	states—superpositions	of	being	alive	and	being	dead.

Wallace	argues	that	a	proper	understanding	of	what	quantum	mechanics	actually	says	will	enable	us	to

understand	such	bizarre	situations	in	a	way	that	does	not	involve	changing	the	physics	(e.g.,	as	in	Bohmian	hidden
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variable	mechanics	or	GRW	spontaneous	collapse	theories).	Neither,	he	claims,	does	it	involve	changing	one's

philosophy	by,	for	example,	providing	an	operationalist	interpretation	that	imposes	some	special	status	to	the

observer	or	to	what	counts	as	measurement,	along	the	lines	of	Bohr.	Such	interpretations	are	at	odds	with	our

understanding	of,	say,	the	role	of	the	observer	in	the	rest	of	science.	Wallace	argues	for	a	straightforward,	fully

realist	interpretation	of	the	bare	mathematical	formalism	of	quantum	mechanics	and	claims	that	this	interpretation

will	make	sense	of	superposed	cats,	and	so	on,	without	changing	the	theory	and	without	changing	our	overall	view

of	science.	The	straightforward	realist	interpretation	that	is	to	do	all	of	this	work	is	the	Everett	interpretation.	Prima

facie,	this	claim	is	itself	bizarre:	after	all,	the	Everett	interpretation	has	us	multiplying	worlds	or	universes	upon

measurements.	Nevertheless,	Wallace	makes	a	strong	case	that	an	understanding	of	superposition	as	a

description	of	multiplicity,	rather	than	of	the	indefiniteness	of	states,	is	exactly	what	is	needed.	Furthermore,	that	is

exactly	what	the	Everett	interpretation	(and	no	other)	provides.	The	bulk	of	Wallace's	contribution	examines

various	problems	that	have	been	raised	for	the	Everett	interpretation.	In	particular,	he	focuses	on	(1)	the	problem

of	providing	a	preferred	basis—what	actually	justifies	our	understanding	of	superposition	in	terms	of	multiplicity	of

worlds,	and	(2)	the	probability	problem—how	to	understand	the	probabilistic	nature	of	quantum	mechanics	if	one

has	only	the	fully	deterministic	dynamics	provided	by	the	Schrödinger	equation.	He	argues	that	the	contemporary

understanding	of	the	Everett	interpretation	has	the	resources	to	address	these	issues.

Laura	Ruetsche's	chapter	“Unitary	Equivalence	and	Physical	Equivalence”	inves-tigates	a	question	of	deep

physical	and	philosophical	importance:	The	demand	for	criteria	establishing	the	physical	equivalence	of	two

formulations	of	a	physical	theory.	In	“ordinary”	quantum	mechanics	the	received	view	is	that	two	quantum	theories

are	physically	equivalent	just	in	case	they	are	unitarily	equivalent.	Any	pair	of	theories	purporting,	say,	to	describe

two	entangled	spin	1/2	systems	are	really	just	one	and	the	same	because	of	the	Jordan	and	Wigner	theorem

showing	that	a	theory	that	represents	the	canonical	anticommutation	relations	for	a	system	of	n	spins	is	unique	up

to	unitary	equivalence.	A	similar	theorem	due	to	Stone	and	von	Neumann	guarantees	an	analogous	result	for	any

Hilbert	space	representation	of	the	canonical	commutation	relations	for	a	Hamiltonian	system.	What	are	the

consequences	of	the	breakdown	of	unitary	equivalence	for	those	quantum	systems	for	which	these	theorems	fail

to	hold?	Such	systems	include	the	infinite	systems	studied	in	quantum	field	theory,	quantum	statistical	mechanics,

and	even	simpler	infinite	systems	like	an	infinite	one-dimensional	chain	of	quantum	spins.	She	calls	these	theories

collectively	QM .	The	plethora	of	unitarily	inequivalent	representations	in	these	infinite	cases	demands	that	we

revisit	our	assumptions	about	physical	equivalence	and	the	nature	of	quantum	theories.	Ruetsche	examines

various	competing	suggestions,	or	competing	principles	that	may	guide	the	investigation	into	this	problem.

The	next	chapter,	by	Oliver	Pooley,	provides	an	up-to-date,	comprehensive	discussion	of	substantivalist	and

relationalist	approaches	to	spacetime.	Crudely,	this	is	a	debate	about	the	ontology	of	our	theories	of	space	and

spacetime.	The	substantivalists	hold	that	among	the	fundamental	objects	of	the	world	is	space-time	itself.

Relationists,	to	the	contrary,	deny	that	propositions	about	spacetime	are	ultimately	to	be	understood	in	terms	of

claims	about	material	objects	and	possible	spatiotemporal	relations	that	may	obtain	between	them.	Pooley	presents

a	historical	introduction,	as	well	as	a	detailed	discussion	of	the	current	landscape	in	the	literature.	Specifically,	he

considers	recent	relationist,	neo-Machian	proposals	by	Barbour,	as	well	as	dynamical	approaches	favored	by

Brown,	and	Pooley	and	Brown,	that	aim	to	provide	a	reductive	account	of	the	spacetime	symmetries	in	terms	of	the

dynamical	symmetries	of	laws	governing	the	behavior	of	matter.	In	addition,	Pooley	provides	a	current	assessment

of	the	impact	of	the	so-called	Hole	Argument	against	substantivalism.

In	“Global	Spacetime	Structure”	John	Manchak	examines	the	qualitative,	primarily	topological	and	causal,	aspects

of	general	relativity.	He	provides	an	abstract	classification	of	various	local	and	global	spacetime	properties.	In	the

global	causal	context	he	explicitly	defines	a	set	of	causal	conditions	that	form	a	strict	hierarchy	of	possible	casual

properties	of	spacetime.	The	strongest	is	the	condition	of	global	hyperbolicity,	which	implies	others	including

causality	and	chronology.	Another	set	of	global	properties	of	spacetime	concerns	in	what	sense	a	spacetime	can

be	said	to	possess	singularities.	Here	he	focuses	on	the	notion	of	geodesic	incompleteness.	Manchak	then	takes

up	philosophical	questions	concerning	the	physical	reasonableness	of	these	various	spacetime	properties.	In	a

local	context,	being	a	solution	to	Einstein's	Field	Equation	is	typically	taken	to	be	physically	reasonable.	But,	global

properties	concerning	the	existence	and	nature	of	singularities	and	the	possibility	of	time	travel	lead	to	open

questions	of	philosophical	interest	that	are	currently	being	investigated.

Last,	but	not	least,	Chris	Smeenk's	contribution	concerns	philosophical	issues	raised	in	contemporary	work	on

cosmology.	A	common	view	is	that	cosmology	requires	a	distinctive	methodology	because	the	universe-as-a-

∞
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whole	is	a	unique	object.	Restrictions	on	observational	access	to	the	universe	due	to	the	finite	speed	of	light	pose

severe	challenges	to	establishing	global	properties	of	the	universe.	How	can	we	know	that	the	local	generalizations

we	take	to	be	lawful	in	our	limited	region	can	be	extended	in	a	global	fashion?	Here,	of	course,	there	is	overlap	with

the	discussions	of	the	previous	chapter.	Successes	of	the	so-called	Standard	Model	for	cosmology	include	big-

bang	nucleosynthesis	and	the	understanding	of	the	cosmic	background	radiation,	among	others.	Challenges	to	the

Standard	Model	result	from	growing	evidence	that	if	it	is	correct,	then	most	of	the	matter	and	energy	present	in	the

universe	is	not	what	we	would	consider	ordinary.	Instead,	there	apparently	needs	to	be	dark	matter	and	dark

energy.	Smeenk	provides	an	overview	of	recent	hypotheses	about	dark	matter	and	energy,	and	relates	these

discussions	to	philosophical	debates	about	underdetermination.	A	different	kind	of	problem	arises	in	assessing

theories	regarding	the	very	early	universe.	These	theories	are	often	motivated	by	the	idea	that	the	initial	state

required	by	the	Standard	Model	is	highly	improbable.	This	deficiency	can	be	addressed	by	introducing	a	dynamical

phase	of	evolution,	such	as	inflationary	cosmology,	that	alleviates	this	need	for	a	special	initial	state.	Smeenk	notes

that	assessing	this	response	to	fine-tuning	is	connected	with	debates	about	explanation	and	foundational

discussions	regarding	time's	arrow.	One	very	important	aspect	of	recent	work	in	cosmology	is	the	appeal	to

anthropic	reasoning	to	help	explain	features	of	the	early	universe.	A	second	recent	development,	often	related	to

anthropic	considerations,	is	the	multiverse	hypothesis—the	existence	of	causally	isolated	pocket	universes.	This

chapter	brings	these	fascinating	issues	to	the	fore	and	raises	a	number	of	philosophical	questions	about	the	nature

of	explanation	and	confirmation	appropriate	for	cosmology.

It	is	my	hope	that	readers	of	this	volume	will	gain	a	sense	of	the	wide	variety	of	issues	that	constitute	the	general

field	of	philosophy	of	physics.	The	focus	of	the	field	has	expanded	tremendously	over	the	last	thirty	years.	New

problems	have	come	up,	and	old	problems	have	been	refocused	and	refined.	It	is	indeed	my	pleasure	to	thank	all

of	the	authors	for	their	contributions.	In	addition,	I	would	like	to	thank	Peter	Ohlin	from	Oxford	University	Press.	A

number	of	others	contributed	to	this	project	in	various	ways.	I	am	particularly	indebted	to	Gordon	Belot,	Julia

Bursten,	Nicolas	Fillion,	Laura	Ruetsche,	Chris	Smeenk,	and	Mark	Wilson	for	invaluable	advice	and	support.
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Abstract	and	Keywords

This	chapter	discusses	the	need	for	a	philosophy	of	hydrodynamics	and	the	lessons	that	can	be	learned	from	the

historical	development	of	fluid	mechanics.	It	explains	that	hydrodynamics	has	been	not	given	attention	by

philosophers	of	physics	because	of	a	lack	of	detailed	historical	studies	of	hydrodynamics,	and	highlights	the	need

for	idealizations	and	modeling	strategies	for	this	theory	to	be	applicable.	The	chapter	also	considers	the	structures

of	phenomenological	theories	and	the	so-called	modular	structure	of	hydrodynamics.

Keywords:	hydrodynamics,	fluid	mechanics,	philosophers	of	physics,	historical	studies,	idealizations,	modeling	strategies,	phenomenological

theories,	modular	structure

Among	the	major	theories	of	physics,	hydrodynamics	is	probably	the	one	that	has	received	the	least	attention	from

philosophers	of	science.	Until	recently,	three	circumstances	easily	explained	this	neglect.	First,	there	was	very	little

historical	literature	on	which	philosophers	could	rely.	Second,	philosophers	tended	to	focus	on	fundamental

theories	such	as	relativity	theory	and	quantum	theory	and	to	neglect	more	phenomenological	theories.	Third,	they

harbored	a	neo-Hempelian	concept	of	explanation	following	which	the	foundations	of	a	theory	implicitly	contain	all

its	explanatory	apparatus. 	Even	Thomas	Kuhn,	who	brought	the	“normal”	phases	of	science	to	the	fore,	restricted

conceptual	innovation	to	the	revolutionary	phases. 	Since	the	fundamental	equations	of	hydrodynamics	have

remained	essentially	the	same	for	about	two	centuries,	this	view	reduces	the	development	of	this	theory	to	a	matter

of	technical	prowess	in	solving	the	equations.

In	recent	years	these	three	circumstances	have	lost	much	of	their	weight.	We	now	have	fairly	detailed	histories	of

hydrodynamics. 	The	superiority	of	fundamental	theories	over	lower	scale	or	phenomenological	theories	has	been

multiply	challenged,	both	within	science	and	in	the	philosophy	of	science. 	And	there	has	been	a	growing

awareness	that	explanation	mostly	resides	in	devices	that	are	not	contained	in	the	bare	foundations	of	a	theory.

For	example,	Mary	Morgan	and	Margaret	Morrison	have	emphasized	the	role	of	models	as	mediators	between

theory	and	experiment;	Jeffry	Ramsey	has	argued	the	conceptual	significance	of	approximations	and

“transformation	reductions”;	Robert	Batterman	has	made	explanation	depend	on	strategies	for	the	elimination	of

irrelevant	details	in	the	foundations;	Paul	Humphreys	has	placed	computability	at	the	center	of	his	assessment	of

the	nature	and	value	of	scientific	knowledge.	EricWinsberg	has	shown	the	importance	of	extratheoretical

considerations	in	judging	the	validity	of	numerical	simulations	based	on	the	fundamental	equations.	Already	in

1983,	Ian	Hacking	and	C.	W.	F.	Everitt,	who	were	more	in	touch	with	the	actual	practice	of	physicists	than	average

philosophers,	introduced	“theory	articulation”	or	“calculation”	as	an	essential	“semantic	bridge	between	theory

and	observation.”

Granting	that	theory	articulation	is	as	philosophically	important	as	the	building	of	foundations,	hydrodynamics

becomes	a	topic	of	exceptional	philosophical	interest	largely	because	of	the	huge	time	span	between	the

establishment	of	its	foundations	and	its	successful	application	to	some	of	the	most	pressing	engineering	problems.

This	delay	is	an	indirect	proof	of	the	creativity	needed	to	expand	the	explanatory	power	of	theories.	It	enables	us
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to	observe	a	rich	sample	of	the	devices	through	which	explanatory	expansion	may	occur.	Margaret	Morrison,

Michael	Heidelberg,	and	Moritz	Epple	have	recently	given	philosophical	studies	of	two	of	these	devices:	Ludwig

Prandtl's	boundary-layer	theory	and	his	wing	theory.	The	present	essay	is	conducted	in	the	same	spirit.

The	first	section	gives	a	few	historical	examples	of	the	means	by	which	hydrodynamics	became	applicable	to	a

growing	number	of	concrete	situations.	The	second	provides	a	tentative	classification	of	these	means.	The	third

contains	a	definition	of	physical	theories	that	includes	their	evolving	explanatory	apparatus.	Special	emphasis	is

given	to	a	“modular	structure”	of	theories	that	makes	them	more	amenable	to	tests,	comparisons,	communication,

and	construction.

1.	Some	History

In	the	mid-eighteenth	century,	Jean	le	Rond	d'Alembert	and	Leonhard	Euler	formulated	the	general	laws	of	motion	of

a	nonviscous	fluid.	In	Euler's	form,	calling	v	the	velocity	of	the	fluid,	P	its	pressure,	ρ	its	density,	and	f	an	impressed

force	density,	these	laws	are	given	by	the	equation	of	motion

the	equation	of	continuity,

and	the	boundary	condition	that	the	fluid	velocity	next	to	the	walls	of	a	rigid	container	should	be	parallel	to	these

walls.	If	the	fluid	has	a	free	surface	at	which	it	touches	another	fluid,	the	boundary	conditions	(later	provided	by

Lagrange)	are	the	equality	of	the	pressures	of	the	two	fluids,	and	the	condition	that	a	particle	of	the	surface	of	one

fluid	should	remain	on	its	surface.

Euler's	derivation	of	the	equation	of	fluid	motion	assumes	the	pressure	between	two	contiguous	fluid	parts	to	be

perpendicular	to	the	separating	surface,	as	is	the	case	in	hydrostatics.	In	1822	Claude	Louis	Navier	implicitly

dropped	this	assumption	by	comparing	the	internal	fluid	forces	with	the	molecular	forces	of	his	general	theory	of

elasticity.	The	resulting	equation	of	motion	is	the	Navier-Stokes	equation

which	involves	the	viscosity	μ.	This	equation	was	reinvented	several	times.	There	was	much	hesitation	on	the

proper	boundary	conditions,	although	in	1845	George	Gabriel	Stokes	correctly	argued	for	a	vanishing	relative

velocity	of	the	fluid	next	to	rigid	bodies.

From	a	mathematical	point	of	view,	the	most	evident	goal	of	the	theory	is	to	integrate	the	equations	of	motion	for

any	given	initial	conditions	and	boundary	conditions.	There	are	at	least	three	reasons	not	to	confine	fluid

mechanics	to	this	goal:

1.	In	the	case	of	a	compressible	fluid,	the	system	of	equations	is	not	complete	because	one	needs	the

relation	between	pressure	and	density.	This	relation	implies	thermodynamic	considerations,	and	therefore

forces	us	to	leave	the	narrow	context	of	fluid	mechanics.

2.	It	is	generally	impossible	to	solve	the	equations	by	analytical	means	because	of	their	nonlinear	character.

Moreover,	the	few	restricted	cases	in	which	this	is	possible	may	have	little	or	no	resemblance	with	actual	flow

because	of	instabilities.	Nowadays,	numerical	integration	is	often	possible	and	is,	indeed,	sufficient	for	some

engineering	problems.	This	leads	us	to	the	third	caveat.

3.	The	answer	to	most	physical	questions	regarding	fluid	behavior	is	not	to	be	found	in	the	solution	of	specific

boundary-value	problems.	Rather,	the	physicist	is	often	interested	in	generic	properties	of	classes	of

solutions.	In	mathematical	terms,	we	need	to	have	a	handle	on	the	structure	of	the	space	of	solutions.

What	do	physicists	do	when	the	solution	of	boundary	problems	no	longer	serves	their	interests?	In	order	to	answer

this	question,	we	will	consult	some	of	the	historical	evolution	of	hydrodynamics.

1.1	Bernoulli's	Law
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From	a	practical	point	of	view,	the	main	result	that	Euler	could	derive	from	his	new	hydrodynamics	was	the	law

relating	the	pressure	P,	the	position	r,	and	the	velocity	v	for	the	steady	motions	of	an	incompressible	fluid	that

admit	a	velocity	potential	(g	is	the	acceleration	of	gravity).	This	achievement	may	seem	meager	for	the	following

reasons: 	the	law	had	already	been	derived	by	Daniel	Bernoulli	in	the	1730s	as	an	application	of	the	conservation

of	live	force	(energy)	to	steady,	parallel-slice,	incompressible	fluid	motion;	the	law	requires	a	narrow	specialization

of	the	theory;	one	aspect	of	this	specialization,	the	existence	of	a	velocity	potential,	is	(or	was)	physically	obscure

(its	original	purpose	was	to	simplify	the	equations	of	motion	and	to	permit	their	integration);	under	this

specialization,	the	law	is	a	straightforward	mathematical	consequence	of	Euler's	equations.

From	these	remarks,	one	might	be	tempted	to	judge	that	Bernoulli's	law	adds	nothing	significant	to	the	fundamental

equations	of	hydrodynamics.	Yet	the	practice	of	physicists	and	engineers	suggests	the	contrary:	This	law	is	used

in	many	circumstances,	surely	more	often	than	Euler's	equations	themselves.	There	are	several	good	reasons	for

this:

(1)	Bernoulli's	law	relates	easily	accessible	parameters	of	fluid	motion	in	a	simple	manner,	without	any

reference	to	the	subtleties	of	the	underlying	dynamics;

(2)	it	is	related	to	the	general	principle	of	energy	conservation,	which	bridges	hydrodynamics	with

mechanics;

(3)	it	provides	the	basis	for	the	hydraulicians’	language	of	pressure	head,	velocity	head,	and	gravity	head;

and

(4)	this	language	is	still	used	when	the	law	is	violated.

Although	this	last	point	may	seem	paradoxical,	it	illustrates	a	highly	important	mode	of	concept	formation	in	the

post-foundational	life	of	a	theory:	the	solutions	of	the	general	theory	are	characterized	with	reference	to	the

solutions	of	amore	workable	specialization	of	this	theory.	The	concepts	engendered	by	the	specialization	thus

enrich	the	language	of	the	general	theory.	They	are	useful	as	long	as	the	law	is	valid	in	parts	of	the	investigated

system	and	as	long	as	the	loci	of	its	violations	are	sufficiently	understood.	In	typical	hydraulic	systems,	there	are

regular	pipes	and	reservoirs	in	which	the	law	applies	with	a	known	correction	(viscous	or	boundary-layer

retardation	in	pipes)	and	there	are	phenomenologically	or	theoretically	known	“losses	of	head”	when	some

accidents,	such	as	pipe-to-pipe	connections	or	sudden	enlargements	of	the	section	of	a	pipe,	occur.

1.2	Surface	Waves

Historically,	the	second	successful	application	of	Euler's	equations	was	to	the	problem	of	water	waves.	In	this	case,

specialization	is	also	necessary:	the	fluid	is	taken	to	be	incompressible	and	a	velocity	potential	is	assumed.

Moreover,	some	approximations	must	be	introduced	to	circumvent	the	nonlinearity	of	the	equations.	In	a	memoir	of

1781,	Joseph	Louis	Lagrange	originally	assumed	waves	of	small	amplitude	and	of	length	much	larger	than	the

depth	of	the	water.	In	the	mid-1810s,	Siméon	Denis	Poisson	and	Augustin	Cauchy	did	without	the	latter

approximation.	The	resulting	differential	equation	for	the	deformation	of	the	water	surface	is	linear,	and	it	admits

sine-wave	solutions	whose	propagation	velocity	depends	on	the	wavelength.	At	this	(first-order)	approximation,

one	may	use	an	autonomous	language	of	sine	waves	that	is	no	longer	reminiscent	of	the	underlying	fluid	dynamics

and	that	is	equally	applicable	to	other	kinds	of	linear	waves.	All	one	needs	to	know	is	how	to	combine	(superpose)

various	sine	waves	in	order	to	accommodate	given	initial	shapes	or	perturbations	of	the	water	surface.	We	here

encounter	a	second	case	of	bridging	of	hydrodynamics	with	other	theories:	the	introduction	of	concepts	that	apply

to	similar	modes	of	motion	in	different	theories	(optics,	hydrodynamics,	acoustics	…).

This	is	not	to	say	that	all	linear	wave	problems	are	understood	once	we	know	the	dispersion	law	(how	the	velocity

of	a	sine	wave	depends	on	its	wavelength).	Historically,	much	effort	was	needed	to	understand	the	structure	of	a

superposition	of	sine	waves.	Employing	strictly	mathematical	methods,	Poisson	and	Cauchy	only	succeeded	in

describing	the	wave	created	by	a	stone	thrown	into	a	pond.	John	Scott	Russell	(in	1844)	and	William	Froude	(in

1873)	later	observed	that	the	front	of	a	group	of	waves	traveled	at	a	smaller	velocity	than	individual	waves	in	the

group.	In	1876,	Stokes	gave	the	modern	theoretical	explanation	in	terms	of	phase	and	group	velocity.	Ten	years

later,	William	Thomson	(Lord	Kelvin)	determined	the	form	of	ship	waves	by	a	clever	application	of	these	concepts.

On	the	physical	side	of	his	deduction,	he	relied	on	the	optical	“principle	of	interference.”	On	the	mathematical	side,
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he	invented	the	method	of	the	stationary	phase,	which	is	now	commonly	used	in	various	domains	of	physics.

Again,	we	have	a	case	of	concepts	and	tools	generated	in	a	region	of	a	given	theory	but	ultimately	applied	to

regions	of	many	other	theories	(by	region,	I	mean	a	restriction	of	the	theory	to	a	limited	class	of	systems	and

boundary	conditions).	These	concepts	were	partly	derived	by	a	mathematical	process	of	specialization	and

approximation,	partly	by	observation,	partly	by	analogy	with	other	domains	of	physics.

Similar	remarks	apply	to	the	case	of	nonlinear	waves.	George	Biddell	Airy	and	Stokes	tamed	nonlinear	periodic

waves	by	successive	approximations	to	the	fundamental	equations,	with	applications	to	ocean	waves	and	river

tides.	This	was	a	mostly	mathematical	process	of	a	cumbersome	but	fairly	automatic	nature.	In	contrast,	Scott

Russell	observed	solitary	waves	(isolated	swells)	of	invariable	shape	long	before	theorists	admitted	their	possibility.

When	Joseph	Boussinesq	and	Lord	Rayleigh	at	last	deduced	such	waves	from	theory,	it	became	clear	that

qualitative	results	(such	as	the	deformation	of	traveling	waves)	derived	by	considering	separately	a	small-depth

(nondispersive)	approximation	and	a	small-amplitude	(linear)	approximation,	no	longer	obtained	when	the	depth

and	amplitude	were	both	large.	The	compensation	of	the	dispersive	and	nonlinear	causes	of	deformation	for	waves

of	a	properly	selected	shape	is	a	mechanism	which,	again,	applies	to	many	other	domains	of	physics.

1.3	Vortex	Motion

Early	fluid	mechanics	usually	assumed	the	existence	of	a	velocity	potential	because	it	greatly	simplified	the

fundamental	equations	and	also	because	Lagrange	had	shown	that	it	resulted	from	the	equations	of	motion	for	a

large	class	of	boundary	conditions	(motion	started	from	rest	and	caused	by	moving	solids).	Another	reason,

emphasized	by	British	fluid	theorists,	was	the	fact	that	the	velocity	potential	of	an	incompressible	fluid	obeys	the

same	differential	equation	(Laplace's	equation)	as	the	gravitational,	electric,	and	magnetic	potentials.	This	formal

analogy	was	a	constant	source	of	inspiration	for	Stokes,	Thomson,	and	James	Clerk	Maxwell.	It	permitted	an

intuitive	demonstration	of	some	basic	theorems	of	the	abstract	“potential	theory,”	and	it	provided	fluid-mechanical

analogs	of	electrostatic,	electrokinetic,	and	magnetostatic	phenomena.

Figure	1.1 	A	portion	of	a	vortex	filament.	The	product	of	the	vorticity	(indicated	by	the	arrows)	by	the
normal	section	of	the	filament	is	a	constant	along	the	filament.	It	is	also	invariable	during	the	motion	of	the
fluid.

The	general	case	in	which	no	velocity	potential	exists	was	judged	intractable	until	1858	when	Hermann	Helmholtz

discovered	a	few	remarkable	theorems	that	pushed	this	case	to	the	forefront	of	the	theory.	As	Cauchy	and	Stokes

had	earlier	proved,	the	infinitesimal	evolution	of	a	fluid	element	can	be	regarded	as	the	superposition	of	three	kinds

of	motion:	a	translation	of	the	center	of	gravity	of	the	element,	a	dilation	of	the	element	along	three	mutually

orthogonal	axes,	and	a	rotation.	Formally,	the	rotation	per	unit	time	is	half	the	vector	ω	=	∇	×v	which	has	the

components	∂	υ /	∂y	−	∂	υ 	/	∂	z	etc.	This	vector,	now	called	vorticity,	vanishes	if	and	only	if	there	exists	a	velocity

potential	(in	a	connected	domain).	This	kinematic	analysis	of	infinitesimal	fluid	motion	is	part	of	the	conceptual

furniture	of	modern	fluid	mechanics.	Maxwell	used	it	to	develop	the	physico-mathematical	concepts	of	curl	and

divergence	that	apply	to	any	field	theory.	Helmholtz	reinvented	it	to	interpret	the	non-existence	of	the	velocity

potential	and	the	vector	ω	=	∇	×v	geometrically.

Helmholtz	extended	the	geometrical	interpretation	to	the	“vorticity	equation,”

which	derives	from	Euler's	equations	when	the	fluid	is	incompressible.	For	this	purpose,	he	defined	vortex

filaments	as	thin	bundles	of	lines	everywhere	tangent	to	the	vorticity,	and	the	intensity	of	a	filament	as	the

product	of	a	normal	section	of	this	filament	by	the	value	of	the	vorticity	in	the	section	(see	figure	1.1).	He	then

showed	that	the	intensity	of	a	filament	was	a	constant	along	a	filament	and	that	the	vorticity	equation	was

equivalent	to	the	statement	that	the	vortex	filaments	moved	together	with	the	fluid	without	altering	their	intensity.

This	theorem	implies	that	the	distribution	of	vorticity	in	a	perfect	liquid	is	in	a	sense	invariant:	it	travels	together	with

the	fluid	without	any	alteration.

12

13

z y

14

15

PDF Compressor Free Version 



For a Philosophy of Hydrodynamics

Page 5 of 22

In	this	light,	Helmholtz	argued	that	the	vorticity	field	(as	today's	physicists	say)	better	represented	arbitrary	flows

than	the	velocity	field:	its	invariant	properties	completely	determine	the	rotational	component	of	the	flow,	while	the

irrotational	component	is	ruled	by	the	theorems	of	potential	theory.	With	the	help	of	an	electromagnetic	analogy,

Helmholtz	then	determined	the	velocity	fields	associated	with	simple	distributions	of	vorticity:	straight	vortex	lines,

vortex	sheets,	and	vortex	rings.	He	also	calculated	the	interactions	of	vortices	and	verified	his	predictions

experimentally.

The	vortex	sheets	played	an	important	role	in	Helmholtz's	later	writings.	They	are	mathematically	equivalent	to	a

finite	slide	of	fluid	over	fluid,	and	they	should	occur,	according	to	Helmholtz,	whenever	a	fluid	is	forced	to	pass	the

edge	of	an	immersed	body.	As	an	illustration	of	this	process,	Helmholtz	gave	the	formation	of	smoke	jets	when	he

blew	the	smoke	of	a	cigar	through	his	lips.	Through	ingenious	reasoning,	he	proved	the	instability	of	the

discontinuity	surfaces	or	vortex	sheets:	any	small	bump	on	them	must	roll	up	spirally.	This	mechanism,	now	called

Helmholtz-Kelvin	instability,	plays	an	important	role	in	many	hydraulic	and	meteorological	phenomena,	as

Helmholtz	himself	foresaw.

Helmholtz	not	only	meant	to	improve	the	applicability	of	hydrodynamics	but	also	to	equip	this	theory	with	a	new

mode	of	description	for	fluid	motion	in	which	vortices	and	discontinuity	were	the	leading	structural	features.	The

enormous	success	of	this	project	in	the	later	history	of	hydrodynamics	is	somewhat	paradoxical,	because

Helmholtz's	theorems	only	hold	in	the	unrealistic	case	of	a	perfect	liquid.	The	physicists’	use	of	the	vorticity

concept	in	much	more	general	situations	is	comparable	to	the	hydraulicians’	use	of	the	concept	of	hydraulic	head

in	situations	in	which	Bernoulli's	theorem	does	not	apply.	In	some	cases	of	vortex	motion,	the	effects	of

compressibility	and	viscosity	can	be	shown	to	be	negligible.	In	all	cases,	one	can	take	Helmholtz's	theorems	as	a

reference	and	correct	them	through	terms	derived	from	the	Navier-Stokes	equation,	as	Vilhelm	Bjerknes	did	in	the

late	nineteenth	century.	As	for	the	vortex	sheets,	we	will	see	in	a	moment	that	in	the	early	twentieth	century	Ludwig

Prandtl	used	them	to	approximately	describe	important	aspects	of	fluid	resistance	at	high	Reynolds	number	(low

viscosity).

In	the	historical	examples	discussed	so	far,	it	became	increasingly	difficult	to	produce	the	needed	new	conceptual

apparatus.	The	degree	of	difficulty	can	be	taken	to	be	proportional	to	the	time	elapsed	between	the	invention	of

Euler's	equations	and	the	introduction	of	this	apparatus.	For	example,	Bernoulli's	law	was	easiest	to	derive,	as	it

only	requires	a	simple	integration.	But	pure	mathematics	did	not	suffice	to	discover	the	laws	of	wave	propagation

on	a	water	surface.	Some	intuition	of	interference	processes	(borrowed	from	optics),	and	also	a	few	experimental

observations	(groups	of	waves,	solitary	waves),	were	instrumental.	The	discovery	of	the	laws	of	vortex	motion	was

even	more	difficult.	A	century	elapsed	from	the	time	when	d'Alembert	and	Euler	gave	the	vorticity	equation	to	the

time	when	Helmholtz	interpreted	it	through	his	theorem.	Experiments	or	observations	did	not	by	themselves

suggest	this	interpretation,	though	Helmholtz's	efforts	were,	in	fact,	part	of	a	project	for	improving	the	theoretical

understanding	of	organ	pipes.	Helmholtz's	success	primarily	depended	on	his	ability	to	combine	various	heuristic

devices	including	algebraic	manipulation	in	the	style	of	Lagrange,	geometric	visualization	in	the	style	of	Thomson

and	Maxwell,	and	a	focus	on	invariant	quantities	as	exemplified	in	his	own	work	on	energy	conservation.

1.4	Instabilities

Exact	solutions	of	Euler's	or	Navier's	equations	under	given	boundary	conditions	may	differ	widely	from	the	flow

observed	in	a	concrete	realization	of	these	conditions.	For	instance,	the	flow	of	water	in	a	pipe	of	rapidly

increasing	diameter	never	has	the	smooth,	laminar	character	of	exact	steady	solutions	of	the	Navier-Stokes

equation	in	this	case.	As	Stokes	already	suspected	in	the	1840s,	this	discrepancy	has	to	do	with	the	instability	of

the	exact	steady	solutions:	any	small	perturbation	of	these	solutions	will	induce	wide	departures	from	the	original

motion.	Consequently,	the	knowledge	of	exact	solutions	of	the	fundamental	equations	or	(more	realistically)	the

knowledge	of	some	features	of	these	solutions	under	given	boundary	conditions	is	not	sufficient	for	the	prediction

of	observed	flows.	One	must	also	determine	whether	these	solutions	or	features	are	stable.

In	principle	this	question	can	be	mathematically	decided,	by	examining	how	a	slightly	perturbed	solution	of	the

equations	evolves	in	time.	As	we	saw,	a	first	success	in	this	direction	was	Helmholtz's	prediction	of	the	spiral	rolling

up	of	a	bump	on	a	discontinuity	surface.	Later	in	the	century,	Lord	Rayleigh	and	Lord	Kelvin	treated	the	more

difficult	problem	of	the	stability	of	plane	parallel	flow.	Their	results	were	only	partial	(Rayleigh's	inflection	theorem	in

the	nonviscous	case),	or	wrong	(Kelvin's	prediction	of	stability	for	the	plane	Poiseuille	flow).	Most	of	these	questions

16

17

18

PDF Compressor Free Version 



For a Philosophy of Hydrodynamics

Page 6 of 22

exceeded	the	mathematical	capacity	of	nineteenth-century	theorists,	and	some	of	them	have	remained	unresolved

to	this	day.	The	efforts	of	Rayleigh	and	others	nonetheless	yielded	a	general	method	and	language	of	perturbative

stability	analysis.	Rayleigh	linearized	the	equation	of	evolution	of	the	perturbation,	and	sought	plane-wave

solutions.	These	solutions	are	“proper	modes”	whose	oscillatory	or	growing	character	depends	on	the	real	or

imaginary	character	of	the	frequency.	This	proper-mode	analysis	of	stability	goes	beyond	hydrodynamics:	it

originated	in	Lagrange's	celestial	mechanics	and	it	can	be	found	in	many	other	parts	of	physics.

As	the	mathematical	discussion	of	stability	was	nearly	as	difficult	as	the	finding	of	exact	solutions	of	the

fundamental	equations,	the	most	important	results	in	this	domain	were	reached	by	empirical	means.	Plausibly,	the

observed	instability	of	jets	motivated	Helmholtz's	derivation	of	the	instability	of	discontinuity	surfaces.	Certainly,

Tyndall's	observations	of	this	kind	motivated	Rayleigh's	calculations	for	parallel	flow.	Most	important,	Gotthilf	Hagen

(1839)	and	Osborne	Reynolds	(1883)	discovered	that	pipe	flow,	for	a	given	diameter	and	a	given	viscosity,

suddenly	changed	its	character	from	laminar	to	turbulent	when	the	velocity	passed	a	certain	critical	value.	The

sharpness	of	this	transition	was	a	surprise	to	all	theorists.	From	Reynolds	to	the	present,	attempts	to	mathematically

determine	the	critical	velocity	(or	Reynolds	number)	in	cylindrical	pipes	have	failed.	This	is	a	question	of	academic

interest	only,	because	unpredictable	entrance	effects	(the	way	the	fluid	is	introduced	into	the	pipe),	not	the

inherent	instability	in	a	pipe	of	infinite	length,	usually	determine	the	transition.

In	the	twentieth	century,	significant	progress	has	been	made	in	understanding	the	transition	from	laminar	to

turbulent	flow.	In	the	first	half	of	the	century,	Ludwig	Prandtl,	Walter	Tollmien,	Werner	Heisenberg,	and	Chia	Chiao

Lin	proved	the	instability	of	the	plane	Poiseuille	flow	and	unveiled	the	spatial	periodicity	of	the	mechanism	of	this

instability. 	In	the	second	half	of	the	century,	developments	in	the	theory	of	dynamical	systems	at	the	intersection

between	pure	mathematics,	meteorology,	and	hydrodynamics	permitted	a	detailed	qualitative	understanding	of	the

transition	to	turbulence,	with	intermediate	oscillatory	regimes,	bifurcations,	and	strange	attractors. 	It	remains	true

that	most	of	the	practical	applications	of	hydrodynamics	only	require	a	rough	knowledge	of	the	conditions	under

which	turbulence	occurs.	The	source	of	this	knowledge	is	partly	theoretical	and	partly	empirical.	There	is	no	easy

way	to	gather	it	from	the	fundamental	equations.	In	most	cases,	the	best	that	can	be	done	is	to	repeat	Reynolds's

rough	argument	that	the	full	vorticity	equation	has	two	terms,	a	viscous	term	that	tends	to	damp	any	eddying

motion,	and	an	inertial	term	which	preserves	the	global	amount	of	vorticity.	The	laminar	or	turbulent	character	of

the	motion	depends	on	the	ratio	of	these	two	terms,	whose	order	of	magnitude	is	given	by	the	Reynolds	number.

1.5	Turbulence

The	state	of	motion	that	follows	the	turbulent	transition	is	even	more	difficult	to	analyze	than	the	transition	itself.

Casual	observation	of	turbulent	flow	reveals	its	chaotic	and	multi-scale	character.	The	detailed	description	of	any

motion	of	this	kind	seems	to	require	a	huge	amount	of	information,	much	more	than	is	humanly	accessible	(without

computers	at	least).	As	Reynolds	pondered,	we	are	here	facing	a	situation	similar	to	that	of	the	kinetic	theory	of

gases:	the	effective	degrees	of	freedom	are	too	numerous	to	be	handled	by	a	human	calculator.	Unfortunately,

turbulent	motion	is	more	often	encountered	in	nature	and	in	manmade	hydraulic	devices	than	laminar	motion.

Engineers	and	physicists	have	had	to	invent	ways	of	coping	with	this	difficulty.

One	strategy	is	to	design	the	hydraulic	or	aeronautic	artifacts	so	that	turbulence	does	not	occur.	When	turbulence

cannot	be	avoided,	one	may	adopt	a	purely	empirical	approach	and	seek	relations	between	measured	quantities	of

interest.	For	instance,	nineteenth-century	engineers	gave	empirical	laws	for	the	retardation	(loss	of	head)	in

hydraulic	pipes.	A	second	approach	is	to	find	rules	allowing	the	transfer	of	the	results	of	measurements	done	at

one	scale	to	another	scale.	Stokes,	Helmholtz,	and	Froude	pioneered	this	approach	in	the	contexts	of	pendulum

damping,	balloon	steering,	and	ship	resistance,	respectively.	They	derived	the	needed	scaling	rules	from	the

scaling	symmetries	of	the	Navier-Stokes	equation	or	of	the	underlying	dynamical	principles.	This	is	an	example	of	a

hybrid	approach,	founded	partly	on	the	fundamental	equations,	and	partly	on	measurements	of	theoretically

unpredictable	properties.

In	a	third	approach,	one	may	completely	ignore	the	foundations	of	fluid	mechanics	and	cook	up	a	model	based	on

a	grossly	simplified	picture	of	the	flow.	An	important	example	is	the	laws	for	open	channel	flow	discovered	in	the

1830s	and	1840s	by	a	few	French	Polytechnique-trained	engineers:	Jean	Baptiste	Bélanger,	Jean	Victor	Poncelet,

and	Gaspard	Coriolis.	They	assumed	the	flow	to	occur	through	parallel	slices	that	rubbed	against	the	bottom	of	the

channel	according	to	a	phenomenological	friction	law,	and	they	applied	momentum	or	energy	balance	to	each
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slice.

In	the	1840s	Adhémar	Barré	de	Saint-Venant	emphasized	the	“tumultuous”	character	of	the	fluid	motion	in	open

channel	flow	and	suggested	a	distinction	between	the	large-scale	average	motion	of	the	fluid	and	the	smaller-scale

tumultuous	motion.	The	main	effect	of	the	latter	motion	on	the	former,	Saint-Venant	argued,	was	to	enhance

momentum	exchange	between	successive	(large-scale)	fluid	layers.	Based	on	this	intuition,	he	replaced	the

viscosity	in	the	Navier-Stokes	equation	with	an	effective	viscosity	that	depended	on	various	macroscopic

circumstances	such	as	the	distance	from	a	wall.	In	the	1870s,	Boussinesq	solved	the	resulting	equation	for	open

channels	of	simple	section	and	thus	obtained	laws	that	resembled	Bélanger's	and	Coriolis's	laws,	with	different

interpretations	of	the	relevant	parameters.

In	1895,	Reynolds	relied	on	analogy	with	the	kinetic	theory	of	gases	to	develop	an	explicitly	statistical	approach	to

turbulent	flow.	In	the	spirit	of	Maxwell's	kinetic-molecular	derivation	of	the	Navier-Stokes	equation,	he	derived	a

large-scale	equation	of	fluid	motion	by	averaging	over	the	small-scale	motions	governed	by	the	Navier-Stokes

equation.	Reynolds's	equation	depends	on	the	“Reynolds	stress,”	which	describes	the	turbulent	exchange

between	successive	macro	layers	of	the	fluid.	Like	Saint-Venant's	effective	viscosity,	the	Reynolds	stress	cannot

be	determined	without	further	assumptions	concerning	the	turbulent	fluctuation	around	the	large-scale	motion.

There	have	been	many	attempts	to	fill	this	gap	in	the	twentieth	century.	The	most	useful	ones	were	Kármán's	and

Prandtl's	derivations	of	the	logarithmic	velocity	profile	of	a	turbulent	boundary	layer.	The	assumptions	made	in

(improved)	versions	of	these	derivations	are	simple	and	natural	(uniform	stress,	matching	between	the	turbulent

layer	and	a	laminar	sublayer	next	to	the	wall),	and	the	resulting	profile	fits	experiments	extremely	well	(much	better

than	earlier	phenomenological	laws).	The	logarithmic	profile	is	the	basis	of	every	modern	engineering	calculation	of

retardation	in	pipes	or	open	channels.

Despite	powerful	studies	by	Geoffrey	Taylor,	Andrey	Nikolaevich	Kolmogorov,	and	many	others,	the	precise

manner	in	which	turbulence	distributes	energy	between	different	scales	of	fluid	motion	remains	a	mystery. 	There

is	no	doubt,	however,	that	the	general	idea	of	describing	turbulent	flow	statistically	has	been	fruitful	since	its	first

intimations	by	Saint-Venant,	Boussinesq,	and	Reynolds.	In	the	case	of	turbulent	fluid	mechanics,	as	in	statistical

mechanics,	a	new	conceptual	structure	emerges	at	the	macroscale	of	description.	Similar	questions	can	be	raised

in	both	cases	concerning	the	nature	of	the	reduction	or	emergence.	Does	the	microscale	theory	truly	imply	the

macroscale	structure?	Is	this	structure	uniquely	defined?	Can	this	structure	be	used	without	further	reference	to

the	microscale?	Are	there	singular	situations	in	which	the	reduction	fails?	The	answers	to	these	questions	tend	to

be	more	positive	in	the	case	of	statistical	mechanics	than	in	the	case	of	the	statistical	theory	of	turbulence,

because	the	relevant	statistics	are	better	known	in	the	former	than	in	the	latter	case.

1.6	Boundary	Layers

From	a	practical	point	of	view,	two	outstanding	problems	of	fluid	mechanics	are	fluid	resistance	and	fluid

retardation.	Fluid	resistance	is	the	decelerating	force	experienced	by	a	rigid	body	moving	through	a	fluid.	Fluid

retardation	is	the	fall	of	pressure	or	loss	of	head	experienced	by	a	fluid	during	its	travel	along	pipes	or	channels.

The	two	problems	are	related,	since	they	both	involve	the	mutual	action	of	a	fluid	and	an	immersed	solid.	In	1768,

d'Alembert	challenged	“the	sagacious	geometers”	with	the	paradox	that	resistance	vanished	for	a	perfect	liquid	in

his	new	hydrodynamics.	There	were	various	strategies	to	circumvent	this	theoretical	failure.	Some	engineers

determined	by	purely	empirical	means	how	the	resistance	depended	on	the	velocity	and	shape	of	the	immersed

body.	Others	retreated	to	Isaac	Newton's	naïve	theory	by	the	impact	of	fluid	particles	on	the	front	of	the	body,

although	some	consequences	of	this	theory	(such	as	the	irrelevance	of	the	shape	of	the	end	of	the	body)	had

already	been	refuted.	In	the	mid-nineteenth	century,	Saint-Venant,	Poncelet,	and	Stokes	traced	resistance	to

viscosity	and	the	production	of	eddies.	With	the	damping	of	pendulums	in	mind,	Stokes	successfully	determined	the

resistance	of	small	spheres	and	cylinders	by	finding	solutions	to	the	linearized	Navier-Stokes	equation.	For	most

practical	problems,	the	larger	size	of	the	immersed	body	and	the	smallness	of	the	viscosities	of	air	and	water	imply

that	the	nonlinear	term	of	this	equation	cannot	be	neglected	(the	Reynolds	number	is	too	high).	Stokes	had	nothing

to	say	in	such	cases	beyond	the	qualitative	idea	of	dissipation	by	the	production	of	eddies.
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Figure	1.2 	Discontinuity	surface	(ee′)	formed	when	a	downward	flow	encounters	the	disk	A.	From	Thomson
(1894,	220).

In	the	ideal	case	of	vanishing	viscosity,	the	proof	of	d'Alembert's	paradox	implicitly	assumes	the	continuity	of	the

fluid	motion.	However,	Helmholtz's	study	of	vortex	motion	implies	that	finite	slip	of	fluid	over	fluid	is	perfectly

compatible	with	Euler's	equations.	Around	1870,	Kirchhoff	and	Rayleigh	realized	that	Helmholtz's	discontinuity

surfaces	yielded	a	finite	resistance	for	an	immersed	plate.	According	to	Helmholtz,	a	tubular	discontinuity	surface

is	indeed	produced	at	the	sharp	edges	of	the	plate.	The	water	behind	the	plate	and	within	this	surface	is	stagnant,

so	that	its	pressure	vanishes	(when	measured	in	reference	to	its	uniform	value	at	infinite	distances	from	the	plate)

(see	figure	1.2).	Since	the	pressure	at	the	front	of	the	plate	is	positive,	there	is	a	finite	resistance,	which	Kirchhoff

and	Rayleigh	determined	by	analytical	means.	The	result	roughly	agreed	with	the	measured	resistance.

In	the	case	of	ships,	the	resistance	problem	is	complicated	by	the	fact	that	ships	are	not	supposed	to	be

completely	immersed.	Consequently,	wave	formation	at	the	water	surface	is	a	significant	contribution	to	the

resistance.	The	leading	nineteenth	century	experts	on	this	question,	William	John	Macquorn	Rankine	and	William

Froude,	distinguished	three	causes	of	resistance:	wave	resistance,	skin	resistance,	and	eddy	resistance.	Skin

resistance	corresponds	to	some	sort	of	friction	of	the	water	when	it	travels	along	the	hull.	Eddy	resistance

corresponds	to	the	formation	of	eddies	at	the	stern	of	the	ship;	it	is	usually	avoided	by	proper	profiling	of	the	hull.

Rankine	and	Froude	traced	skin	resistance	to	the	formation	of	an	eddying	fluid	layer	next	to	the	hull.	They	derived

this	notion	from	the	observation	that	the	flow	of	water	around	the	ship,	when	seen	from	the	deck,	appears	to	be

smooth	everywhere	expect	for	a	narrow	tumultuous	layer	next	to	the	hull	and	for	the	wake.	Rankine	assumed	the

validity	of	Euler's	equations	in	the	smooth	part	of	the	flow	and	solved	it	to	determine	the	hull	shapes	that	minimized

wave	formation.	Froude	gave	a	fairly	detailed	description	of	the	mechanism	of	retardation	in	the	eddying	layer,

although	he	was	not	able	to	draw	quantitative	conclusions.	In	the	end,	Froude	measured	skin	friction	on	plates,

total	resistance	on	small-scale	ship	models,	and	then	used	separate	scaling	laws	for	skin	and	wave	resistance	in

order	to	determine	the	resistance	of	a	prospective	ship	hull.

Figure	1.3 	Formation	of	a	discontinuity	surface	behind	a	cylinder.	From	Prandtl	(1905,	579–80).

In	sum,	Rankine	and	Froude	distinguished	two	different	regions	of	flow	amenable	to	different	theoretical	or	semi-

empirical	treatments	and	combined	the	resulting	insights	to	determine	the	total	resistance.	Froude	thus	obtained	the

first	quantitative	successes	in	the	problem	of	fluid	resistance	at	a	high	Reynolds	number.	Although	his	and Rank-

ine's	considerations	appealed	to	higher	theory	in	several	manners,	they	also	required	considerable	empirical input.

The	next	and	most	famous	progress	in	the	high	Reynolds-number	resistance	problem	occurred	in	Göttingen,	under

the	leadership	of	Ludwig	Prandtl.	Impressed	by	the	qualitative	success	of	Helmholtz's	surfaces	of	discontinuity,

Prandtl	assumed	that	the	solution	of	the	Navier-Stokes	equation	for	high-Reynolds	flow	around	a	body	somewhat

resembled	a	solution	of	Euler's	equation	(with	strictly	vanishing	viscosity).	In	the	latter	solution,	the	fluid	slides

along	the	surface	of	the	body,	whereas	for	a	viscous	fluid	the	relative	velocity	of	the	fluid	must	vanish	at	the

surface	of	the	body.	Consequently,	for	the	real	flow	Prandtl	assumed	a	thin	(invisible)	layer	of	intense	shear	that
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imitated	the	finite	slide	of	the	Eulerian	solution.	He	also	assumed	that	in	some	cases	this	layer	could	shoot	off	the

surface	of	the	body	to	mimic	a	Helmholtzian	surface	of	discontinuity	(with	its	characteristic	instability	resulting	in	an

eddying	trail).	This	is	the	so-called	separation	process.	Outside	the	boundary	layer,	Prandtl	naturally	applied	Euler's

equations.	Within	the	boundary	layer,	the	intense	shear	allowed	him	to	use	an	approximation	of	the	Navier-Stokes

equation	that	could	be	integrated	to	determine	the	evolution	of	the	velocity	profile	along	the	body.	For	sufficiently

curved	bodies,	Prandtl	found	that	at	some	point	the	flow	was	inverted	in	the	part	of	the	boundary	layer	closest	to

the	body.	He	interpreted	this	point	as	the	separation	point	from	which	a	(quasi)	discontinuity	surface	was	formed.	In

the	case	of	a	flat	or	little	curved	surface	(for	which	separation	does	not	occur),	he	determined	the	resistance	by

integration	of	the	sheer	stress	along	the	surface	of	the	body.	He	illustrated	the	separation	process	through

experiments	done	with	a	tank	and	a	paddle-wheel	machine	(figure	1.3).

Comparison	with	Froude's	earlier	concept	of	eddying	layer	leads	to	the	following	remarks.	Unlike	Froude,	Prandtl

was	able	to	determine	theoretically	and	precisely	the	flow	within	the	boundary	layer.	This	determination	requires	a

previous	solution	of	the	Eulerian	flow	problem	around	the	body,	because	the	evolution	of	the	boundary	layer

depends	on	the	pressure	at	its	confines.	Conversely,	this	evolution	may	induce	separation,	which	necessarily

affects	the	Eulerian	part	of	the	flow.	Prandtl	himself	emphasized	this	interaction	between	the	Eulerian	flow	and	the

boundary	layer.	Whereas	Froude	had	no	interest	in	separation	(which	ship	builders	systematically	avoided),	Prandtl

had	a	precise	criterion	for	its	occurrence.	Whereas	Froude	could	only	measure	the	sheer	stress	of	the	boundary

layer,	Prandtl	could	determine	it	theoretically.

So	far	the	comparison	seems	to	favor	Prandtl.	In	reality,	in	many	cases	including	ship	resistance,	the	boundary

layer	has	an	internal	turbulence	that	is	not	taken	into	account	in	Prandtl's	original	theory.	In	1913,	Prandtl's	former

student	Heinrich	Blasius	found	that	beyond	a	certain	critical	Reynolds	number,	the	edgewise	resistance	of	a	plate

obeyed	Froude's	empirical	law	and	not	Prandtl's	theoretical	law.	Prandtl	explained	that	the	profile	of	a	laminar

boundary	layer	could	become	unstable	and	thus	lead	to	a	turbulent	boundary	layer	à	la	Froude.	He	used	this

notion	to	explain	the	bizarre	reduction	of	the	resistance	of	spheres	that	Gustave	Eiffel	had	observed	at	a	certain

critical	velocity:	turbulence	in	a	boundary	layer,	Prandtl	explained,	delays	the	separation	process	and	thus	sharply

decreases	the	resistance.	Paradoxically,	it	is	when	the	boundary	layer	is	turbulent	that	the	global	flow	mostly

resembles	the	smooth	Eulerian	flow.

As	the	boundary	layers	around	airplane	wings	are	turbulent,	Prandtl	needed	to	know	the	sheer	stress	along	such

layers	in	order	to	determine	the	drag	of	the	wings.	He	originally	relied	on	plate	resistance	measurements,	as	Froude

had	done	in	the	past.	As	was	already	mentioned,	it	became	possible	to	calculate	this	stress	in	the	1830s	when

Kármán	and	Prandtl	discovered	the	logarithmic	velocity	profile	of	turbulent	layers.

It	is	now	time	to	reflect	on	the	relation	that	boundary-layer	theory	has	to	the	foundational	theory	of	Navier-Stokes.

Prandtl's	idea	(if	we	believe	his	own	plausible	account)	has	its	theoretical	origin	in	the	idea	of	using	solutions	to

Euler's	equations	as	a	guide	for	solving	the	Navier-Stokes	equation	at	a	high	Reynolds	number.	This	is	only	a

heuristic,	because	Prandtl	had	no	mathematical	proof	that	the	low-viscosity	limit	of	a	solution	of	the	Navier-Stokes

equation	is	a	solution	of	Euler's	equation.	Yet	the	motion	imagined	by	Prandtl,	with	its	Eulerian,	high-sheer,	and

stagnant	regions,	clearly	is	an	approximate	solution	of	the	Navier-Stokes	equation.	What	is	missing	is	a	proof	of	the

uniqueness	of	this	solution	(under	given	boundary	conditions),	as	well	as	a	general	proof	of	its	existence	for	any

shape	of	the	immersed	body.	With	this	concession,	the	boundary-layer	theory	can	legitimately	be	regarded	as	an

approximation	of	the	Navier-Stokes	theory.

An	interesting	feature	of	the	boundary-layer	theory	is	its	use	of	different	approximate	equations	in	different	regions

of	the	flow.	Our	discussion	of	Bernoulli's	law	showed	that	this	law	is	often	used	regionally	(i.e.,	in	laminar	regions	of

the	flow)	with	head	losses	localized	in	turbulent	regions.	Boundary-layer	theory	similarly	introduces	different

regions	of	flow,	although	it	does	so	in	a	more	interactive	manner.	Each	region	is	described	through	computable

solutions	of	appropriate	equations	of	motion,	and	the	precise	conditions	for	the	matching	of	the	regional	solutions

are	known	(continuity	of	pressure,	stress,	and	velocity).	These	matching	conditions	imply	causal	relations	between

features	of	the	two	regions:	for	instance,	the	pressure	distribution	in	the	Eulerian	region	determines	the	evolution	of

the	velocity	profile	in	the	boundary	layer,	and	in	the	case	of	separated	flow,	the	position	of	the	separating	surface

affects	the	Eulerian	region.

In	qualitative	applications,	Prandtl's	theory	may	be	restricted	to	the	general	ideas	of	a	boundary	layer,	a	free	fluid,
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and	their	interaction	sometimes	leading	to	separation.	In	quantitative	engineering	applications,	this	picture	must	be

supplemented	with	a	law	for	the	evolution	of	the	sheer	stress	along	a	boundary	layer	(laminar	or	turbulent),	and

with	quantitative	criteria	for	separation	and	for	the	transition	between	laminar	and	turbulent	layer.	Granted	that	this

supplementary	information	is	available,	the	theory	can	be	used	without	reference	to	the	Navier-Stokes	theory.	The

gain	in	predictive	efficiency	is	enormous,	as	verified	by	the	immense	success	of	Prandtl's	theory	in	engineering

applications.	Yet	one	should	not	forget	that	much	of	the	supplementary	information	comes	from	the	intimate

connection	between	the	boundary-layer	theory	and	the	Navier-Stokes	theory.	In	fact	the	legitimacy	of	the	whole

picture	depends	upon	this	intimate	connection.	The	boundary-layer	theory,	unlike	the	early	French	models	of	open

channel	flow,	is	not	an	ad	hoc	model	that	owes	its	simplicity	to	counterfactual	assumptions.	It	is	a	legitimate

articulation	of	the	Navier-Stokes	theory.

2.	Explanatory	Progress

The	above	examples	make	clear	that	in	the	course	of	its	history,	hydrodynamics	has	acquired	a	sophisticated

explanatory	apparatus	without	which	it	would	remain	merely	a	“paper”	theory.	The	explanatory	apparatus	is

presented	in	various	chapters	in	modern	textbooks.	We	will	now	reflect	on	the	ways	this	apparatus	was	obtained,

on	its	components,	and	on	its	functions.

2.1	The	Sources	of	Explanatory	Progress

In	some	cases,	explanation	was	improved	through	blind	mathematical	methods.	For	instance,	a	simple	integration

yielded	Bernoulli's	law	(after	proper	specialization),	the	symmetries	of	the	Navier-Stokes	equation	yielded	scaling

laws,	and	standard	approximation	procedures	yielded	the	theory	of	waves	of	small	amplitude.	Despite	the	relatively

easy	and	automatic	way	in	which	these	results	were	obtained,	they	considerably	improved	the	explanatory	power

of	the	theory	by	directly	relating	quantities	of	physical	interest.

In	other	cases,	more	intra-	or	intertheoretical	heuristics	was	needed.	Kinematic	analysis	of	the	vorticity	equation

led	to	Helmholtz's	vortex	theorems;	asymptotic	reasoning	led	to	Prandtl's	notions	of	laminar	boundary	layer	and

separation;	scaling	and	matching	arguments	led	to	the	logarithmic	velocity	profile	of	turbulent	boundary	layers.

These	heuristics	required	an	unusual	amount	of	creativity;	they	involved	intuitions	bound	to	personal	styles	of

thinking.	Such	intuitions	are	tentative	and	may	lead	to	erroneous	guesses.	For	instance,	the	great	Kelvin	erred	in

his	stability	analysis	of	parallel	flow.	A	rigorous	check	of	the	compatibility	of	the	conclusions	with	the	fundamental

equations	is	always	needed.

In	still	other	cases,	observations	or	experiments	suggested	new	concepts	such	as	group	velocity,	solitary	waves,

the	stability	or	instability	of	laminar	flow,	and	turbulent	boundary	layers.	The	very	fact	that	pure	theory	was

historically	unable	to	lead	to	these	concepts	(and	sometimes	even	resisted	their	introduction)	shows	the	vanity	of

regarding	them	as	implicit	consequences	of	the	fundamental	equations.	They	nevertheless	belong	to	fundamental

hydrodynamics	inasmuch	as	their	compatibility	with	the	fundamental	equations	can	be	verified	a	posteriori.

Lastly,	the	impossibility	of	solving	the	fundamental	equation	and	the	evident	complexity	of	observed	flows

sometimes	forced	engineers	and	even	physicists	to	arbitrarily	and	drastically	simplify	aspects	of	the	flow.	This

happened	for	instance	in	early	models	of	open	channel	flow.	These	models	cannot	be	strictly	regarded	as	parts	of

fundamental	hydrodynamics,	since	some	of	their	assumptions	contradict	both	observed	and	theoretical	properties

of	the	flow.	Yet	their	success	suggests	a	looser	sort	of	relation	with	the	Navier-Stokes	theory.	In	the	case	of	open-

channel	flow,	the	models	can	be	reinterpreted	as	re-parametrizations	of	the	true	equations	for	the	approximate,

large-scale	motion	derived	from	turbulent	solutions	of	the	Navier-Stokes	equations.

In	every	case,	the	theoretical	developments	occurred	with	specific	applications	in	mind:	some	kind	of	flow

frequently	observed	in	nature	needed	to	be	explained	or	the	functioning	of	some	instruments	or	devices	needed	to

be	understood.	Purely	mathematical	methods	broadly	applied	to	general	flow	were	of	little	avail.	Insight	was	gained

as	a	result	of	investigation	directed	at	concrete	and	restricted	goals.	This	is	why	the	heroes	of	nineteenth-century

and	early	twentieth-century	fluid	mechanics	were	either	mathematically	fluent	engineers	or	physicists	who	had	a

foot	in	the	engineering	world.
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2.2	The	Components	of	Explanation

A	first	alley	toward	better	explanation	involves	the	restriction	of	the	scope	of	a	theory.	The	Navier-Stokes

equations,	regarded	as	the	general	foundation	of	hydrodynamics,	can	be	specialized	in	various	ways.	There	are

homogeneous	specializations	or	idealizations	in	which	the	restricted	choice	of	parameters	and	kinds	of	systems

(boundary	conditions)	leads	to	more	tractable	integration	problems	or	successful	statistical	approaches.	Typical

examples	are	irrotational	Eulerian	flow,	low	Reynolds-number	flow,	and	fully	turbulent	flow.	There	are	also

heterogeneous	specializations	in	which	the	restrictions	on	parameters	and	systems	lead	to	flows	that	have

different	regions,	each	of	which	depends	upon	a	specific	simplification	of	the	Navier-Stokes	equations.	This	is	the

case	for	the	high-Reynolds	resistance	problem	and	the	airplane	wing	problem	according	to	Prandtl.	As	was	already

mentioned,	success	here	requires	proper	matching	between	the	different	regions.

Another	explanatory	resource	is	the	identification	of	invariant	structures	of	a	flow	belonging	to	a	given	class.	The

most	impressive	example	of	this	sort	is	Helmholtz's	demonstration	of	the	conservation	of	vortex	filaments.	As	the

mind	tends	to	focus	on	invariant	aspects	of	our	environment,	the	identification	of	new	invariants	often	shape	our

descriptive	language.	As	Helmholtz	predicted,	this	has,	in	fact,	happened	in	fluid	mechanics:	the	vorticity	field	is

now	often	preferred	to	the	velocity	field	as	a	description	of	flow.

Third,	instead	of	seeking	structure	in	a	given	solution,	we	may	attend	to	the	structure	of	the	space	of	solutions	of

the	fundamental	equation	when	the	boundary	conditions	vary.	For	instance,	we	may	ask	whether	laminar	solutions

are	typical,	whether	small	perturbations	lead	to	different	sorts	of	solutions:	this	is	the	issue	of	stability.	We	may	also

ask	whether	some	classes	of	solution	share	common	large-scale	features,	as	we	do	in	the	statistical	theories	of

turbulence.	And,	we	may	ask	whether	some	properties	or	laws	are	generic	in	some	regime	of	flow:	this	is	the	issue

of	universality,	which	we	briefly	touched	with	the	logarithmic	profile	of	turbulent	boundary	layers.

Lastly,	explanation	and	understanding	may	come	from	linking	hydrodynamics	to	other	theories.	We	have

encountered	a	few	examples	of	this	kind:	potential	theory,	wave	interference,	group	velocity,	solitary	waves,	field

kinematics,	and	proper-mode	analysis	of	stability.	In	half	of	these	cases,	concepts	of	hydrodynamic	origin	were

brought	to	bear	on	other	theories	and	not	vice	versa.	The	cross-theoretical	sharing	of	concepts	nonetheless

remains	a	token	of	their	explanatory	value.

2.3	A	Pragmatic	Definition	of	Explanation

As	was	stated	above,	the	goal	of	fluid	mechanics	cannot	be	reduced	to	finding	integrals	of	the	fundamental

equations	that	satisfy	given	boundary	conditions.	This	is	usually	impossible	by	analytical	means,	and	modern

numerical	means	require	a	different	simulation	for	each	choice	in	the	infinite	variety	of	boundary	conditions.	As

Batterman,	Ramsey,	and	Heidelberger	have	argued,	bare	foundations	do	not	answer	the	questions	that	truly

interest	physicists	and	engineers.	Practitioners	want	to	be	able	to	characterize	a	physical	situation	by	a	humanly

accessible	number	of	physical	parameters	and	to	possess	a	picture	of	the	situation	that	enables	them	to	derive

relations	between	these	parameters	in	a	reasonable	amount	of	time.	In	other	words,	they	need	a	concept	of

explanation	that	integrates	our	human	capacity	at	representing	and	intervening.	As	Batterman	emphasizes,	this

requires	means	for	eliminating	irrelevant	details	in	our	description	of	systems.	This	also	implies	the	elaboration	of	a

descriptive	language,	the	concepts	of	which	directly	refer	to	controllable	features	of	the	system.

With	this	pragmatic	definition	of	explanation,	it	becomes	clear	that	the	earlier	described	developments	of

hydrodynamics	served	the	purpose	of	increasing	the	explanatory	power	of	the	theory.	Homogeneous

specializations	do	so	by	offering	adequate	concepts	and	methods	for	certain	kinds	of	flow.	Heterogeneous

specializations	do	so	by	combining	the	former	specializations	to	describe	flows	that	occur	in	problems	of	great

practical	import.	The	identification	of	invariant	structures	for	certain	classes	of	motion	improves	the	economy	of	the

representation.	Attention	to	structure	in	the	space	of	solutions	enables	us	to	decide	to	what	extent	smaller	details

of	the	motion	affect	the	features	of	practical	interest,	and	to	what	extent	their	effect	can	be	smoothed	out	by	some

averaging	process.	Intertheoretical	links	produce	familiar	concepts	that	can	indifferently	be	used	in	various

domains	of	physics.

In	this	light,	the	practice	of	physics	has	more	similarity	with	engineering	than	is	usually	assumed.	The	remark	is	not

uncommon	in	recent	writings	in	the	philosophy	of	science.	For	instance,	Ramsey	revives	J.	J.	Thomson's	old
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characterization	of	theories	as	tools	for	solving	physics	or	engineering	problems;	Epple	compares	the	formation	of

Prandtl's	wing	theory	to	an	engineering	process	combining	multiple	theoretical	and	experimental	resources.	In

these	scholars’	view,	the	engineer	only	differs	from	the	physicist	by	(usually)	not	participating	in	the	invention	of

the	theories	and	by	his	more	systematic	appeal	to	extra-theoretical	components.	Physicists	and	engineers	not	only

share	the	goal	of	efficient	intervention,	they	also	share	some	of	the	means.

Ramsey	and	Heidelberger	insist	that	the	articulation	of	theories	implies	the	formation	of	new,	adequate	concepts.

One	could	even	argue	that	the	bare	Navier-Stokes	theory	has	no	physical	concepts.	It	harbors	only	mathematical

concepts	such	as	the	velocity	field	that	correspond	to	an	ideal	description	of	the	flow,	ignoring	molecular	structure

and	presuming	indefinite	resolution.	A	concept,	in	the	etymological	sense	of	the	word	(concipio	in	Latin,	or

begreifen	in	German),	is	a	mental	means	to	grasp	some	concrete	object	or	situation.	Hydraulic	head,	vortices,

wave	groups,	solitary	waves,	the	laminar-turbulent	transition,	boundary	layers,	separation,	etc.	are	concepts	in	this

practical	sense.	The	detailed	velocity	field	or	the	various	terms	of	the	Navier-Stokes	equation	are	not.	What

Thomas	Kuhn	once	belittled	as	the	“mopping	up”	of	theories	in	the	normal	phases	of	science	truly	is	concept

formation.

3.	Theories	And	Modules

3.1	Defining	Physical	Theories

Once	we	recognize	the	cognitive	impotence	of	the	bare	foundations	of	a	theory,	we	need	a	general	definition	of

“theory”	that	is	not	limited	to	the	fundamental	equations	and	a	few	naïve	rules	of	application.	The	definition	must

allow	for	evolving	components,	since	the	cognitive	efficiency	of	any	good	theory	always	increases	in	time.	It	must

include	explanatory	devices	and	it	must	allow	the	intertheoretical	connectivity	found	in	mature	theories.	The

following	is	a	sketch	of	such	an	enriched	definition.

A	physical	theory	is	a	mathematical	construct	including:

(a)	a	symbolic	universe	in	which	systems,	states,	transformations,	and	evolutions	are	defined	by	means	of

various	magnitudes	based	on	Cartesian	powers	of	R	(or	C)	and	on	derived	functional	spaces.

(b)	theoretical	laws	that	restrict	the	behavior	of	systems	in	the	symbolic	universe.

(c)	interpretive	schemes	that	relate	the	symbolic	universe	to	idealized	experiments.

(d)	methods	of	approximation	and	considerations	of	stability	that	enable	us	to	derive	and	judge	the

consequences	that	the	theoretical	laws	have	on	the	interpretive	schemes.

The	symbolic	universe	and	the	theoretical	laws	are	permanently	given.	They	correspond	to	the	“family	of	models”

of	the	semantic	view	of	physical	theories.	In	the	case	of	hydrodynamics,	the	symbolic	universe	consists	in	the

velocity,	pressure,	and	density	fields	for	each	fluid	of	the	system,	in	the	boundaries	of	rigid	bodies	that	may	or	may

not	move,	and	in	force	densities	such	as	gravity.	The	theoretical	laws	are	the	Navier-Stokes	equations,	boundary

conditions,	and	(for	compressible	fluids)	a	relation	between	density	and	pressure	that	may	involve	modular

coupling	with	thermodynamics	(we	will	return	to	this	point).

In	the	semantic	view	of	theories,	the	empirical	content	of	a	theory	is	defined	by	an	isomorphism	between	parts	of

the	symbolic	universe	and	empirical	data;	although	the	means	by	which	this	isomorphism	is	determined	are	usually

left	in	the	dark.	The	notion	of	an	interpretive	scheme	is	intended	to	fill	part	of	this	gap.	By	definition	an	interpretive

scheme	consists	in	a	given	system	of	the	symbolic	universe	together	with	a	list	of	characteristic	quantities	that

satisfy	the	three	following	properties.(1)	They	are	selected	among	or	derived	from	the	(symbolic)	quantities	that

define	the	state	of	this	system.	(2)	At	least	for	some	of	them,	ideal	measuring	procedures	are	known.	(3)	The

laws	of	the	symbolic	universe	imply	relations	of	a	functional	or	a	statistical	nature	among	them.	More

specifically,	interpretive	schemes	are	blueprints	of	conceivable	experiments	whose	outcomes	depend	only	on

relations	between	a	finite	set	of	mutually	related	quantities,	a	sufficient	number	of	which	are	measurable.	In	some

cases,	the	intended	experiments	may	be	designed	to	determine	some	theoretical	parameters	from	the	measured

quantities.	In	other	cases,	the	theoretical	parameters	are	given,	and	theoretical	relations	between	the	measured

quantities	are	verified.	In	all	cases,	the	interpretive	schemes	do	not	contain	rigid	linguistic	connections	between

theoretical	terms	and	physical	quantities;	their	concrete	implementation	is	analogical,	historical,	and	subject	to

revisions.
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The	introduction	of	interpretive	schemes	implies	a	selection	of	systems	and	quantities	from	the	infinite	variety	of

elements	in	the	symbolic	universe	of	the	theory.	This	selection	can	evolve	dramatically	with	the	number	and	nature

of	the	imagined	applications	of	the	theory.	The	two	main	classes	of	interpretive	schemes	of	early	hydrodynamics

were	the	pierced	vessel,	in	which	the	efflux	of	water	is	related	to	the	height	of	the	water	surface;	and	the

resistance	scheme	in	which	a	solid	body	immersed	in	a	stream	of	water	experiences	a	force	related	to	the	velocity

of	the	stream.	Another	interesting	scheme,	Bernoulli's	pipe	of	variable	section,	implied	pressure	measurement

through	vertical	columns	of	water.	A	sample	of	later	schemes	includes	the	determination	of	the	velocity	of	surface

waves	as	a	function	of	depth	and	wavelength,	the	visualized	motion	of	vortices	as	a	function	of	their	relative

configuration,	the	visualized	lines	of	flow	around	an	immersed	body	as	a	function	of	the	asymptotic	velocity,	the

drag	and	lift	of	a	wing	as	a	function	of	asymptotic	velocity	and	angle	of	attack.	Some	schemes	were	reactions	to

well-identified	practical	problems	and	others	to	some	new	theoretical	development.	In	the	latter	category,	we	may

cite	the	determination	of	the	separation	point	for	the	flow	around	an	immersed	sphere,	the	measurement	of

instability	thresholds,	Prandtl's	aspiration	of	the	boundary	layer	to	prevent	separation,	and	the	post-theoretical

visualization	of	laminar	boundary	layers.

For	an	interpretive	scheme	to	serve	its	purpose	as	an	experimental	blueprint,	a	few	conditions	must	be	met:	one

must	know	how	to	realize	concretely	the	system	picked	in	the	symbolic	universe;	one	must	know	how	to	implement

the	ideal	measuring	procedures;	one	must	be	able	to	compute	the	relations	between	measured	quantities	and

theoretical	parameters;	and	one	must	know	something	about	the	stability	of	these	relations.	Point	(d)	of	my	general

definition	of	theories	is	meant	to	meet	these	two	last	requirements.	In	this	regard,	the	reader	may	consult	the

growing	literature	regarding	the	philosophy	of	approximation,	numerical	analysis,	and	stability.	The	following

discussion	is	restricted	to	aspects	of	the	working	of	interpretive	schemes	that	have	to	do	with	the	modular

structure	of	theories.

3.2	Modules

By	definition,	a	module	is	a	component	of	a	theory	which	is	itself	a	theory,	with	a	different	domain	of	application.

Our	ability	to	apply	a	theory	crucially	depends	on	integrated	modules.	First,	there	are	defining	modules	that	serve

to	define	some	of	the	quantities	in	the	symbolic	universe.	In	the	case	of	hydrodynamics,	the	list	of	these	modules

includes	a	Euclidian	geometrical	module	that	defines	the	spatial	relations	of	the	systems;	a	mechanical	module	that

defines	external	force	densities,	external	pressures,	and	the	motion	of	immersed	bodies;	a	thermodynamic	module

that	defines	relations	between	fluid	density,	pressure,	and	temperature	(sometimes	also	heat	transfer).	These

modular	definitions	enable	us	to	transfer	already	known	measuring	procedures	into	the	interpretive	schemes	of

hydrodynamics.	In	the	case	of	compressible	fluids,	they	are	essential	to	the	completeness	of	the	theory:	no

prediction	can	be	made	without	knowing	how	the	density	varies	according	to	the	thermal	properties	of	the	system.

Second,	there	are	idealizing	modules	obtained	by	simplifying	the	symbolic	universe	and	retaining	similar

interpretive	schemes	(of	course,	the	functional	relations	between	schematic	quantities	are	different).	In	the	case	of

hydrodynamics,	the	most	important	modules	of	this	kind	are	the	theory	of	incompressible	fluids,	the	theory	of

inviscid	fluids,	and	the	theory	of	incompressible	inviscid	fluids.	Incompressibility	enables	us	to	ignore	the	coupling

of	hydrodynamics	with	thermodynamics.	Inviscidity	eliminates	one	term	in	the	Navier-Stokes	equations	and	yields

Euler's	simpler	equations.	The	usefulness	of	these	idealizations	comes	from	the	relative	smallness	of	the

compressibility	of	water	and	from	the	smallness	of	the	viscosities	of	air	and	water.

Third,	there	are	specializing	modules	that	are	exact	substitutes	of	the	theory	for	subclasses	of	schemes	that	meet

certain	conditions.	For	instance,	Lagrange's	theory	of	irrotational	incompressible	fluid	motion	can	replace	Euler's

theory	for	schemes	in	which	the	fluid	motion	is	started	from	rest	by	the	motion	of	walls	or	immersed	bodies;

Helmholtz's	theory	of	vortex	motion	can	replace	the	incompressible	specialization	of	Euler's	theory	for	schemes

based	on	the	vortex	structure.

Idealizing	and	specializing	modules	are	not	by	themselves	sufficient	to	design	effective	interpretive	schemes.	We

also	need	approximating	modules	that	can	be	seen	as	limits	of	the	theory	for	a	given	subclass	of	systems	when	a

parameter	of	this	class	or	a	parameter	of	the	symbolic	universe	(or	a	combination	of	both	kinds	of	parameters)

takes	extreme	but	still	finite	values	(the	limit	may	involve	statistical	considerations).	Hydrodynamic	examples	of

modules	of	this	kind	concern	the	small-depth	and	small-amplitude	limits	of	surface	wave	schemes,	the	high
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Reynolds-number	limit	of	fluid	resistance	or	fluid	retardation	schemes	(boundary-layer	theory),	and	the	low

Reynolds-number	limit	of	these	schemes	(creeping	flow).	In	most	cases,	it	is	only	at	the	level	of	approximating

modules	that	the	functional	relations	between	schematic	quantities	can	be	effectively	computed.

There	is	a	last	kind	of	modules,	the	reducing	modules,	that	has	more	to	do	with	the	foundations	of	the	theory	than

with	its	applications.	These	are	theories	diverted	from	their	original	domain	of	application	in	order	to	build	the	whole

symbolic	universe	of	another	theory. 	This	is	what	happens,	for	instance,	when	the	mechanics	of	a	system	of

interacting	mass	points	is	used	in	Clerk	Maxwell's	manner	as	a	molecular-kinetic-theoretical	foundation	for	the

Navier-Stokes	equation. 	There	is	a	difference	between	saying	that	T	is	a	reducing	module	of	T′	and	saying	that	T′

is	an	approximating	module	of	T:	in	the	latter	case,	the	schemes	of	T′	are	a	subclass	of	those	of	T,	whereas	in	the

former	case	the	schemes	of	T	have	nothing	to	do	with	the	schemes	of	T′	(they	lose	their	empirical	realizability	in

the	reducing	process).	In	the	case	of	reducing	modules,	the	theory	T	is	necessarily	known	before	the	reduction	is

done	and	the	theory	T′	may	even	be	invented	through	the	reduction,	as	was	the	case	with	Maxwell's	theory	of

electrodynamics.	With	approximating	modules,	the	theory	T	may	or	may	not	precede	the	theory	T′.	Whereas	the

Navier-Stokes	theory	preceded	its	boundary-layer	module,	Euler's	hydrodynamics	postdated	its	narrow-vase

module	à	la	Bernoulli.	Maxwell's	electrodynamics	postdated	its	quasi-stationary	module	and	wave	optics	postdated

its	rays-optics	module.

Modules,	qua	theories,	can	have	submodules.	For	instance,	the	incompressible	idealizing	module	of	the	Navier-

Stokes	theory	has	an	inviscid	specializing	module.	More	interestingly,	the	boundary-layer	theory,	as	an

approximating	module,	relies	on	defining	modules	that	are	idealizing,	specializing,	or	approximating	modules	of	the

Navier-Stokes	theory.	These	defining	modules	respectively	correspond	to	inviscid	fluid	motion	(in	the	“free	fluid”),

discontinuity	surfaces	(in	the	case	of	separation),	and	the	boundary-layer	equation.	This	means	that	a	module	of	a

theory	can	also	be	a	submodule	of	another	module	of	the	same	theory	(see	figure	1.4).	It	also	means	that	the	same

theory	can	be	a	module	of	different	theories.	More	evident	examples	of	multiply	inserted	modules	are	Euclidian

geometry	and	Newtonian	mechanics,	which	are	defining	modules	of	all	the	main	theories	of	classical	physics.

Figure	1.4 	Some	of	the	modular	structure	of	modern	hydrodynamics.	The	solid	arrows	correspond	to
specializing	or	approximating	modules,	the	dotted	arrows	to	defining	or	idealizing	modules.

The	modular	structure	varies	as	the	theory	develops.	The	defining	modules	are	there,	by	necessity,	from	beginning

to	end.	Reducing	modules	may	occur	at	any	stage	of	the	life	of	the	theory:	at	its	birth,	in	its	middle	age,	or	even	at

its	death.	An	instance	of	the	last	case	occurred	when	the	electromagnetic	theory	of	light	replaced	elastic-solid

theories	of	light.	Specializing	and	approximating	modules	are	gradually	introduced,	for	the	sake	of	mathematical

simplification	and	efficient	application.	The	status	of	a	module	may	vary.	For	instance,	a	defining	module	may

become	a	reducing	module	or	vice	versa.	In	the	course	of	the	history	of	electrodynamics,	mechanics	was succes-

sively	a	defining	module	(Coulomb,	Ampère,	Neumann,	Weber),	a	reducing	module	(Thomson,	Maxwell), and	again	

a	defining	module	(Hertz).	This	variability	of	the	status	of	modules	is	the	reason	why	I	have	introduced	a fairly	wide	

spectrum	of	modular	interrelations.

As	I	have	argued	elsewhere,	modules	play	an	essential	role	in	the	application,	construction,	comparison,	and

communication	of	theories. 	In	the	case	of	hydrodynamics,	the	role	of	modules	in	permitting	efficient	applications

of	the	theory	is	most	evident.	They	yield	conceptual	structures	that	are	better	adapted	to	concrete	problem situ-

ations	than	the	bare	Navier-Stokes	equation.	They	instruct	us	about	the	choice	of	accessible,	causally interrelated	

aspects	of	fluid	motion	and	they	tell	us	how	to	measure	them.	Through	a	nesting	hierarchy	of	modules, we	can	

capitalize	on	our	concrete	knowledge	of	the	schemes	of	the	most	basic	modules	to	imagine	and	control	the
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complex	experimental	environment	through	which	the	predictions	of	higher-level	theories	are	tested.

The	constructive	role	of	modules	is	evident	in	the	case	of	defining	and	reducing	modules.	Idealizing,	specializing,

and	approximating	modules	also	help	theory	construction	when	they	are	known	before	the	projective	theory.	They

may	play	an	instrumental	role	in	theoretical	unification	or	in	the	rejection	of	a	tentative	unification.	And	they	may

provide	a	“correspondence	principle”	for	guiding	the	design	of	the	symbolic	universe	of	a	new	theory,	as	was	the

case	when	Bohr	and	Heisenberg	appealed	to	classical	electrodynamics	in	the	construction	of	quantum	theory.

The	comparison	of	two	theories	requires	shared	interpretive	schemes	whose	concrete	realization	is	not	tied	to

either	of	these	theories.	This	is	possible	if	all	the	schematic	quantities	can	be	defined	by	means	of	shared	modules.

For	example,	the	predictions	of	various	nineteenth-century	theories	of	electrodynamics	could	be	compared	thanks

to	the	sharing	of	electrostatic,	electrokinetic,	and	magnetostatic	modules.	Shared	modules	are	also	essential	for	the

communication	between	different	subcultures	of	physics	and	other	communities	of	scientists	and	engineers	who

use	physics	in	their	work.	These	shared	modules	enable	someone	to	use	results	of	a	theory	whose	foundation	he

ignores	or	even	rejects.	They	permit	the	sharing	of	apparatus	whose	functioning	depends	only	on	lower-level

modules.	Lastly,	modular	structure	is	essential	to	the	teaching	of	theories.	A	typical	textbook	is	organized	by

chapters	that	correspond	to	modules	of	the	theory.	Thus,	the	student	can	connect	the	new	theory	to	other	theories

with	which	he	is	already	familiar,	he	can	get	a	grasp	on	how	to	apply	the	theory	in	concrete	situations,	and	he	can

learn	techniques	that	transcend	the	domain	of	this	theory.

3.3	Models	and	Modules

In	recent	philosophy	of	science,	there	has	been	a	strong	emphasis	on	models	as	mental	constructs	that	differ	both

from	full-fledged	theory	and	from	narrow	empirical	induction.	Mary	Morgan	and	Margaret	Morrison	regard	models	as

mediating	instruments	between	theory	and	phenomena.	In	their	view,	models	are	partially	autonomous	from	theory:

some	of	their	components	have	extratheoretical	origins.	The	models	help	to	shape	theories	as	much	as	they	rely

on	theory.	They	are	more	directly	relevant	to	the	empirical	world	than	theories,	at	the	price	of	a	more	limited	scope.

For	all	these	reasons,	Morgan	and	Morrison	insist	that	models	are	not	theories.

Yet	(physics)	models	fit	my	definition	of	theories,	since	they	necessarily	have	a	symbolic	universe,	internal	laws,

and	interpretive	schemes.	In	my	view,	they	differ	from	other	theories	only	by	having	a	smaller	scope	or	less

structural	unity.	This	difference	is	largely	a	matter	of	degree	and	convention.	The	partial	autonomy	of	models	from

more	fundamental	theories	results	from	the	modular	character	of	their	interconnection	with	these	theories.

Typically,	fundamental	theories	are	defining	or	reducing	modules	of	models;	or	else	models	are	approximating

modules	of	a	more	fundamental	theory. 	The	relation	between	models	and	theories	is	just	a	particular	case	of	the

modular	relation	between	two	theories.	It	therefore	implies	the	same	sort	of	mutual	fitness	without	fusion.	There	is

no	need	to	sharply	discriminate	models	from	theories	once	the	modular	structure	of	theories	is	taken	into	account.

It	is	sufficient	to	recognize	that	some	theories	are	more	fundamental	than	others.

We	may	now	revisit	Prandtl's	boundary-layer	theory,	which	has	received	more	attention	from	philosophers	of

science	than	any	other	aspect	of	hydrodynamics.	The	reason	for	this	interest,	no	doubt,	is	the	glaring	cognitive

superiority	of	Prandtl's	theory	compared	to	any	earlier	approach	to	the	high	Reynolds-number	resistance	problem.

Margaret	Morrison	calls	Prandtl's	theory	a	model	and	insists	on	its	extratheoretical	origins	in	conformity	with	her

general	views	on	models.	In	her	opinion,	Prandtl's	concept	of	boundary	layer	originated	in	an	inductive	inference

from	the	flow	patterns	that	Prandtl	observed	with	his	water	mill	and	tank.	Michael	Heidelberger	denies	this

reconstruction	and	favors	an	account	in	terms	of	theoretical	heuristics.	As	he	correctly	remarks,	laminar	boundary

layers	could	not	be	seen	in	Prandtl's	tank,	and	Prandtl	himself	cited	asymptotic	reasoning	as	the	true	source	of	this

concept.	However,	the	scenario	imagined	by	Morrison	is	frequently	encountered	in	the	history	of	hydrodynamics.

For	instance,	Rankine	and	Froude's	concept	of	eddying	boundary	layer	did	result	from	casual	observation	of	the

flow	around	a	ship	hull.

Despite	his	disagreement	with	Morrison	over	the	origins	of	Prandtl's	theory,	Heidelberger	continues	to	call	it	a

model.	Presumably,	he	means	to	indicate	that	Prandtl's	theoretical	heuristics	implied	more	creative	guessing	than

would	be	needed	in	a	mere	deduction	from	the	Navier-Stokes	theory	would	engender,	and	that	it	created	a	new

efficient,	and	fairly	autonomous,	conceptual	structure.	Prandtl	himself	did	not	call	his	theory	a	model.	The	reasons

are	not	difficult	to	guess.	The	word	was	then	used	in	Göttingen	as	a	way	to	characterize	semi-concrete	theories
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that	saved	the	phenomena	without	pretending	to	reach	the	true	causes.	In	contrast,	Prandtl's	boundary-layer

theory	was	meant	to	represent	the	true	flow	around	bodies	at	a	high	Reynolds	number;	it	did	not	imply	any

counterfactual	hypothesis;	and	it	was	demonstrably	compatible	with	the	Navier-Stokes	equation.	In	my	terminology,

Prandtl's	theory	was	an	approximating	module	of	the	Navier-Stokes	theory.	In	conformity	with	the	physicists’

parlance,	I	would	rather	reserve	the	word	“model”	for	theories	that	imply	conscious	simplifications	of	the	system

under	consideration,	for	instance,	the	early	nineteenth-century	“models”	of	open	channel	flow.

These	terminological	subtleties	matter	inasmuch	as	an	overly	generous	use	of	the	word	“model”	implies	a	neglect

of	the	modular	structure	of	theories,	which	I	regard	as	pervasive	and	essential.	Morrison's	and	Heidelberger's

insights	into	the	function	of	what	they	prefer	to	call	models	are	nevertheless	important.	They	both	emphasize	the

impotence	of	bare	fundamental	theories	and	the	need	to	supplement	them	with	conceptual	structures	that

somehow	mediate	between	theory	and	experiment.	And	they	both	understand	that	unification,	in	the	context	of	a

fundamental	theory,	remains	a	desideratum.	In	a	witty	allusion	to	Nancy	Cartwright's	criticism	of	fundamental

theories,	Heidelberger	claims	that	the	Navier-Stokes	theory	“does	not	even	lie	about	the	world.”	At	the	same	time,

he	understands	that	the	boundary-layer	theory,	which	so	much	improves	the	explanatory	power	of

hydrodynamics,	is	an	approximation	of	the	Navier-Stokes	theory.	In	my	view,	the	moral	is	that	the	Navier-Stokes

theory,	or	any	other	of	the	great	theories	of	physics,	should	not	be	considered	independently	of	its	ever-increasing

modular	structure.	Although	the	result	of	this	evolution	can	never	fulfill	the	dream	of	a	transparent	and	automatic

application	of	the	fundamental	equations	to	every	conceivable	situation,	it	has	the	organic	unity	and	efficiency	that

we	need	in	order	to	understand	and	control	some	of	the	physical	world.
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This	kind	of	model	widely	differs	from	ad	hoc	models	for	limited	classes	of	phenomena.
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Abstract	and	Keywords

This	chapter	analyzes	the	concept	of	classical	mechanics.	It	suggests	that	the	interpretation	of	classical

mechanics	will	most	likely	provide	an	appropriate	theoretical	setting	in	the	context	of	planetary	motions,	billiards,

and	simplified	ideal	gases	in	boxes.	The	chapter	also	contends	that	classical	mechanics	is	best	thought	of	as

constituted	by	various	foundational	methodologies	which	do	not	fit	particularly	well	with	one	another	and	highlights

the	fact	that	a	good	deal	of	philosophical	confusion	has	arisen	from	failing	to	recognize	the	complicated	scale-

dependent	structures	of	classical	physics.

Keywords:	classical	mechanics,	interpretation,	planetary	motions,	billiards,	ideal	gases,	foundational	methodologies,	scale-dependent	structures,

classical	physics

1.	Preliminary	Considerations

One	of	the	prominent	sources	of	unhelpful	folklore	within	philosophy	is	the	historical	controversy	whose	proper

intricacies	have	been	underappreciated.	Misunderstood	problems	beget	mistaken	“morals”	that	can	lead

philosophical	thinking	astray	for	long	epochs	thereafter.	This	has	occurred,	to	an	extent	that	few	philosophers

recognize,	with	respect	to	the	so-called	“foundations	of	classical	mechanics.”	As	matters	are	commonly

represented	within	modern	college	primers,	“classical	physics”	appears	to	be	a	transparent	subject	matter	firmly

founded	upon	Newton's	venerable	laws	of	motion.	But	this	placid	appearance	is	deceptive.	Any	purchaser	of	an	old

home	is	familiar	with	parlor	walls	that	seem	sound	except	for	a	few	imperfections	that	“only	require	a	little	spackle

and	paint.”	When	those	innocent	dimples	are	opened	up,	the	ancient	gerry-rigged	structure	comes	tumbling	down

and	our	hapless	fix-it	man	finds	himself	confronted	with	months	of	dusty	reconstruction.	So	it	is	with	our	subject,

whose	basic	concepts	can	seem	so	“clear	and	distinct”	on	first	acquaintance	that	unwary	thinkers	have	mistaken

them	for	a	priori	verities.	But	the	true	lesson	of	“classical	mechanics”	for	philosophy	should	be	exactly	the

opposite:	the	conceptual	matters	that	initially	strike	us	as	simple	and	pellucid	often	unwind	into	hidden	complexities

when	probed	more	adequately.

Figure	2.1

Matters	have	been	rendered	more	confusing	by	the	fact	that	a	conceptually	simple	surrogate	for	classical	doctrine

is	readily	available,	even	though	its	formally	articulated	doctrines	skirt	most	of	the	tricky	conceptual	problems

encountered	within	classical	tradition.	The	tenets	of	this	simple	theory	comprise	the	themes	that	we	shall
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investigate	under	the	heading	of	“point-mass	mechanics.”	Within	this	approach	the	term	point	mass	designates	an

isolated,	zero-dimensional	point	that	carries	concentrated	mass,	charge,	and	so	on.	In	contrast,	there	are	two

other	sorts	of	“fundamental	objects”	with	which	a	“classical	mechanics”	can	be	potentially	concerned:	rigid

bodies,	understood	as	extended	solids	whose	points	never	alter	their	relative	distances	to	one	another	and

flexible	bodies	such	as	fluids	or	solids	that	are	completely	malleable	at	every	size	scale	(figure	2.1).

Commonly,	the	latter	are	also	called	continua,	a	practice	we	shall	adopt	here.	Of	course,	any	of	these	entities	can

be	joined	together	in	larger	combinations,	as	when	individual	rods	are	assembled	into	a	mechanism	or	one	flexible

body	is	embedded	within	another	as	a	composite	(e.g.,	a	jelly	doughnut).

Mathematicians	commonly	label	our	continua	as	fields	due	to	their	distributed	character.	We	will	generally	avoid

this	terminology	and	will	not	discuss	classical	electrodynamics	at	all.	In	the	sequel,	I	shall	employ	the	phrase

material	point	to	designate	a	zero-dimension	region	within	a	continuously	distributed	body	(either	in	its	interior	or

along	some	bounding	surface).	In	contrast	to	our	point	masses,	material	points	are	connected	with	one	another

quite	densely	and	(usually)	do	not	carry	finite	values	of	mass	or	impressed	force	(they,	instead,	only	display	mass

and	charge	densities	that	sum	to	genuine	masses	and	densities	over	regions	of	an	adequate	measure).	The

phrase	analytic	mechanics	will	serve	as	a	generic	title	for	the	sundry	formalisms	that	deal	with	connected	systems

of	rigid	bodies.

As	just	noted,	the	“conceptually	simple	surrogate”	for	classical	doctrine	that	most	commonly	dominates

philosophical	discussions	of	“Newtonian	mechanics”	comprises	a	set	of	prescriptions	that	make	coherent	sense

only	with	respect	to	isolated	point	masses	that	never	come	into	contact	with	one	another.	We	shall	discuss	the

specific	features	of	these	doctrines	in	section	3.	From	a	point-mass	perch,	any	appeal	to	rigid	bodies	or	continua

merely	represents	a	convenient	means	of	discussing	large	swarms	of	point	masses	held	together	through	cohesive

bonding	at	short	scale	lengths.

The	deceptive	simplicity	available	to	the	point-mass	approach	traces	largely	to	the	fact	that,	within	its	frame,	matter

can	exist	only	in	the	form	of	isolated	singularities,	thereby	sidestepping	the	substantial	mathematical	concerns	that

arise	when	extended	objects	come	in	contact	with	one	another	(on	rare	occasions,	point	masses	can	collide	with

one	another,	but	these	contacts	only	occur	at	fleeting	moments	that	can	usually	be	handled	through	appeal	to

conservation	principles).	As	a	result,	point	masses	act	upon	one	another	only	through	action-at-a-distance

forces, 	but	higher	dimensional	objects	require	direct	contact	forces	as	well.	As	we	will	learn,	getting	action-at-a-

distance	forces	and	contact	forces	to	work	in	tandem	is	a	nontrivial	affair,	but	it	becomes	a	conceptual	obligation

that	vanishes	from	view	if	we	are	allowed	to	restrict	our	fundamental	ontology	to	point	masses	alone.

However,	there	is	a	wide	range	of	subtle	reasons	why	it	can	easily	look	as	if	a	specific	classical	author	embraces

the	point-mass	viewpoint.	As	we	will	observe	in	section	3,	Newton's	celebrated	laws	of	motion	are	difficult	to	parse

coherently	unless	terms	like	“body”	are	interpreted	in	a	punctiform	manner.	A	host	of	significant	mathematical

complexities	attach	to	the	notion	of	“material	point”	as	it	appears	within	continuum	physics	(i.e.,	as	a	point-sized

region	within	a	continuous	body),	and	these	are	sometimes	bypassed	by	confusing	embedded	continuum	points

with	the	simple	isolated	singularities	of	the	point-mass	treatment.	We	shall	survey	several	of	these	shifts	in	the

pages	to	follow.	From	a	formal	point	of	view,	it	is	important	to	distinguish	between	the	ordinary	differential

equations	(ODEs)	pertinent	to	point	masses	and	analytic	mechanics	and	the	trickier	partial	differential	equations

(PDEs)	required	in	continuum	modeling.
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The	fact	that	the	real	world	proves	quantum	mechanical	within	its	small-scale	behaviors	occasions	confusion	as

well.	Although	particles	like	electrons	appear	to	be	“point-like”	in	their	scattering	behaviors,	they	also	“fill”	larger

effective	volumes	courtesy	of	the	uncertainty	relations.	In	many	cases,	one	obtains	the	requisite	Schrödinger

equation	for	a	system	of	particles	(which	is	a	PDE	describing	a	field	spread	out	within	a	high	dimensional	space)	by

“quantizing”	a	parallel	set	of	ODEs	for	a	classical	point-mass	system. 	But	this	mathematical	linkage	does	not	entail

that	nature	behaves	much	like	any	classical	point-mass	system	at	a	small	size	scale	(figure	2.2).

Quite	the	contrary,	constructing	a	classical	system	that	can	approximate	the	“effective	volumes”	of	quantum

clouds	accurately	at	the	size	scale	of	so-called	“molecular	modeling”	often	requires	classical	blobs	of	extended

size	and	flexibility.	Most	scientists	working	in	the	final	epoch	when	classical	mechanics	could	plausibly	claim	to

govern	the	world	in	its	entirety,	namely	the	late	nineteenth	century,	rejected	the	point-mass	viewpoint	as

empirically	inadequate	for	the	bloblike	characteristics	of	real-life	atoms	and	molecules.

Nonetheless,	there	are	convenient	mathematical	associations	between	the	ODEs	for	classical	point-mass	models

and	the	Schrödinger	equation,	so	many	contemporary	physicists	and	philosophers	of	physics	are	familiar	with	the

point-mass	formalism	alone.	However,	scholars	hoping	to	extract	methodological	morals	from	the	struggles	over

“matter,”	“atoms,”	and	“force”	that	occurred	toward	the	end	of	the	nineteenth	century	will	be	misled	if	they	study

point-masses	only,	for	it	misses	the	conceptual	complexities	at	the	heart	of	the	historical	disputes.	Viewed retro-

spectively,	the	degree	to	which	the	technical	arcana	of	classical	mechanics	have	impacted	the	development of	

scientifically	attuned	philosophy	over	the	past	several	centuries	is	quite	striking,	even	if	this	influence	is	not

always	recognized	by	modern	readers.	In	this	review,	we	shall	sketch	some	of	the	chief	ways	in	which	the

subtleties	of	classical	mechanics	have	impacted	philosophy.

There	are	two	major	arenas	in	which	these	effects	have	arisen.	First,	many	of	our	greatest	historical	thinkers

(Newton,	Leibniz,	Kant,	Duhem,	and	others)	directly	struggled	with	the	problems	of	classical	matter,	and	their

developed	philosophies	often	prove	intimately	entangled	with	the	specific	foundational	pathways	they	chose	to

follow. 	Such	portions	of	our	philosophical	heritage	are	often	misunderstood	nowadays	simply	because	the	true

contours	of	the	physical	problems	our	forebears	faced	have	been	forgotten.	Second,	as	a	result	of	these	struggles,

the	great	philosopher-scientists	formulated	a	wide	range	of	philosophical	attitudes	including	anti-realism	and

instrumentalism	as	a	response	to	the	technical	oddities	they	confronted.	The	twentieth-century	logical	empiricists

who	came	later—after	the	chief	focus	of	academic	physics	had	shifted	to	quantum	theory	and	relativity—were

influenced	by	those	older	philosophical	conclusions	without	adequate	appreciation	of	the	concrete	issues	that

prompted	them.	Unfortunately,	many	philosophers	have	continued	to	hew	to	these	old	presumptions	as	if	they

represented	firm	verities,	illustrating	Darwin's	celebrated	aperccu:	“False	facts	are	highly	injurious	to	the	progress

of	science,	for	they	often	endure	long;	but	false	views,	if	supported	by	some	evidence,	do	little	harm,	for	everyone

takes	a	salutary	pleasure	in	proving	their	falseness.” 	A	large	folklore	of	“false	facts”	concerning	classical

mechanics	continues	to	bend	contemporary	philosophy	along	unprofitable	contours	even	today.

It	is	not	the	chief	intent	of	this	essay	to	pursue	these	satellite	philosophical	concerns	with	any	vigilance,	but	to

instead	concentrate	upon	the	key	tensions	that	render	classical	doctrine	hard	to	capture	in	the	first	place. Nonethe-

less,	I	hope	that	our	prolegomena	on	larger	themes	suggests	that	significant	points	of	general	philosophical

edification	still	lodge	within	the	cracks	of	mechanics’	hoary	edifice.

2.	Axiomatic	Presentation

It	will	serve	as	a	convenient	benchmark	for	our	investigations	to	recall	that	David	Hilbert	placed	the	rigorization	of

mechanics	on	his	celebrated	1899	list	of	problems	that	mathematicians	should	address	in	the	century	to	come	(it	is

his	sixth	problem).	He	wrote,	“The	investigations	on	the	foundations	of	geometry	suggest	the	problem:	To	treat	in

the	same	manner,	by	means	of	axioms,	those	physical	sciences	in	which	mathematics	plays	an	important	part;	in

the	first	rank	are	the	theory	of	probabilities	and	mechanics.” 	Indeed,	Hilbert's	own	work	in	geometry	and else-

where	comprised	a	chief	inspiration	for	the	logical	empiricist	program.	Following	this	lead,	we	will	serially examine	

the	prospects	for	meeting	Hilbert's	challenge	based	upon	the	three	foundational	choices	identified	in section	1:	

point	masses,	rigid	bodies,	and	continua.
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Since	this	essay	will	conclude	that	Hilbert's	objectives	cannot	be	completely	satisfied	with	respect	to	classical

mechanics	in	the	manner	anticipated,	let	me	first	distance	this	evaluation	from	a	popular	viewpoint	with	which	it

might	be	otherwise	confused.	Many	recent	philosophers	have	responded	to	the	axiomatic	expectations	of	the

logical	empiricist	school	by	concluding	that	science	cannot	be	usefully	studied	in	a	formal	manner	at	all.	“Real	life

physics	represents	an	ongoing	practice,”	they	claim,	“and	any	attempt	to	capture	its	free-spirited	antics	within	the

rigid	net	of	mathematical	formalization	represents	an	intrinsic	distortion.”	But	this	is	not	what	I	shall	claim,	for	I	reject

such	a	point	of	view	entirely.	Writing	idly	of	“practices”	in	the	loose	manner	of	such	authors	offers	little	prospect

for	either	appreciating	or	correctly	identifying	the	concrete	conceptual	difficulties	to	be	documented	in	this	essay.

Indeed,	it	was	precisely	through	careful	formal	studies	in	Hilbert's	manner	that	twentieth-century	practitioners

eventually	reached	a	much	sharper	understanding	of	the	fundamental	requirements	of	continuum	mechanics	than

was	available	in	1899.	Indeed,	Hilbert's	own	lectures	in	1905	and	the	pioneering	efforts	of	his	student,	Georg

Hamel,	comprised	early	landmarks	along	this	long	and	tortuous	development. 	The	only	anti-Hilbertian	moral	we	will

extract	from	our	examination	is	that	a	descriptive	regime	can	often	address	large-scale	objects	more	successfully

if	its	underpinnings	are	structured	in	an	overall	“theory	facade”	manner	somewhat	at	odds	with	standard	axiomatic

expectations.	In	every	other	way,	I	completely	endorse	the	motivating	intent	of	Hilbert's	sixth	problem.

We	cannot	appreciate	the	old	puzzles	of	classical	matter	in	their	historical	dimensions	unless	we	keep	the

mathematical	difficulties	of	continua	firmly	in	mind.	Scientists	planning	bridges	or	studying	the	musical	qualities	of

violins	in	early	eras	did	not	have	the	luxury	of	waiting	until	the	twentieth	century	to	gather	the	tools	they	properly

require.	They	simply	had	to	cobble	by	with	the	mathematics	they	had	on	hand,	even	at	the	price	of	rather	dodgy

justifications.	For	example,	due	to	the	lack	of	clearly	articulated	PDE	equations,	Leibniz	and	his	school	could	not

deal	directly	with	the	three-dimensional	complexities	of	a	shaking	beam	straight	on;	they	were	forced	to	dissect	the

problem	as	illustrated	into	a	connected	sequence	of	one-dimensional	tasks	locally	governed	by	ODEs	(figure	2.3).

Newton	followed	a	similar	procedure	in	investigating	how	rotation	affects	the	earth's	shape:	he	began	his	treatment

with	a	one-dimensional	“canal”	through	the	planet's	interior. 	Even	today,	most	textbook	problems	adopt	similar

reductive	stratagems:	witness	the	standard	treatment	of	the	vibrating	string.

Studying	physics	within	these	reduced,	lower-dimensional	settings	can	be	very	misleading	from	a	“foundational”

point	of	view	(encouraging	one	to,	e.g.,	think	of	stress	as	simply	a	kind	of	force).	However,	it	is	unlikely	that

classical	physics	could	have	staggered	its	way	to	an	adequate	treatment	of	continua	without	relying	upon	a	broad

array	of	results	for	systems	that,	from	a	foundational	point	of	view,	cannot	represent	their	proper	conceptual

ingredients.
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Figure	2.3

Finally,	to	appreciate	the	historical	debates	over	classical	physics	in	a	proper	context,	we	must	disentangle	the

term	“foundations”	from	certain	absolutist	demands	that	contemporary	philosophers	are	inclined	to	make.	If	we

mark	out	clear	axiomatic	“foundations”	for	point	masses,	say,	have	we	thereby	selected	an	absolute	bottom	layer

of	entities	from	which	any	other	object	or	system	considered	within	a	classical	frame	should	be	constructed?	Many

contemporary	philosophers	almost	instinctively	answer	“yes,”	but	the	more	prevalent	historical	assumption	would

have	rejected	“ultimate	foundations”	for	classical	mechanics	in	that	vein.	Indeed,	calls	for	axiomatization	per	se

need	not	inherently	favor	any	unique	choice	of	“ideology	and	ontology”	in	an	absolutist	manner,	for	one	may

instead	believe	that	different	selections	of	base	entities	and	primitive	terms	may	prove	better	suited	for	different

agendas.	Indeed,	nineteenth-century	mathematicians	influenced	by	Julius	Plücker	maintained	that	traditional

Euclidean	geometry	lacks	any	privileged	basic	ontology—there	is	no	special	reason	to	regard	points	as	the

subject's	primitive	objects	rather	than	lines	or	circles.	Indeed,	a	chief	objective	of	traditional	“foundational”	work

within	geometry	was	interested	in	learning	how	the	subject	appears	when	it	is	dissected	into	alternative	choices	of

elementary	forms	(points,	lines,	circles,	etc.),	under	the	assumption	that	each	dissection	into	“primitives”	offers

fresh	insights	into	the	structural	relationships	that	interlace	the	subject.	Hilbert	may	have	approached	his	sixth-

problem	axiomatization	project	with	similarly	tolerant	expectations.

Most	of	the	great	scientists	of	Hilbert's	time	tacitly	recognized	that	descriptive	success	in	reliable	modeling

invariably	relies	upon	some	tacit	choice	of	scale	length.	Matter	generally	reveals	a	hierarchy	of	qualities de-

pending	on	how	closely	one	inspects	its	structural	details	(it	is	traditional	to	designate	this	depth	of	focus	by	a

“characteristic	scale	length”	ΔL).	For	example,	on	an	observational	scale	ΔL ,	well	made	steel	obeys	simple

isotropic	rules	for	stretch	and	compression	under	normal	loads	(figure	2.4).
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Figure	2.4

But	closer	inspection	reveals	that	this	macroscopic	uniformity	and	toughness	represents	the	resultant	of	a	carefully

engineered	randomness	at	the	level	of	the	crystalline	grain	ΔL 	making	up	the	material	(such	a	scale	length	is

sometimes	dubbed	the	“mesoscopic	level”).	Considered	at	this	lowered	ΔL 	length,	each	component	granule	will

stretch	and	compress	in	a	more	complicated	manner	than	the	bulk	steel,	but	their	randomized	orientations	supply

the	larger	body	with	its	simple	behavior	at	the	macroscopic	level	(so-called	“homogenization	theory”	concerns

itself	with	the	details	of	how	this	ΔL 	scale	to	ΔL 	scale	process	operates).	Lowering	our	focus	to	the	molecular lat-

tice	ΔL 	composing	the	grain,	we	find	that	its	capacity	to	transmit	dislocations	supplies	the	true	underpinnings	of

the	admirable	toughness	witnessed	in	the	bulk	steel	at	the	much	longer	characteristic	length	ΔL .	If	we	attempt	to

capture	these	various	scale-dependent	behaviors	individually	utilizing	classical	modeling	techniques	alone	(as	we

can,	to	a	remarkable	degree	of	success),	we	will	generally	find	ourselves	selecting	different	ontological	base	units

according	to	the	implicit	scale	length	we	have	selected.	In	such	a	mode,	civil	engineers	usually	model	a	steel	beam

upon	a	ΔL 	scale	as	a	single	flexible	body	of	considerable	homogeneity,	whereas	technicians	interested	in	steel

manufacture	typically	concern	themselves	with	the	thermodynamics	of	structural	formation	at	the	ΔL 	level.	As

such,	the	latter	often	adopt	an	ontology	of	rigid	crystalline	forms	bound	together	into	a	complex	material	matrix.

Initial	efforts	in	modeling	materials	at	the	ΔL 	scale	often	employ	point-mass	atoms	bound	together	in	an	irregular

grid.	But	a	more	refined	approach	to	these	same	lattice	“atoms”	will	instead	assign	them	flexible	shapes—at	the

cost	of	considerable	computational	complexity.	And	so	the	modeling	shifts	proceed,	each	alteration	in

characteristic	scale	length	commonly	favoring	a	different	“ontology”	in	its	modeling	material.

Here	is	a	useful	way	to	think	about	the	relationships	between	scale	sizes.	In	presuming	that	the	point	masses	within

a	rigid	part	retain	their	comparative	distances,	we	are	actually	pursuing	a	rough-hewn	stratagem	for	profitable

variable	reduction,	in	the	sense	that	we	are	attempting	to	evade	consideration	of	the	huge	class	of	descriptive pa-

rameters	needed	to	fully	fix	the	position	and	velocity	of	every	point	mass	within	its	surrounding	rigid-body	cloud.

By	treating	the	cloud	as	a	united	whole,	we	can	track	its	dominant	behaviors	with	a	simple	choice	of	six

descriptive	parameters	(three	to	locate	its	center	of	mass;	three	to	mark	its	angles	of	rotation	around	that	center).

But	in	tracking	these	values,	we	are	only	attending	to	the	dominant	behavior	of	the	cloud	because	any	normal

collection	of	point	masses	will	need	to	jiggle	in	very	complex	ways	as	they	move	forward.	So	our	six	rigid-body

coordinates	count	as	an	effective	set	of	reduced	variables	for	our	complicated	point-mass	swarm.	Modern

mathematicians	like	to	picture	such	reductions	as	consisting	of	the	trajectories	etched	upon	a	smallish	“reduced

manifold”	sitting	inside	some	much	larger	dynamic	space.	Our	point-mass	swarm	(which	is	symbolized	within	a
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standard	high	dimensional	“phase	space”	as	the	movements	of	a	single	dot)	will	wander	throughout	the	larger

space	in	an	exceedingly	complicated	way,	but	it	may	fly	fairly	close	(for	certain	portions	of	its	journey	at	least)	to	a

smaller	“reduced	variable”	manifold,	as	illustrated	(figure	2.5).

If	so,	we	can	gauge	its	complex	movements	with	reasonable	accuracy	by	simply	tracking	its	shadow	upon	the

surface	of	the	reduced	manifold.	Such	reduced-variable	techniques	have	been	long	employed	within	celestial

mechanics	and	it	remains	the	hope	of	modern	modelers	in,	for	example,	hydrodynamics	that	some	allied	set	of

reduced	quantities	might	be	found	to	simplify	the	refractive	complexities	within	those	topics.

Figure	2.5

Speculative	philosophers	such	as	Leibniz	opined	that	this	alteration	of	ontological	units	would	continue	forever	as

one	descends	to	smaller	scales.	More	cautious	observers	have	merely	observed	that	experiment	had	not

established	any	clear	choice	of	lowest	scale	unit	for	classical	mechanics.	In	this	regard,	it	should	be	recalled	that

the	evidence	for	fundamental	particles	only	became	overwhelming	at	the	very	end	of	the	classical	period,	in	the

guise	of	Rutherford's	experiments	on	radioactive	scattering	and	the	like.	Once	quantum	mechanics	enters	our

descriptive	arena,	its	percepts	increasingly	dominate	at	smaller	scale	lengths	and	we	eventually	fall	beyond	the

resources	of	classical	modeling	tools	altogether.

Unfortunately,	the	various	crossover	points	at	which	classical	treatments	lose	their	accuracy	do	not	favor	any

uniform	choice	of	fundamental	classical	entity.	Sometimes	point-mass	treatments	supply	the	most	convenient	form

of	lowest-scale	classical	modeling,	but	more	often	continua	or	rigid	bodies	provide	better	modeling	accuracy.	So

while	quantum	mechanics	may	select	certain	entities	as	physically	“bottom	level,”	it	does	not	follow	that	classical

mechanics	will	do	the	same	when	considered	upon	its	own	merits.	Accordingly,	Hilbert's	sixth-problem	formalization

project	should	not	be	saddled	with	the	burden	of	satisfying	a	contemporary	philosopher's	expectations	with	respect

to	bottom-level	ontology.	What	we	will	want	to	investigate	carefully,	as	part	of	our	“foundationalist”	enterprise,	is

the	degree	to	which	principles	applicable	on	a	higher	scale	level	ΔL*	relate	to	those	applicable	at	the	lower	length

ΔL.	I	call	such	transfers	of	doctrine	across	size	scales	lifts,	and	I	employ	“lift”	in	the	elevator	sense:	one	can	go

both	up	and	down	in	a	hoist.

Hilbert's	own	articulation	stresses	the	importance	of	understanding	these	lifts	more	centrally	than	the	simpler	task

of	formalizing	our	three	starting	perspectives.	He	wrote:

Figure	2.6

Boltzmann's	work	on	the	principles	of	mechanics	suggests	the	problem	of	developing	mathematically	the

limiting	processes,	there	merely	indicated,	that	lead	from	the	atomistic	view	to	the	laws	of	motion	of

continua.	Conversely,	one	might	try	to	derive	the	laws	of	motion	of	rigid	bodies	by	a	limiting	from	a	system

of	axioms	depending	upon	the	idea	of	continuously	varying	conditions	of	matter	filling	all	space
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continuously,	these	conditions	being	defined	by	parameters.	For	the	question	of	equivalence	of	different

systems	of	axioms	is	always	of	great	theoretical	interest.

Here	Hilbert	calls	our	attention	to	the	various	relationships	between	scale	length	that	have	been	intensely	studied

in	recent	times	under	the	general	headings	of	“homogenization”	and	“degeneration.” 	He	observes	that	the

vague	invocation	of	“limits”	rarely	provides	an	adequately	precise	diagnosis	of	the	relationships	involved,	an

observation	that	modern	investigations	heartily	underscore.	Observe	that	Hilbert's	final	sentence	suggests	that	he

did	not	anticipate	that	any	of	his	suggested	starting	points	would	prove	fundamental	in	the	bottom-layer	sense	just

canvassed.	According	to	the	applicational	task	at	hand,	different	modes	of	ontological	dissection	(e.g.,	flexible

continua	or	Boltzmannian	swarms	of	rigid	bodies)	may	possess	their	descriptive	utilities	in	the	same	manner	in

which	alternative	decompositions	of	geometry	into	“primitive	elements”	prove	fruitful.	Even	so,	Hilbert	insists	that

we	must	guard	against	erroneously	lifting	physical	doctrines	from	one	decompositional	program	to	another	without

adequate	precaution	(figure	2.6).

In	standard	textbook	practice,	these	lifts	usually	appear	as	dubious	“derivations”	of,	for	example,	rules	of	continua

considered	at	a	ΔL*	scale	level	on	the	basis	of	rigid	body	swarms	at	a	ΔL	scale.	As	we	will	later	see	in	detail,	such

improper	doctrinal	transfers	are	common	in	practice	and	sometimes	serve	as	the	source	of	substantial	conceptual

confusion.

Figure	2.7

Consider	a	simple	example	of	the	problems	that	can	arise	in	such	shifts	from	ΔL	to	ΔL*.	The	term	force	has	a

notorious	tendency	to	alter	its	exact	significance	as	characteristic	scale	lengths	are	adjusted.	At	a	macroscopic

level,	the	“rolling	friction”	that	slows	a	ball	upon	a	rigid	track	is	a	simple	Newton-style	force	opposing	the	onward

motion.	But	at	a	lower	scale	length,	the	seemingly	“rigid”	tracks	are	not	so	firm	after	all:	they	elongate	under	the

weight	of	the	sphere	to	a	nontrivial	degree.	So	part	of	the	work	required	to	move	our	ball	against	friction	consists	in

the	fact	that	it	must	travel	further	than	is	apparent.	But	when	we	consider	the	“forces”	on	our	ball	at	a	macrolevel,

we	instinctively	treat	the	track	length	as	fixed	and	allocate	the	effects	of	its	actual	elongation	to	a	portion	of	the

“force	of	rolling	friction”	budget	(figure	2.7).	A	similar	phenomenon	occurs	with	the	“viscosity”	of	a	fluid.

When	such	adjustments	in	reference	occur,	one	cannot	legitimately	lift	a	doctrine	about	“forces”	applicable	on

scale	level	ΔL	to	scale	level	ΔL*,	for	“force”	does	not	mean	quite	the	same	thing	in	the	two	applications.	Of	course,

if	these	innocent	drifts	were	the	only	kinds	of	problematic	lift	to	which	mechanical	practice	was	liable,	serious

conceptual	debates	would	not	have	arisen	in	the	subject.	But	these	humble	illustrations	supply	a	preliminary	sense

of	the	problems	we	must	watch	for.

The	properties	we	ascribe	to	a	system	with	respect	to	an	upper-scale	length	ΔL*	(“rolling	on	a	rigid	track”)	usually

represent	averages	(or	some	allied	form	of	homogenization	or	degeneration)	over	the	more	elaborate	behaviors

we	will	witness	at	a	finer	scale	of	resolution	ΔL	(“stretching	the	molecular	lattice”).	Obtaining	a	workable	scheme	of

physical	description	tailored	to	ΔL*	usually	requires	that	a	fair	amount	of	fine	detail	gets	frozen	over	in	our

modelings.	In	other	words,	we	generally	hope	to	capture	only	the	dominant	behaviors	of	our	real-life	system	within
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in	our	ΔL*	treatment	and	anticipate	that	we	will	sometimes	need	to	open	up	the	suppressed	degrees	of	freedom

whenever	the	complexities	of	the	lower	scale	begin	to	intrude	upon	the	patterns	normally	predominant	at	the

coarser	scale	ΔL*.

Generically,	the	use	of	a	smaller	set	of	quantities	to	capture	system	behaviors	dominant	upon	a	higher	scale	length

ΔL*	is	called	a	reduced	variable	treatment.	There	are	a	large	number	of	ways	in	which	these	reduced-variable

models	can	arise.	For	example,	a	reasonable	policy	of	homogenization	might	adjust	its	descriptive	terms	from

those	suited	to	a	ΔL 	assembly	of	iron	grains	to	a	smoothed-over	steel	bar	described	as	continuous	at	the	ΔL

level. 	But	a	quite	different	exemplar	of	reduced-variable	“freezing”	can	be	witnessed	in	Newton's	celebrated

treatment	of	the	planets.	At	the	scale	lengths	appropriate	to	celestial	mechanics,	one	can	ignore	the	complexities

attendant	upon	the	earth's	shape	and	size	by	modeling	it	as	a	simple	point	mass.	Rather	than	smearing	out	the

properties	of	the	planets	over	wider	regions	(as	occurs	in	homogenization),	we	instead	concentrate	their	extended

traits	upon	much	smaller	supports.

Such	policies	of	compressing	complex	expanses	into	singularities	(or	other	lower-dimensional	structures	such	as

one-dimensional	strings)	are	sometimes	called	degenerations	(a	term	I	regard	as	preferable	to	the	misleading

phrase	idealization).	Plainly,	when	very	detailed	astrophysical	calculations	are	wanted,	one	must	open	up	those

internal	complexities	and	treat	the	earth	as	a	continuum	subject	apt	to	distort	under	rotational	effects.	However,

there	are	many	forms	of	reduced-variable	lift	that	involve	a	mixture	of	the	two	policies	or	other	sorts	of	tactic

altogether.

Some	of	the	anti-atomism	advocated	by	late	nineteenth-century	scientists	such	as	Duhem	and	Mach	traces	not	to

some	obtuse	dismissal	of	lower	scale	structure	per	se,	but	to	the	widely	shared	assumption	that,	in	any	application,

modelers	must	invariably	engage	in	such	“freezing	to	a	scale	level”	procedures.	Their	primary	disagreement	with

other	mechanists	of	their	era	concerns	the	format	that	should	be	regarded	as	the	optimal	embodiment	of	“classical

principle”	within	such	a	scale-sensitive	setting.	Specifically,	Duhem	and	Mach	maintained	that	“basic	physics,”	as

an	organizational	enterprise,	should	develop	tools	that	will	prove	maximally	useful	at	any	chosen	scale	length.	This

requirement	almost	automatically	favors	a	“thermomechanical”	approach	of	the	sort	described	in	the	discussion	of

flexible	bodies	in	section	5.	Their	opponents,	such	as	Ludwig	Boltzmann,	generally	favored	the	simplest	base

ontology	that	could	plausibly	support	the	more	complex	forms	of	mechanics	in	a	ΔL	to	ΔL*	manner	(they	often

employed	point	masses	or	connected	rigid	bodies	as	their	base	level	ingredients).	In	these	respects,	we	might

observe	that	Duhem	and	Mach's	strictures	better	suit	the	methodological	percepts	of	empiricists	such	as	David

Hume,	who	opined	that	any	postulation	of	lower-scale	structure	must	be	based	upon	“laws”	directly	verifiable	at

the	laboratory	level.

Prima	facie,	we	might	reasonably	expect	that	it	should	prove	possible	to	formalize	any	of	our	three	basic	ontologies

independently	of	one	another,	placing	them	on	their	own	bottoms,	as	it	were.	Thus	Hilbert	probably	anticipated	that

we	should	be	able	to	frame	distinct	axiomatic	encapsulations	for	point	masses,	rigid	bodies	and	flexible	bodies	and

then	proceed	to	investigate	how	ably	such	formalisms	relate	to	one	another	under	ΔL	to	ΔL*	lifts.	However,	a

somewhat	surprising	obstacle	impedes	such	projects,	whose	various	ramifications	will	comprise	the	bulk	of	this

essay.	They	collectively	trace	to	the	simple	consideration	that	if	we	attempt	to	frame	general	principles	applicable

to	a	higher	ΔL*	scale	length	based	upon	behaviors	operative	on	a	lower	scale	length	ΔL,	we	will	find	that	our	ΔL*

level	principles	generally	display	gaps,	holes,	or	gross	inaccuracies	in	special	circumstances.

The	general	explanation	for	such	upper-scale	gaps	is	quite	straightforward:	a	useful	selection	of	“reduced

variables”	at	the	ΔL*	level	will	focus	upon	behaviors	that	dominate	at	that	size	scale.	But,	invariably,	there	will	be

special	ΔL-level	arrangements	where	the	effects	suppressed	in	our	ΔL*	treatment	obtain	equal	or	greater

importance	than	the	usual	dominant	behaviors.	I	shall	sometimes	call	such	shifts	“escape	hatches,”	for	they

provide	ladders	that	allow	us	to	evade	the	inferential	instructions	of	a	formalism	that	no	longer	serves	its	empirical

purposes.	But	such	practices	create	a	formal	difficulty	for	axiomatization	projects	in	Hilbert's	vein	because	the

domain	of	interest	frequently	becomes	re-ontologized	under	the	scale	shift.	But	axiomatic	presentations	rarely

include	provisos	for	ontology	shifts.	Instead,	we	anticipate	that	their	formal	tenets	will	supply	behavioral	principles

applicable	to	its	ontology	in	all	circumstances,	even	if,	in	real-life	practice,	we	would	normally	escape	such

descriptive	straitjackets	in	favor	of	some	revised	treatment	operating	at	a	lower	length	scale	ΔL.

In	short,	conventional	axiomatized	theories	are	expected	to	supply	principles	that	can	govern	even	the	bad	spots
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within	their	ranges	of	empirical	coverage.	Such	formal	expectations	lead	many	philosophers	to	further	suppose	that

“classical	mechanics”	must	completely	specify	the	behaviors	tolerated	within	its	own	parochial	range	of	possible

worlds,	in	spite	of	the	fact	that	we	would	never	apply	such	modelings	to	real-world	dominions	of	a	strongly	quantum

mechanical	or	relativistic	character.	But	such	dogmas	presume	that	some	fairly	complete	axiomatization	of	overall

“classical	mechanics”	is	available,	a	thesis	we	shall	critically	examine	in	this	essay.

Figure	2.8

Let	us	now	ask	ourselves	a	commonsensical	question.	Considered	from	a	practical	point	of	view,	is	it	really	wise	or

meritorious	to	fill	out	a	formalism	in	a	manner	that	carries	with	it	no	discernible	empirical	merit?	Mightn't	it	be	better

to	deliberately	leave	our	stocks	of	physical	principle	somewhat	incomplete,	allowing	its	very	holes	to	signal	when

we	should	look	for	suitable	ΔL*	to	ΔL	escape	hatches?	Indeed,	explicit	indications	in	the	mathematics	of	when

modeling	problems	begin	should	be	greatly	cultivated,	for	we	surely	want	to	avoid	the	fate	of	the	computers	who

cheerfully	compute	worthless	data	simply	because	no	one	has	told	them	to	stop. 	Training	in	mechanics	generally

inculcates	considerable	skill	in	knowing	when	one	should	adventitiously	shift	from	one	modeling	framework	to

another.	So	it	is	sometimes	unwise	to	push	a	formalism's	axiomatized	coverage	beyond	the	limits	of	its	real-life

modeling	effectiveness.

This	point	of	view	suggests	that	we	might	look	upon	the	inherited	compendium	of	descriptive	lore	we	call	“classical

mechanics”	as	a	series	of	descriptive	patches	(corresponding	to	our	three	basic	choices	of	fundamental	objects)

linked	together	at	their	descriptive	bad	spots	by	various	ΔL*	to	ΔL	escape	hatches.	However,	whenever	manifolds

are	constructed	through	sewing	together	local	patches	in	this	way,	twisted	topologies	can	potentially	emerge	in	the

final	result	(Klein	bottles	and	Möbius	strips	provide	classic	illustrations	of	the	phenomenon).	In	these	respects,

nature	shows	little	favoritism	as	to	which	of	our	three	basic	ontologies	of	classical	objects	should	be	viewed	as

“fundamental”	from	an	applicational	point	of	view.

If	we	attempt	to	understand	“classical	physics”	as	a	conceptual	system	closed	unto	itself,	we	thereby	obtain	a

structure	like	one	of	those	impossible	Escher	etchings:	local	plates	connected	by	staircases	that	never	stabilize

upon	a	lowest	landing	(figure	2.8).

But	such	topographical	oddities	do	not	indicate	that	“classical	physics”	has	not	served	its	descriptive	purposes

perfectly	well.	As	long	as	the	salient	escape	routes	are	clearly	marked,	our	Escherish	edifice	serves	a	base	frame

upon	which	a	wide	range	of	interconnected	forms	of	reduced-variable	modeling	techniques	can	be	conveniently

located	(I	sometimes	call	structures	of	this	sort	theory	facades).	By	operating	with	a	proper	regard	for	the	requisite

level	shifts,	we	can	thereby	assemble	the	most	fruitful	terminology	yet	devised	for	dealing	with	the	complex

physical	world	about	us	at	nonmicroscopic	scale	lengths:	the	shared	language	of	“classical	physics.”	The	twisted

topology	within	its	connection	manifold	merely	reflects	the	“exit	from	bad	patches”	considerations	that	allow	the

scheme	to	cover	extremely	wide	swatches	of	application	with	great	efficiency.

The	historical	triumph	of	“classical	mechanics”	as	a	descriptive	enterprise	would	have	never	occurred	had	the

subject	not	lightly	skipped	over	the	many	problematic	transitions	of	the	sort	we	shall	survey.	Historically,	the	price

of	a	vigorous	conceptual	enlargement	is	often	a	lingering	residue	of	confusion	that	can	occasionally	blossom	into

full	paradox	when	suitably	nurtured.	And	such	has	been	the	career	of	classical	mechanics:	full	of	predictive	glories

but	comingled	with	mystifying	transitions	that	have	led	some	of	our	greatest	philosophical	minds	down	the	garden
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path	to	strange	assessments	of	our	descriptive	position	within	nature.	In	the	sequel,	we	consider	three	basic

descriptive	patches	handed	down	to	us	in	our	classical	legacy	and	examine	the	typical	confusions	that	arise	when

one	shifts	from	one	framework	to	another	without	noticing.

3.	Point-Mass	Mechanics

Let	us	first	consider	the	point-mass	formalism	of	classical	mechanics,	suggested	by	Newton's	familiar	formulation	of

the	fundamental	laws	of	motion.	To	begin,	it	is	worth	noting	that	substantive	foundational	issues	immediately	arise	if

we	scrutinize	these	laws	with	a	critical	eye.	In	their	original	form,	these	principles	are	hard	to	interpret	with	any

exactitude	due	to	the	ambiguous	manner	in	which	Newton	employs	his	terms.	Here	they	are	in	Motte's	translation:

Law	I:	Every	body	persists	in	its	state	of	being	at	rest	or	of	moving	uniformly	straight	forward,	except

insofar	as	it	is	compelled	to	change	its	state	by	force	impressed.

Law	II:	The	alteration	of	motion	is	ever	proportional	to	the	motive	force	impressed;	and	is	made	in	the

direction	of	the	right	line	in	which	that	force	is	impressed.

Law	III:	To	every	action	there	is	always	opposed	an	equal	reaction:	or	the	mutual	actions	of	two	bodies

upon	each	other	are	always	equal,	and	directed	to	contrary	parts.

Look	carefully	at	Law	I.	If	a	“body”	represents	an	isolated	point	mass,	then	the	phrase	“moves	uniformly	straight

forward”	is	not	ambiguous.	But	what	is	the	parallel	intent	if	a	rotating	rigid	object	can	be	selected	as	a	body?	Or	a

packet	within	a	compressible	fluid?	One	cannot	demand	that	every	point	within	a	freely	moving	boomerang	must

translate	rectilinearly—at	best,	they	can	rotate	around	some	representative	center	within	the	full	projectile	(such

as	its	center	of	mass).	Allied	interpretational	problems	affect	Newton's	remaining	laws	as	does	the	question	of

precisely	where	the	“impressed	forces”	are	supposed	to	act.	Indeed,	the	three	laws	can	be	readily	interpreted	only

if	“body”	is	read	as	“isolated	point	mass”	throughout.	However,	this	was	neither	Newton's	intent	nor	that	of	the

many	subsequent	writers	who	have	cited	the	three	laws	with	approval,	as	illustrated	by	Peter	Tait	and	Lord	Kelvin	in

their	celebrated	Treatise	on	Natural	Philosophy:

We	cannot	do	better,	at	all	events	in	commencing,	than	follow	Newton	somewhat	closely.	Indeed,	the

introduction	to	the	Principia	contains	in	a	most	lucid	form	the	general	foundations	of	Dynamics.	The

definitiones	and	Axiomata	sive	Leges	Motus,	there	laid	down,	require	only	a	few	amplifications	and

additional	illustrations,	suggested	by	subsequent	developments,	to	suit	them	to	the	present	state	of

science,	and	to	make	a	much	better	introduction	to	dynamics	than	we	find	in	even	some	of	the	best

modern	treatises.

But	such	claims	are	misleading.	Why	have	Newton's	laws	been	allowed	to	stand	so	long	in	such	a	confusing	form?

Newton	himself	proved	somewhat	wobbly	with	respect	to	precise	content	of	his	own	first	law,	in	that	he	offers	as	an

illustration	the	fact	that	a	rotating	hoop	will	continue	in	its	angular	movements	if	not	acted	upon	by	“outside

forces”:	“A	spinning	hoop,	which	has	parts	that	by	their	cohesion	continually	draw	one	another	back	from

rectilinear	motions,	does	not	cease	to	rotate,	except	insofar	as	it	is	retarded	by	the	air.” 	Plainly	a	tacit	appeal	to

some	generalized	inertia	principle	is	implicated:	the	activities	of	the	wholly	“internal”	forces	within	a	rigid	body

should	not	affect	its	overall	rotation.	Newton,	of	course,	knew	that	this	same	claim	will	not	hold	for	a	flexible	object

such	as	the	earth	or	a	falling	cat.	The	“rigidity”	of	the	hoop	somehow	underpins	a	lift	that	converts	an	inertial

principle	relevant	to	isolated	point	masses	into	a	requirement	upon	composite	objects	operating	at	the	scale	size	of

a	hoop.	But	shouldn't	Newton	have	properly	attended	to	the	constitutive	modeling	assumptions	that	render	the

internal	constitution	of	a	rigid	ring	different	from	a	cat	or	a	flexible	earth?	Yes—as	we	have	already	observed,	such

forms	of	ΔL	to	ΔL*	scale	lift	pose	the	same	kinds	of	justificatory	problems	as	arise	when	we	shift	from	a	ΔL-level

swarm	of	interacting	molecules	to	their	“averaged”	statistical	mechanics	at	level	ΔL*.

Modern	scholarship	generally	credits	the	standard	modern	reading	of	Newton's	second	law	to	Euler,	who

introduces	the	expectation	that	“F	=	ma”	supplies	the	central	framework	upon	which	suitable	sets	of	ODE	modeling

equations	for	point-mass	modeling	can	be	assembled.	This	recipe	of	Euler's	unfolds	as	follows:	Choose	a	target

system	S	to	model	in	a	point-mass	mode.	Count	the	number	of	masses	one	needs	in	S.	For	each	i	∈	S	write	down

the	following	framework	for	constructing	a	well-posed	set	of	(vectorial)	ordinary	differential	equations:
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In	this	formula,	m	is	the	mass	of	the	particle	numbered	as	i,	q (t)	is	its	vector	location	at	time	t	and	the	various	f 	(j,

t)	will	supply	the	strengths	of	specific	forces	applicable	to	particle	i	that	have	their	origins	in	a	particle	j	(for	i	≠	j).

But	this	merely	lays	down	the	basic	scaffolding	we	will	need	for	a	properly	completed	equational	set.	In	particular,

we	must	yet	specify	the	sundry	f (j,t)	in	concrete	ways	that	can	lead	to	a	set	of	equations	that	are	uniquely

solvable	(at	least	most	of	the	time)	with	respect	to	an	arbitrary	set	of	initial	conditions	(supplementary	“data”	that

provides	q (t )	and	dq (t)/dt|t 	information	for	each	particle	i	∈	S	and	some	particular	time	t ).To	achieve	such

formal	closure	within	a	completed	recipe,	each	f (j,t)	must	represent	a	special	force	law	that	links	the	strength	of

the	f (j,t)	forces	somehow	to	the	q-locations	of	particles	i	and	j	(as	we	will	see,	Newton's	third	law	puts	sharp

restrictions	on	the	nature	of	this	dependency).	The	basic	prototype	for	a	“special	force	law”	of	this	ilk	is	Newton's

law	of	gravitation:

but	allied	principles	are	needed	to	govern	all	other	applicable	forces	(such	as	those	responsible	for	the	cohesion

and	repulsion	of	matter).	Each	additional	law	is	expected	to	carry	in	its	wake	its	own	range	of	material	constants,

such	as	the	charges	c(i)	that	show	up	in	the	static	form	of	Coulomb's	law :

(where	such	c(i)	can	sometimes	carry	negative	values).We	are	said	to	have	supplied	a	constitutivemodeling 	for

the	system	S	in	point-mass	terms	once	we	have	specified	S's	full	complement	of	particles	i	and	the	values	of	the

applicable	“force	law”	constants	m(i),	c(i),	and	so	on	(the	list	of	constants	then	tells	us	how	many	f (j,t)	terms	are

“turned	on”	within	S).

One	of	the	most	frustrating	aspects	of	the	classical	point-mass	tradition	is	that	it	never	fully	resolved	what	these

special	“force	laws”	(besides	gravitation)	should	be.	Modern	molecular	modelers	frequently	utilize	sundry	mixtures

of	sixth	and	twelfth	power	principles	(e.g.,	the	familiar	Lennard-Jones	potential)	between	point	masses	to	simulate

the	molecular	interactions	within	a	gas,	but	no	one	maintains	that	such	rough	rules	enjoy	any	canonical	status

within	classical	mechanics.	This	incompleteness	traces	to	the	fact	that	nature	has	indicated	no	special	preference

for	classical	principles	governing,	say,	small-scale	cohesion	and	repulsion	because	it	has	decided	to	let	matter

behave	in	a	strongly	quantum	mechanical	manner	in	such	close	quarters.	So	molecular	modelers	are	left	with	a

rather	diffuse	collection	of	principles	that	might	possibly	model	close	range	interaction	ably,	with	the	final	choice

being	decided	by	what	appears	to	work.	Indeed,	textbooks	frequently	sidestep	the	need	to	fill	in	the	special-force-

law	holes	in	an	Euler's	recipe	modeling	through	various	forms	of	evasion,	such	as	the	appeals	to	rigid-body

constraints.	Typically,	such	diversionary	appeals	tacitly	shift	us	into	ontological	realms	natural	to	continua	and	rigid

bodies,	which	approach	the	problems	of	cohesion	in	an	inherently	different	manner	than	currently	contemplated.

The	absence	of	enough	special	force	laws	in	the	point-mass	setting	engenders	another	familiar	difficulty	for	point-

mass	mechanics	that	is	usually	“solved”	by	shifting	the	underlying	ontological	framework.	Suppose	we	construct	a

constitutive	modeling	for	the	solar	system,	where	we	treat	the	sun	and	planets	as	point	masses	and	the	only

special	force	we	turn	on	is	gravitation.	The	resulting	Euler's-recipe	equational	set	will	be	“formally	well-posed”	in

the	sense	that	we	are	supplied	the	right	number	of	equations	to	potentially	possess	unique	solutions	given	initial

conditions.

But	that	is	merely	a	“formal”	guarantee	in	the	sense	that	it	tells	us	that	we	are	somewhere	in	the	ballpark	of	getting

the	solutions	we	wanted.	It	does	not	completely	assure	us	that	the	solutions	really	exist.	And	we	have	good

grounds	for	worrying	about	this.	Rocket	designers	appreciate	the	fact	that	one	can	supply	a	projectile	with	a

significant	increase	in	kinetic	energy	by	slingshoting	it	through	the	strong	gravitational	field	of	a	planet	(the

technique	was	used	several	times	to	generate	enough	boost	to	propel	the	Cassini	space	probe	to	Saturn)	(figure

2.9).
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Figure	2.9

Since	point	masses	have	no	size,	and	because	we	have	not	included	any	sort	of	repulsive	force	in	our	equational

set,	can	a	particle	possibly	extract	enough	energy	from	its	planetary	near	approaches	to	produce	an	infinite

velocity	boost	within	a	finite	span	of	time?	This	was	a	famous	mathematical	question	that	was	settled	in	the affir-

mative	by	Zhihong	Xia 	in	the	1980s.	As	such,	the	velocity	blowup	indicates	that	the	viability	of	our	point-mass

modeling	has	self-destructed	of	its	own	accord.	Rather	than	searching	for	repulsive	special	force	laws	that	might

inhibit	the	effect,	physicists	typically	brush	the	problem	aside,	“Oh,	you've	just	neglected	the	finite	size	of	real

planets.”	That	is	true,	but	they	have	thereby	escaped	to	the	dominions	of	rigid	body	or	continuum	mechanics	in

making	such	appeals.

The	full	battery	of	special	force	laws	that	point-mass	mechanics	requires	is	further	skirted	by	the	common	practice

of	presuming	that,	however	the	true	missing	laws	precisely	operate,	their	net	effects	can	be	linearized	or	otherwise

simply	approximated	as	long	as	their	activities	are	not	strong	(the	telltale	symptom	of	this	ploy	are	terms	in equa-

tions	such	as	a	linear	“Wq(x,t)”	whose	special-force-law	origins	are	left	hazy).	Many	of	the	descriptive successes	

of	nineteenth-century	physics	were	prosecuted	under	the	guidance	of	such	approximatizing assumptions.	It	is	to	

be	expected	that	such	modelings	will	frequently	self-generate	holes	in	their	descriptive coverage	due	to	the	fact	

that	their	solution	sets	can	evolve	into	situations	where	the	presumptive	ansatz	that	“the activities	of	the	

unspecified	force	law	can	be	approximated	by	Wq(x,t)”	must	plainly	fail.	It	is	striking	that	if	one inspects	the	stock	

point-mass	modelings	provided	in	popular	textbooks,	very	few	of	them	completely	satisfy	the provisos	of	Euler's	

modeling	recipe	and	instead	invoke	some	tactic	for	special-force-law	avoidance.	Such methodologies	of	

avoidance	can	be	prudent	in	practice,	through	preventing	the	merits	of	a	modeling	from	being held	hostage	to	the	

delicate	specifics	of	an	unproven	special	force	law.	Absent	any	definitive	resolution	of	what	its full	complement	of	

special	force	laws	f (j,t)	should	comprise,	our	Eulerian	recipe	employs	“F	=	ma”	as	a	skeletal frame	upon	which	a	

formally	closed	differential	equation	modeling	might	be	eventually	assembled	as	soon	as adequate	skin	and	

clothes	can	be	found	for	the	task.	Certainly,	one	cannot	coherently	discuss	issues	such	as whether	classical	

mechanics	is	deterministic	until	these	issues	of	special	force	laws	have	gotten	fleshed	out	in some	fuller	manner.

Special	force	laws	represent	the	natural	point-mass	analog	to	the	constitutive	laws	of	modern	continuumme-

chanics.	In	both	cases,	we	must	learn	to	watch	out	for	physics	avoidance	stratagems	that	bypass	some	of	the

expected	ingredients	in	the	relevant	recipe.	As	we	have	noted,	such	constitutive-modeling	evasions	frequently

take	the	form	of	mixed	scale-level	lifts	in	which	the	descriptive	vocabulary	natural	to	a	higher	scale	ΔL*	becomes

invoked	in	a	manner	that	allows	the	modelers	to	evade	the	nontrivial	constitutive	modeling	concerns	they	would

otherwise	need	to	confront	had	they	remained	resolutely	at	the	original	modeling	scale	ΔL.

There	are	several	widely	discussed	aspects	of	Newton's	laws	of	motion	that	merit	quick	remark.	Regarding	his

second	law,	implicit	within	our	Eulerian	recipe	is	the	assumption	that	sound	modeling	equations	can	be	set	up	for

every	system	S	based	upon	their	Cartesian	locations	q (t)	within	“absolute	space”	or,	more	minimally,	with	respect

to	some	choice	of	inertial	frame.	Newton	himself,	insofar	as	I	can	tell,	never	quite	made	such	a	claim,	for	he	often

set	up	his	equations	using	what	are	often	called	“natural	coordinates”—quantities	that	possess	a	palpable	physical

significance	within	the	target	system	itself.	For	instance,	in	the	case	of	a	bead	sliding	along	a	curved	wire,	the	arc

length	along	the	wire	qualifies	as	a	natural	coordinate,	whereas	the	bead's	location	within	an	externally	defined

frame	does	not.	Within	celestial	mechanics,	this	distinction	enjoys	little	purchase,	but	the	issue	becomes	pertinent

when	material	constraints	such	as	“moving	along	a	rigid	wire”	come	into	play.
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Regarding	Newton's	third	law,	its	original	formulation	(as	the	so-called	principle	of	“action	=	reaction”)	seems

patently	hazy	and	has	been	historically	subject	to	substantially	divergent	interpretations.	In	a	modern	point-mass

reading,	it	is	usually	regarded	as	placing	various	strong	restrictions	upon	the	special	force	laws	we	are	allowed	to

employ	in	Euler's	recipe:

(3a)	All	forces	arise	between	pairs	of	particles	and	have	their	source	in	one	of	the	pair.

(3b)	These	forces	are	directed	along	the	line	between	the	masses	(the	forces	are	“central”)	and

opposite	in	magnitude	(“balanced”).

(3c)	The	strength	of	these	forces	depends	only	upon	the	spatial	separation	between	the	bodies	and

not,	say,	upon	their	relative	velocities.

Figure	2.10

In	other	words,	if	a	special	force	law	claims	that	mass	j	exerts	a	specific	force	f 	(j,t)	upon	mass	i,	then	j	must	exert

a	reciprocating	force	f (i,t)	upon	i	equal	in	magnitude	to	f (j,t)	but	reversed	in	direction	(observe	that	only	action-

at-a-distance	forces	are	relevant	within	a	point-mass	setting,	so	f (j,t)	acts	at	i's	position,	whereas	f (i,	t)	acts	at	j's

position).	Although	Newton's	own	law	of	gravitation	suits	these	requirements,	it	is	unclear	that	he	would	have

accepted	the	(3a-c)	supplements	in	the	strength	stated.	Requirement	(3c),	for	example,	stands	in	apparent	conflict

with	most	varieties	of	frictional	force	because	their	strength	generally	depends	upon	the	rate	(dq(x)/dt)	whereby

bodies	slip	past	one	another.	Requirement	(3b)	seems	to	rule	out	sheering	forces,	such	as	arise	when	one	layer	of

water	slips	over	another,	or	the	sideways	force	that	a	charged	particle	feels	near	a	magnetic	pole	(note,	however,

that	some	of	these	situations	only	pertain	to	extended	objects	in	contact	along	an	interface	and	may	not	directly

concern	us	now).	One	of	the	chief	reasons	for	making	such	strong	restrictions	on	forces	is	that	they	are	required	to

establish	vital	tenets	like	Galilean	relativity,	balance	of	angular	momentum,	and	the	conservation	of	energy	within	a

point-mass	frame	(Newton	did	not	maintain	energy	conservation	himself).	This	is	because	the	underlying	notion	of

potential	energy	requires	some	restriction	akin	to	(3c).

Partially	due	to	its	vaguely	expressed	contours,	Newton's	third	law	often	serves	as	a	significant	site	of	substantial

lifts	within	mechanics.	Let's	look	at	a	typical	example	in	the	context	of	a	familiar	scientific	toy:	a	line	of	steel	ball

pendulums	lying	adjacent	to	one	another	(figure	2.10).
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Figure	2.11

If	the	ensemble	is	struck	by	a	falling	ball	b 	to	the	right,	it	will	come	to	rest	and	the	ball	b 	at	the	left	end	will	fly	off.

But	as	soon	as	gravity	pulls	b 	into	collision	with	the	group,	b 	will	halt	and	b 	will	fly	off	again,	to	return,	more	or

less,	to	its	original	state.	And	back	and	forth	the	knocking	oscillations	will	go,	until	friction	eventually	brings	the

ensemble	to	rest.	And	it	is	natural	to	conceptualize	this	situation	in	this	manner.	The	originally	falling	b 	externally

exerts	an	impactive	force	upon	its	first	member	of	the	adjacent	ensemble	b ,	which	then	imparts	a	congruent

internal	force	upon	its	nearest	neighbor	b 	and	so	on	across	the	array	until	we	reach	b .	Since	b 	lacks	any

leftward	neighbor	upon	which	to	exert	a	leftward	force,	it	is	forced	to	convert	that	potential	into	its	own	kinetic

motion,	which	will	be	of	the	same	magnitude	as	b 	originally	possessed,	under	the	presumption	that	the	masses	m

and	m 	are	identical.	Expressed	in	ersatz	third-law-style	jargon,	we	can	say:	ball	b 	originally	supplies	an

impressed	external	force	upon	its	neighbors,	which	then	excites	a	spectrum	of	internal	forces	in	direct	contact	with

another.	Because	of	the	third	law,	these	internal	forces	will	exactly	cancel	each	other	out	in	terms	of	any	work	they

can	perform	on	the	ensemble,	hence	the	central	packet	of	balls	will	display	no	visible	movement.	But	ball	b 	lacks	a

balancing	left-hand	neighbor,	so	it	is	forced	to	convert	the	impressed	force	upon	it	into	its	own	kinetic	movement.

Often	related	reasoning	is	presented	in	a	somewhat	more	elaborate	guise.	Rather	than	allowing	b 	to	fall	against

the	group,	let	us	simply	push	against	the	entire	group	at	ball	b 	with	an	applied	force	of	magnitude	F	(figure	2.11).

What	countervailing	force	should	we	apply	to	b 	to	maintain	the	whole	group	in	equilibrium?	−F,	obviously.	Let	us

now	conceptualize	b 's	so-called	“inertial	reaction”	m x/dt 	as	a	kind	of	“force”	(until	recent	times,	it	was	quite

common	to	employ	the	term	“force”	in	this	wider	manner).	Returning	to	our	original	“b 	supplying	an	external	force

to	the	group”	case,	we	can	codify	our	prediction	in	the	guise:	b 	will	develop	an	inertial	reaction	force	exactly

equal	in	magnitude	and	direction	to	−F.	In	this	format,	the	reasoning	of	our	previous	paragraph	can	be	extended:

mechanical	systems	always	maintain	a	kind	of	equilibrium,	wherein	certain	members	will	counter	any	unbalanced

forces	upon	them	by	forming	the	requisite	inertial	reactions.	All	of	this	reasoning	is	well	and	good	in	a	certain

sense,	except	that	(1)	its	notion	of	“force	balance”	has	nothing	to	do	with	Newton's	third	law	as	we	have

interpreted	it	and	(2)	reasoning	of	this	type	properly	requires	the	realm	of	rigid	bodies	for	its	firm	support	and	can

only	be	regarded	as	a	rough	approximative	lift	within	the	strict	context	of	point-mass	mechanics.

To	see	what	has	gone	wrong,	let	us	replace	our	array	of	pendulum	balls	with	a	lattice	line	of	legitimate	point

masses.	To	reconstruct	a	point-mass	substitute	for	the	pendulum-like	behavior	of	the	balls,	we	need	(1)	some

special	force	law	F (x ,	x )	to	generate	repulsive	force	that	point	i	will	exert	upon	point	j	under	close	approach

and	(2)	some	outside	source	of	attractive	force	F (x )	to	hold	each	point	mass	i	within	a	neighborhood	of	its

lattice	rest	position.	Now	apply	a	force	F	to	the	lattice	point	p .	What	does	our	third	law,	as	heretofore	interpreted,

demand?	Only	that	F (x ,	x )	=−F (x ,	x )	and	that	the	unspecified	sources	of	F	and	F (x )	should	feel

reciprocal	forces	upon	themselves.	There	is	absolutely	no	requirement	that	the	summed	forces	upon	our	sundry

lattice	points	i	will	“perform	no	work”	upon	them.	In	fact,	this	will	generally	be	false:	the	initial	blow	will	send	waves

of	compression	and	expansion	through	the	lattice,	at	each	stage	of	which	small	amounts	of	work	will	be	exerted	on

each	i.	It	is	only	if	F 	and	F 	forces	of	a	very	stiff	character	are	posited	that	we	will	witness	a	lattice	behavior

similar	to	our	pendulum	ball	expectations.	In	other	circumstances;	the	blow	at	p 	might	induce	negligible

transmissive	effects	at	p 	(e.g.,	we	might	see	a	point-mass	simulacrum	for	a	line	of	pendulums	composed	of	putty).
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All	of	these	specific	requirements	upon	F 	and	F 	fall	under	our	earlier	heading	of	“constitutive	modeling

conditions.”	How	did	we	manage	to	overlook	such	constitutive	concerns	in	our	original	reasoning	about	our

pendulums?	The	answer	is	that	we	inadvertently	punned	on	the	term	“force	balance,”	thereby	lifting	a	local	point-

mass	requirement	on	F 	and	F 	to	the	level	of	visible	“balls.”	The	shift	is	facilitated	by	the	innocent-looking

invocation	of	a	distinction	between	“external”	and	“internal”	forces,	where	it	appears	as	if	all	of	the	“internal

forces”	in	the	pack	possess	their	required	“third	law”	correlates,	while	the	leftward	force	on	b 	lacks	a	match,	a

lapse	that	b 	can	only	rectify	through	its	“inertial	reaction.”

There	is	a	celebrated	passage	in	Thomson	and	Tait	that	explicitly	interprets	Newton's	third	law	in	this	“lifted”

manner:

[I]f	we	consider	any	one	material	point	of	a	system,	its	reaction	against	acceleration	must	be	equal	and

opposite	to	the	resultant	of	the	forces	which	that	point	experiences,	whether	by	the	actions	of	other	parts

of	the	system	upon	it,	or	by	the	influence	of	matter	not	belonging	to	the	system.	In	other	words,	it	must	be

in	equilibrium	with	those	forces.	Hence,	by	the	principle	of	superposition	of	forces	in	equilibrium,	all	the

forces	acting	upon	the	system	form,	with	the	reactions	against	acceleration,	an	equilibrating	set	of	forces

upon	the	whole	system.	This	is	the	celebrated	principle	first	explicitly	stated,	and	very	usefully	applied,	by

d'Alembert	in	1742,	and	still	known	by	his	name.

But	if	we	do	that,	we	abandon	some	of	the	original	specifics	that	permit	a	ready	pathway	from	Newton's	three	laws

as	we	interpreted	them	to	the	conservation	of	energy	and	the	like.	What	did	Newton	himself	intend	by	his	“third

law”?	His	examples	suggest	drifts	in	his	own	thinking,	sometimes	straying	close	to	those	of	Thomson	and	Tait.

As	indicated	earlier,	most	physicists	had	firmly	abandoned	the	point-mass	approach	by	1850	or	so,	only	to	be

revived	in	the	twentieth	century	as	offering	the	easiest	pedagogical	bridge	to	quantum	theory.	Why	did	this

happen?	A	number	of	salient	considerations	can	be	extracted	from	the	wonderful	articles	that	James	Clerk	Maxwell

composed	for	the	celebrated	ninth	edition	of	the	Encyclopedia	Britannica. 	Many	of	his	concerns	trace	to	the

simple	fact	that	natural	materials	vibrate	in	the	manner	that	spectroscopy	indicates	and	can	transmit	waves.	But

attempts	to	construct	point-mass	lattices	capable	of	imitating	the	experimentally	determined	behaviors	usually

proved	disappointing,	whereas	models	constructed	upon	continuum	or	rigid	body	principles	did	much	better.	For

example,	in	the	1820s	Claude-Louis	Navier	had	developed	a	celebrated	point-mass	model	for	elastic	materials

leading	to	substances	whose	macroscopic	behaviors	are	characterized	entirely	by	their	Young's	modulus.	Working

from	general	principles	in	a	top-down,	continuum	mechanics	mode,	Cauchy	instead	concluded	that	isotropic	elastic

materials	require	two	independent	constants	(Poisson's	ratio	in	addition	to	Young's	modulus)	to	fix	their	behaviors

rather	than	Navier's	solitary	value.	These	issues	were	of	great	scientific	moment	because	the	varieties	of	wave	that

can	travel	through	an	elastic	material	are	intimately	linked	to	these	constants.	After	a	long	period	of	controversy,

Cauchy's	“multi-constant”	predictions	were	eventually	confirmed	by	experiment.	By	the	end	of	the	century,	it	was

widely	presumed	that	nature	was	composed	of	continua	of	some	sort,	with	its	apparent	point-like	“particles”

comprising	whirlpool-like	structures	within	an	underlying	continuous	medium.

Cauchy	did	not	fully	appreciate	the	methodological	advantages	of	the	approach	he	initiated	(he	sometimes	worked

in	Navier's	bottom-up	mode	as	well),	but	later	writers	such	as	Green	and	Stokes	strongly	emphasized	the	merits	of

the	top-down	approach,	which	eventually	became	the	core	construction	within	modern	continuum	mechanics	(in	a

manner	we	shall	survey	in	section	5).	To	this	day,	their	top-down	techniques	generally	supply	more	reliable	models

with	respect	to	the	materials	of	macroscopic	experience.	In	fact,	many	of	the	celebrated	philosophical	percepts

developed	by	writers	such	as	Pierre	Duhem	and	Ernst	Mach	in	the	late	nineteenth	century	trace,	in	part,	to	their

appreciation	of	the	descriptive	superiority	of	the	top-down	methods.	More	recently,	the	rise	of	swift	computers	has

rendered	the	project	of	working	directly	with	point-mass	swarms	in	a	bottom-up	manner	a	more	viable	enterprise,

but	the	results	obtained	are	generally	more	suggestive	than	accurate.	Shortly	after	Cauchy's	work,	Poisson	was

able	to	reproduce	the	“two	constants”	predictions	from	a	molecular	model	composed	of	attracting	spheroids	rather

than	point	masses.	Likewise,	one	obtains	better	results	within	molecular	simulation	today	by	working	with	swarms	of

extended	bodies	rather	than	points,	although	the	computational	costs	are	much	higher.	But,	from	a	foundational

point	of	view,	these	modeling	adjustments	transport	us	into	the	realms	of	rigid	body	mechanics,	which	we	shall

canvass	in	the	next	section.

Some	folks,	however,	become	so	smitten	with	point	masses	that	they	strive	mightily	to	found	“classical	mechanics”
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upon	that	basis,	no	matter	how	physically	implausible	the	constructions	they	employ	may	appear.	Thus,	we	might

theoretically	piggyback	upon	Poisson's	“two	constant”	results	by	collecting	large	swarms	of	point	masses	into

mock	spheroids	held	together	by	strange	attractive	forces.	But	such	assemblies	bear	no	relationship	to	any

structures	present	in	real-life	materials	(whereas	Poisson's	spheroids	often	do).	I	am	not	sure	what	one	gains	from

vain	reductive	enterprises	like	this.

A	logical	observation	is	pertinent	as	well.	When	one	strives	to	explain	why	modeling	principles	P*	work	well	at	scale

level	ΔL*	based	upon	the	principles	P	operative	at	ΔL,	one	is	further	obliged	to	explicate	why	the	P*	principles

operate	over	the	full	range	that	they	do.	It	is	often	easy	to	construct	specific	“toy	models”	at	a	ΔL	level	that	will

implement	the	desired	P*	behaviors	at	the	ΔL*	scale,	but	one	little	skirmish	does	not	win	a	war.	At	best,	one	has

merely	built	what	the	Victorians	called	a	P-	principle	analogy	to	the	P*	events.	To	be	sure,	the	construction

ensures	that	some	of	P*'s	ontological	claims	are	technically	compatible	with	P,	but	this	signifies	comparatively	little

if	the	supportive	“analogies”	require	such	elaborate	contrivances	on	a	ΔL	scale	that	they	cannot	serve	as	general

underpinnings	for	the	higher	scale	behaviors.

I	would	have	presumed	that	this	observation	was	so	obvious	that	it	is	scarcely	worth	drawing,	but	several	times	in

the	past	year	I	have	heard	philosophers	proudly	declare	that	they	have	“derived	the	Navier-Stokes	equations”	(or

the	like)	upon	a	more	elementary	basis,	when,	in	fact,	they	had	merely	concocted	a	weak	and	contrived	analogy	to

such	a	system	(by	such	standards,	one	can	probably	“found”	the	same	equations	upon	The	Pickwick	Papers).

There	are	many	loose	claims	afloat	within	the	philosophical	world	as	to	how	the	various	branches	of	physics

allegedly	“reduce”	to	each	other;	readers	should	approach	most	of	these	with	a	wary	eye.

There	is	a	final	issue	we	should	survey	before	returning	to	our	main	themes.	As	I	have	explicated	our	Eulerian

recipe,	it	fails	as	a	modeling	scheme	as	soon	as	quantities	like	acceleration	lose	their	required	features.	But	this	is

exactly	what	happens	if,	for	example,	a	point	mass	runs	into	another	point	mass	or	into	one	of	the	hard-shell

barriers	discussed	earlier.	From	a	strict	point-mass	perspective,	one	should	not	tolerate	acceleration-destroying

interactions.	But	fulfilling	this	ambition	in	a	plausible	manner	is	not	easy	(and	we	must	furthermore	tame	the

additional	blowup	problems	that	emerge	in	the	Xia	construction	mentioned	above).	In	real-life	modeling	practice,

“impactive”	encounters	between	point	masses	are	usually	addressed	through	ad	hoc	remedies	that	temporarily

relax	our	Euler's	recipe	requirements,	rather	than	searching	for	elusive	special	force	laws.	In	fact,	Newton's	own

approach	to	billiard	collisions	implements	this	basic	“turn	off	the	laws	temporarily”	stratagem.	He	surrounds	the

center	of	each	ball	with	a	crisp	finite	boundary	(so	that	the	central	mass	point	is	credited	with	a	“hard	shell

potential,”	although	utilizing	that	vocabulary	is	quite	anachronistic	in	application	to	Newton)	(figure	2.12).

Figure	2.12

Whenever	these	radii	contact	one	another	(we	shall	only	worry	about	the	head-on	collision	case),	Newton

abandons	the	requirement	that	the	“a”	in	“F	=	ma”	must	make	sense	and	shifts	his	focus	to	the	two	balls’	incoming

stores	of	linear	momentum	and	kinetic	energy	(as	we	now	dub	them),	together	with	a	purely	empirical	factor	called

a	coefficient	of	restitution	(it	governs	how	much	the	total	kinetic	energy	budget	will	diminish	post-collision).	In

effect,	this	treatment	blocks	out	the	crucial	interval	of	time	Δt	where	“F	=	ma”	fails	to	make	sense	and	glues

together	the	incoming	and	outgoing	events	exterior	to	Δt	through	a	mixture	of	conservation	principles

(conservation	of	linear	momentum)	and	raw	empirics	(coefficients	of	restitution	extracted	from	experiment).

Formally,	tactics	that	patch	over	problematic	intervals	or	regions	in	this	manner	are	frequently	called	matched

asymptotics.

It	is	now	time	to	extract	the	central	morals	of	our	discussion	from	the	underbrush	of	specifics.	The	main	descriptive

holes	within	the	point-mass	approach	trace	to	the	absence	of	the	special	force	laws	that	would	be	needed	to
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complete	its	Eulerian	recipe	for	ODE	model	construction.	It	is	hard	to	repair	these	lapses	with	any	assurance

because	the	missing	laws	concern	the	nature	of	close	range	cohesive	forces	and	nature	offers	few	robust

indications	as	to	how	a	classical	point	mass	modeler	should	tackle	such	phenomena.	In	consequence,	our

underlying	recipe	lacks	many	of	the	ingredients	it	would	require	before	it	could	ratify,	upon	a	purist	point-mass

basis,	the	many	non-punctiform	modeling	techniques	that	practitioners	regularly	employ	at	higher	ΔL*	scale

lengths.	In	pedagogical	practice,	these	lapses	in	constitutive	modeling	are	frequently	disguised	by	covert	lifts	to

alternative	approaches	better	suited	to	the	ΔL*	level	techniques.	But	conceptual	complications	within	those	rival

schemes	encourage	frequent	retreats	back	to	the	stolid	redoubt	of	point	masses,	where	the	conceptual	setting—if

not	the	livin’	itself—is	easy.	The	result	is	an	intellectual	landscape	pockmarked	with	easy	lifts	and	quick	escapes

that	can	seem	quite	perplexing	if	your	physics	instructor	assures	you	that	everything	you	see	is	rigorously	wrought

and	intellectually	beyond	reproach.

4.	Rigid	Body	Mechanics

Let	us	now	investigate	the	foundational	prospects	for	a	physics	resting	squarely	upon	a	basic	ontology	composed

of	rigid	bodies	interacting	through	contact.	There	are	a	number	of	somewhat	different	treatments	available	in	this

arena,	falling	under	the	generic	heading	of	“analytical	mechanics.”	Our	plan	is	no	longer	to	analyze	such	bodies

as	swarms	of	point	masses	or	to	allow	them	any	internal	flexibility.	Accordingly,	when	our	ensembles	of	rigid	parts

flex,	it	must	be	through	the	internal	realignment	of	completely	stiff	components,	maintained	as	a	coherent	collection

through	an	admixture	of	action-at-a-distance	attractions	and	directly	contacting	linkages	such	as	hinges,	pins,

wires,	and	so	on. 	The	rigidity	of	any	part	is	mathematically	expressed	by	the	fact	that	its	current	location	can	be

completely	fixed	by	six	numbers:	three	Cartesian	coordinates	to	locate	a	representative	point	within	the	body,	and

three	angles	to	indicate	how	the	figure	has	rotated	about	that	point.	Any	connection	between	such	parts	is	usually

called	a	constraint	and	is	expressed	with	constraint	equations	that	interrelate	the	coordinates	of	the	sundry

parts. 	Two	useful	paradigms	that	I	shall	often	cite	for	the	systems	under	review	are	(i)	a	bead	sliding	frictionlessly

along	a	rigid	wire	and	(ii)	the	sewing	machine	mechanism	illustrated	(figure	2.13).

Figure	2.13

One	does	not	expect	a	normal	lattice	of	point	masses	to	remain	completely	rigid	when	disturbed—the	gentlest

attempt	to	move	them	en	masse	is	likely	to	send	little	waves	of	disturbance	across	the	swarm.	But	if	we	can	safely

assume	that	substantial	hunks	of	a	mechanism	remain	approximately	rigid	in	their	gross	movements,	we	can

potentially	ignore	a	huge	amount	of	internal	complexity	within	the	device.	Consider	our	sewing	device,	whose

bottom	eccentric	link	is	turned	by	a	motor.	If	we	were	forced	to	model	these	arrangements	explicitly	as	a	swarm	of

strongly	attracting	point	masses,	we	would	need	to	painstakingly	plot	how	the	binding	forces	allow	the	input

movement	to	gradually	transmit	itself	from	one	little	piece	to	another	across	the	mechanism.	This	story	must	surely

involve	very	complex	processes	in	light	of	the	branching	causal	pathways	that	initiate	at	the	motor.	As	observed

earlier,	it	is	scarcely	evident	that	orthodox	point-mass	mechanics	contains	enough	internal	resources	to	provide

an	adequate	simulacrum	of	the	expected	behaviors.	But	once	we	are	assured	that	the	component	pieces	will

remain	nearly	rigid	throughout	all	of	the	device's	ordeals,	high	school	geometry	can	compute	exactly	how	much

the	needle	will	wiggle	as	the	drum	at	the	bottom	gets	turned	through	an	angle	θ.	Admittedly,	this	is	not	a	trivial	high-
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school	calculation,	but	its	demands	are	vastly	simpler	than	computing	how	the	whole	point-mass	swarm	will	behave

under	the	same	conditions.	In	other	words,	we	can	employ	our	upper	scale	ΔL 	knowledge	that	our	sewing	machine

parts	stay	rigid	and	obey	their	connective	constraints	to	avoid	the	very	complicated	mechanical	relationships	that

hold	among	the	device's	component	masses	at	the	ΔL	level.

Or,	at	least,	that	is	how	our	target	mechanism	would	appear	from	a	pointmass	perspective.	But	in	the	present

section,	we	wish	to	consider	“foundations”	for	classical	mechanics	in	which	notions	like	“rigid	body”	and	“pinned

constraint”	comprise	the	mechanical	primitives	of	the	subject	and	are	not	introduced	as	convenient

approximations	to	complex	point-mass	underpinnings.

Figure	2.14

Figure	2.15

This	perspective	supplies	analytical	mechanics	with	a	huge	computational	advantage	over	point-mass-based

modelings.	Thomson	and	Tait	articulate	these	virtues	as	follows:	“[T]he	forces	which	produce,	or	tend	to	produce,

[the	actions]	may	be	left	out	of	consideration.	Thus	we	are	enabled	to	investigate	the	action	of	machinery

supposed	to	consist	of	separate	portions	whose	form	and	dimension	are	unalterable.” 	Earlier	we	noted	that	it	is

hard	to	model,	from	a	point-mass	perspective,	the	simplest	forms	of	redirection	of	thrust,	as	occurs	when	a	plug

slides	along	a	curved	track.	In	our	sewing	machine,	the	redirection	is	of	a	far	cleverer	design,	but	proceeds

according	to	the	same	analytical	mechanical	principles.	To	formulate	doctrines	of	this	type	correctly,	we	generally

need	to	capture	the	system's	current	configuration	in	terms	of	generalized	coordinates,	rather	than	the	Cartesian

coordinates	that	are	central	to	the	point-mass	reading	of	the	second	law.	Often,	good	generalized	coordinates	use

natural	coordinates	of	the	kind	mentioned	earlier:	quantitative	measures	of	displacement	that	are	closely

correlated	with	the	system's	available	motions.	For	a	plug	sliding	in	a	slot,	its	placement	in	terms	of	arc	length	along

the	slot	represents	the	single	natural	coordinate	we	require	to	fix	the	plug's	position,	whereas	its	three	locations

expressed	on	Cartesian	axes	do	not	relate	to	the	motion	in	any	internally	“natural”	way	(figure	2.14).

A	second	vital	feature	of	the	coordinates	usually	employed	in	analytical	mechanics	is	that	they	are	independently

variable	with	respect	to	each	other:	any	specific	coordinate	can	be	altered	without	necessarily	disturbing	the

others.	With	a	steam	shovel,	for	example,	we	will	want	to	employ	the	five	decompositional	movements	illustrated	to

fix	its	configuration,	rather	than	the	regular	Cartesian	coordinates	of	its	many	parts.	The	latter	are	descriptively

*
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entangled	in	a	manner	that	prevents	us	from	applying	the	usual	forms	of	virtual-work	reasoning	(figure	2.15).

Figure	2.16

Much	of	the	practical	success	of	analytic	mechanics	traces	to	the	fact	that	suitable	independent	coordinates	for	a

complex	system	can	often	be	divined	simply	through	experimentally	determining	how	it	wiggles	under	manipulation

and	the	directions	in	which	input	thrust	travels	across	its	interior.	Such	data	represents	raw	higher-scale

information	about	our	system's	dominant	behaviors.

As	indicated	earlier,	as	soon	as	material	bodies	genuinely	fill	finite	volumes,	a	new	type	of	“force”	quietly	enters

the	scene.	This	force	eventually	becomes	a	secret	source	of	significant	tensions	within	mechanical	thinking.	Since

point	masses	are	inherently	zero-dimensional	in	nature,	they	can	be	provided	with	a	surrogate	for	normal	“size”

only	by	erecting	rough	“effective	volumes”	through	a	battery	of	strong,	short-range	repulsive	forces.	But	if	our

fundamental	objects	possess	true	sizes,	then	the	contact	forces	will	arise	upon	the	interface	between	two

contacting	bodies.	These	new	items	can	no	longer	qualify	as	action-at-a-distance	forces	simply	because	no

distance	separates	the	embedded	points	where	the	transmission	occurs	(figure	2.16).

There	are	two	grades	of	contact	forces	with	which	we	must	eventually	deal.	The	first	are	the	boundary	forces

applied	along	the	outside	surface	∂B 	of	a	body	B,	such	as	a	loaded	weight	passively	resting	on	top	of	a	four	bar

mechanism	or	a	hammer	blow	applied	somewhere	(the	first	is	traditionally	called	a	static	load	or	a	dead	load	and

the	second	a	dynamic	loading)	(figure	2.17).

These	are	the	only	contact	forces	at	issue	within	rigid	body	mechanics.	But	when	we	turn	to	flexible	continua,	a

second	grade	of	interior	contact	forces	emerge	in	the	guise	of	the	traction	forces	that	appear	across	the	boundary

of	(almost)	any	internal	surface	S	that	we	might	mark	out	within	the	larger	body	B.	Such	internal	surfaces	S	are

commonly	called	free	body	diagrams	or	Eulerian	cuts	(figure	2.18).

Figure	2.17
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Figure	2.18

Each	such	S	will	bristle	with	an	array	of	traction	forces	that	point	either	inward	or	outward	at	each	surface	point—it

is	then	presumed	in	third-law	fashion	that	the	material	outside	S	will	push	or	get	pulled	in	the	opposite	direction	at

that	same	place.	The	most	familiar	exemplar	of	such	traction	vectors	are	the	normal	pressures	acting	within	a

nonviscous	fluid,	but	the	complicated	internal	pushes	and	pulls	operative	within	other	flexible	bodies	mandate	the

introduction	of	the	more	general	notion	of	stress.

But	once	the	interior	of	a	body	is	claimed	to	be	completely	rigid,	as	we	shall	assume	throughout	the	present

section,	then	this	interior	grade	of	contact	force	becomes	ill-defined,	as	do	allied	notions	such	as	internal	pressure.

So	we	will	not	worry	about	how	to	deal	with	such	internal	tractions	now	and	will	concentrate	upon	the	surface

forces	that	appear	along	the	boundaries	between	contacting	bodies.

It	is	common	for	elementary	textbooks	to	vaguely	claim	that	all	forms	of	contact	force	really	represent	short-range

cohesive	forces	between	separate	particles.	This	contention	might	be	true	insofar	as	contact	forces	represent

classical	distillations	of	quantum	processes	of	roughly	that	character,	but	such	asseverations	can	prove	very

misleading	insofar	as	our	text	appears	to	be	concerned	with	classical	processes	exclusively,	where	it	is	not

evident	that	plausible	short-range	cohesive	forces	of	a	classical	point-mass	character	can	ground,	on	a	ΔL	basis,

the	standard	rigid	body	or	continuum	behaviors	witnessed	upon	a	ΔL 	scale.	In	fact,	such	offhanded	appeals	to

short-range	forces	often	disguise	the	fact	that	fundamentally	new	issues	about	how	forces	operate	mathematically

appear	on	the	scene	as	soon	as	contact	forces	are	tolerated.	Often	their	resolution	requires	that	we	reinterpret

Newton's	laws	in	a	significantly	altered	manner	or	turn	to	other	forms	of	“foundational	principle”	altogether.	In	the

face	of	these	conceptual	challenges,	hazy	appeals	to	fictitious	short-range	forces	between	point	centers	at	a	lower

scale	length	ΔL	merely	serve	as	convenient	escape	hatches	that	allow	authors	to	evade	addressing	these

foundational	issues	squarely	(these	evasions	become	particularly	troubling	in	the	context	of	continua,	as	we	shall

later	see).	To	be	sure,	the	texts	eventually	stagger	their	way	to	the	requisite	ΔL 	level	equations,	but	only	along

pathways	that	are	apt	to	confuse	a	critical	student.

One	of	these	difficulties—which	arises	even	with	the	exterior	boundary	forces	of	rigid	body	mechanics—traces	to

the	simple	fact	that	there	is	a	disparity	in	dimension	between	contact	forces	that	act	upon	bounding	surfaces	∂B

and	forces	such	as	gravity	that	act	upon	the	localized	points	inside	B.	As	soon	as	our	attention	shifted	to	extended

bodies,	we	should	have	properly	stopped	calling	such	items	“forces”	at	all	and	instead	considered	“force

densities”	of	dimensionally	incompatible	grades.	The	motives	for	these	adjustments	trace	to	the	usual	difficulties	of

making	sense	of	continuously	distributed	quantities	that	date	to	the	time	of	Zeno.
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Figure	2.19

Suppose	we	have	a	target	with	a	bull's-eye	and	two	archers:	skilled	Marian	and	inept	Robin	(figure	2.19).	What	are

Marian's	and	Robin's	respective	probabilities	for	hitting	the	exact	center	of	the	target	c?	Answer:	most	likely	zero	in

both	cases,	because	if	the	“hit	c	exactly”	answers	were	credited	with	any	finite	amount	ε,	then	(under	the

assumption	that	points	near	to	c	should	be	credited	with	probabilities	close	to	ε)	the	summed	probabilities	of	hitting

any	finite	region	of	the	target	will	become	infinite	(due	to	the	infinity	of	individual	points	contained	in	such	a	region).

But	if	Marian's	and	Robin's	probabilities	for	hitting	the	target	at	any	individual	point	are	always	zero,	shouldn't	it

follow	that	their	summed	probabilities	of	hitting	any	finite	region	A	also	need	to	be	identical	(viz.,	zero),	rendering

them	equally	lousy	marksmen?	Obviously	not,	but	the	task	of	straightening	out	these	riddles	is	the	business	of	the

modern	theory	of	measure.	This	theory	addresses	our	problem	by	crediting	Marian	and	Robin	with	different

probability	densities	with	respect	to	the	individual	points	in	the	target.	To	extract	a	proper	probability	from	a

density,	one	must	“add	up”	(integrate	over)	these	densities	over	sufficiently	large	areas.	Based	upon	their	different

densities,	the	true	probability	differences	between	Marian	and	Robin's	skills	will	show	up	only	after	sufficiently	large

expanses	of	target	come	into	consideration.	Getting	all	of	this	to	work	out	correctly	requires	very	careful

mathematical	preparation.	Plainly,	we	need	to	adopt	similar	policies	with	respect	to	our	new	“forces”:	considered	at

a	point-length	scale	only	the	force	densities	can	be	nonzero—true	forces	should	not	emerge	until	we	have

integrated	these	local	densities	over	larger	regions.

Figure	2.20

The	awkward	tension	that	segregates	surface	forces	from	body	forces	such	as	gravity	stems	from	the	fact	that,

considered	properly	as	densities,	their	respective	quantities	must	be	dimensionally	inharmonious.	Why?	In	the

case	of	the	tractions	pulling	and	pushing	upon	a	boundary	∂B,	we	expect	to	reach	genuine	resultant	forces	after

we	have	integrated	over	finite	stretches	∂S	of	the	exterior	surface	∂B.	But	with	gravitation,	we	must	integrate	over

volumes	V	of	points	within	B	itself	(not	just	along	stretches	of	∂B)	before	we	can	assemble	forces	of	comparable

strength	from	gravitational	attraction	(figure	2.20).

Considered	from	the	point	of	view	of	the	normal	volume	measure	on	B,	any	surface	piece	∂S	will	qualify	as	“of	0

measure,”	so	we	cannot	use	this	same	measure	in	dealing	with	contact	forces.	In	sum:	genuine	forces	can	be

assembled	from	much	smaller	sets	of	points	in	the	case	of	a	contact	force	than	in	the	case	of	gravity,	for	they

reach	the	level	of	a	“finite	resultant	force”	more	quickly	in	the	former	case.
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It	is	only	after	these	surface	and	volume	resultants	(the	fat	arrows	in	the	diagram)	have	been	obtained	that	we	will

possess	genuine	forces—not	densities—that	can	be	meaningfully	combined.	This	dimensional	disparity	of	our

densities	is	not	merely	an	awkward	mathematical	issue,	for	the	fact	that	surface	forces	inherently	overwhelm	body

forces	within	small	regions	plays	a	vital	role	in	determining	the	logical	character	of	vital	notions	like	“stress.”	We

shall	discuss	these	features	in	section	5.

Let	us	return	to	the	problem	of	combining	body	and	surface	forces,	now	construed	as	densities.	We	find	that	two

basic	gizmos	are	needed	to	fulfill	the	roles	that	“total	force”	serves	within	point-mass	mechanics.	We	first	require	a

dimensionally	correct	analog	for	the	notion	of	total	force,	which	we	now	compute	as	the	vector	resultant	of	two

density	integrations	∫ 	f 	ds	and	∫	 	f 	dv	(where	f 	and	f 	are	the	surface	force	and	body	force	densities,

respectively).	Observe	that	these	two	integrations	transpire	over	the	requisite	regions:	S	for	outer	surface	and	V

for	interior	volume.	In	so	doing,	we	are	summing	a	large	number	of	force	densities	that	act	in	different	locales,

unlike	in	the	point-mass	case	where	forces	all	act	in	the	same	place.	But	in	composing	our	new	notion	of	total

force,	we	simply	ignore	these	differences	in	point	of	application.

Using	these	new	notions,	we	obtain	an	analog	of	Newton's	Second	Law	suitable	to	isolated	rigid	bodies:	(∫ 	ρ	dv)

d r /dt 	=	∫ 	f 	ds	+∫ 	f 	dv,	where	∫	 	ρ	dv	is	the	summation	of	the	mass	density	over	the	entire	rigid	body	B.	But

with	which	point	in	B	should	the	location	r	in	the	term	(∫ 	ρ	dv)	d r /dt 	be	computed?	It	does	not	really	matter:

every	point	will	display	the	same	linear	acceleration	in	any	direction	we	look.	Some	writers	link	r	to	the	center	of

mass	of	the	body,	but	there	is	no	especial	reason	for	doing	so	(especially	when	the	center	of	mass	is	often	not

located	inside	B	at	all,	as	in	a	doughnut).

Although	the	points	in	B	accelerate	in	the	same	way,	they	certainly	do	not	have	the	same	velocities.	An	additional

notion	is	needed	to	describe	the	velocity	relations,	or	the	turning	of	a	rigid	body.	This	new	notion	is	called	the

torque	τ	(or	turning	moment)	of	the	summed	force	densities	acting	upon	B.	Once	again,	this	summation	needs	to

be	broken	into	two	integrals	that	separately	average	the	lever	arm	contributions	of	the	surface	and	body	forces

with	respect	to	some	center	A	within	B	(it	does	not	matter	where,	although	certain	centroids	can	make	the

calculations	easier)	(figure	2.21).	More	exactly,	τ	=	∫ 	(f 	×	r)ds	+∫ 	(f 	×r)	dv,	where	r	represents	distance	to	the

chosen	reference	point	A.	Quite	different	distributions	of	force	density	across	a	rigid	body	can	move	it	in	identical

ways	as	long	as	their	averaged	total	force	and	averaged	torque	about	A	are	the	same.

Figure	2.21

To	complete	our	scheme,	we	must	now	quantify	how	our	rigid	body	creates	an	inertial	resistance	to	an	applied

torque	as	well.	Here	we	need	to	compute	how	far	away	from	A	the	mass	density	ρ	within	B	tends	to	lie	on	average

(viz.	∫	 	(ρ.	r )	dv).	This	new	quantity	I	is	called	B's	“moment	of	inertia”	around	A.	Using	it,	we	can	express	“Euler's

Second	Law	of	Motion” 	for	torques	as	I	d θ/dt 	=	∫ 	(f ×	r)ds+∫ 	(f ×	r)	dv,	where	d θ/dt 	is	the	angular

acceleration	of	B.

Working	within	a	point-mass	framework,	Euler's	second	law	is	provable	from	Newton's	second	law	in	conjunction

with	the	third	law	restrictions	on	action-at	a-distance	forces.	But	this	dependence	no	longer	holds	as	soon	as	the

forces	tolerated	multiply	into	new	varieties.	In	particular,	Euler's	second	law	is	required	as	an	independent

postulate	to	show	that	stress	tensors	must	be	symmetric	within	a	continuum	physics	setting.	Unjustified	lifts	from

point-mass	mechanics	often	disguise	this	crucial	fact	in	many	texts.
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However,	our	two	Eulerian	principles	alone	do	not	tell	us	how	hinged	assemblies	of	rigid	bodies	should	act,	which

is	our	main	objective	in	this	section.	A	general	answer	to	this	question	was	supplied	by	Lagrange,	who	elevated

some	of	the	reasonings	we	have	already	canvassed	into	a	general	framing	principle.	Specifically,	Lagrange

maintained	that,	in	any	system	of	rigid	parts	characterized	by	n	sites	of	impressed	force,	either	(i)	the	device

remains	in	equilibrium	and	the	total	virtual	work	associated	with	all	impressed	forces	vanishes	or	(ii)	the	device

moves	with	exactly	the	requisite	inertial	reactions	at	the	n	sites	to	compensate	for	the	virtual	work	imbalance.

Traditionally,	consideration	(i)	is	dubbed	the	principle	of	virtual	work	and	(ii)	is	called	d'Alembert's	principle.

Combined	into	one	formula,	we	obtain	Lagrange's	principle:	(1)

where	δq 	represents	a	“virtual	adjustment”	in	the	coordinate	value	q ,	leading	to	a	measure	of	the	work	that	the

applied	force	F 	would	supply	if	it	could	be	prolonged	through	that	distance.

Lagrange's	formula	is	particularly	useful	if	we	have	employed	independent	coordinates	as	our	q ,	for	then	we	can

write	down	a	formula	that	expresses	how	work	supplied	at,	for	example,	site	q 	gets	transmitted	across	the

mechanism	to	any	other	site	on	the	assumption	that	the	remaining	sites	can	stay	fixed	in	the	process.	Working

out	these	rules	for	each	pair	of	sites	provides	a	collection	of	equations	that	can	completely	fix	how	our	hinged	rigid

body	will	move.	The	formulas	familiar	from	analytic	mechanics	that	are	couched	in	terms	of	“Lagrangians”	or

“Hamiltonians”	simply	represent	these	new	equations	rewritten	reliant	upon	certain	further	assumptions	about	the

nature	of	the	forces	at	issue	(viz.,	their	derivability	from	potentials).

Many	interesting	geometrical	problems	are	closely	connected	to	the	generalized-coordinate	representations	of

rigid-body	mechanics.	The	configuration	spaces	of	our	earlier	point-mass	swarms	are	comparatively	uninteresting

from	a	mathematical	point	of	view.	But	if	one	considers	the	mobility	space	of	a	complicated	mechanism	like	our

crane,	as	determined	by	its	varying	generalized	coordinates,	we	obtain	a	quite	novel	structure,	largely	because	its

coordinates	are	angle-like	in	character:	they	return	to	their	starting	values	after	a	360°	rotation.	Mathematically,	we

obtain	such	mobility	spaces	by	cutting	out	all	of	the	“can't	be	visited”	regions	from	a	regular	Cartesian	3n	space

and	gluing	together	the	remaining	edges	according	to	the	pathways	of	angle-like	returns.	The	resulting

substructures	can	prove	very	complicated	geometrically	and	comprise	a	topic	of	great	mathematical	interest	far

beyond	the	limits	of	the	kinematics	of	mechanisms	(which	is	the	traditional	name	for	the	study	of	machine	mobility).

Figure	2.22

Figure	2.23

From	a	point-mass	vantage,	we	are	plainly	skipping	over	a	huge	amount	of	internal	structure.	Let	us	examine	a

small	piece	of	our	crane	from	a	punctiform	point	of	view	(figure	2.22).

Clearly,	strong	cohesive	forces	F 	will	be	required	to	lock	point	i	into	a	lattice	with	point	mass	j	and	some	kind	of

binding	force	F 	will	also	be	needed	to	keep	our	piece	fixed	to	its	pin.	All	mention	of	these	has	vanished	from
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Lagrange's	principle.	Why	are	we	allowed	to	ignore	these	extra	forces?	Textbooks	commonly	argue	as	follows:	(1)

“The	net	work	of	the	cohesive	forces	vanishes	because	they	occur	in	internal-force	pairs	where	F 	=	−F .	Since

their	virtual	displacements	will	be	the	same,	their	virtual	work	contributions	will	cancel	each	other	out.”	Or:	(2)	“The

constraint	force	F 	does	no	work	because	its	action	is	orthogonal	to	the	path	of	virtual	movement	δr .”

Here	is	Donald	Greenwood's	version	of	this	last	argument,	presented	in	the	course	of	“justifying”	Lagrange's

principle	from	a	point-mass	standpoint:	“[C]onsider	a	body	B	which	slides	without	friction	on	a	fixed	surface	S….

The	constraint	force	is	normal	to	the	surface	at	the	tangent	point	P,	but	any	virtual	displacement	of	P	involves

sliding	in	the	tangent	plane	at	that	point.	Hence	no	work	is	done	by	the	constraint	force	R	in	a	virtual	displacement”

(figure	2.23).

Figure	2.24

But	in	our	point-mass	frame,	all	forces	are	supposed	to	act	from	one	point	to	another	along	the	line	connecting

them.	But	our	constraint	force	R	looks	as	if	it	starts	and	ends	in	exactly	the	same	spot	P,	which	was	not	permitted

under	our	old	reading	of	the	third	law.	Plainly,	some	new	kind	of	“force”	has	been	smuggled	into	Greenwood's	text,

without	adequate	prior	warning.

On	virtually	the	same	page	Greenwood	argues	for	Lagrange's	principle	in	a	different	setting	as	follows	(figure	2.24):

Assume	that	two	particles	are	connected	by	a	rigid,	massless	rod….	Because	of	Newton's	third	law,	the

forces	exerted	by	the	rod	on	the	particles	m1	and	m2	are	equal,	opposite	and	collinear.	Hence	R 	=	−R

…	as	shown.	Furthermore,	since	the	rod	is	rigid,	the	displacement	components	in	the	direction	of	the	rod

must	be	equal	or	e.δr 	=	e.δr 	[where	e	is	a	unit	vector	pointing	in	the	direction	of	the	rod].	Therefore	the

virtual	work	of	the	constraint	forces	is	zero:	δW	=	R .δr +	R .δr 	=	0.

But	by	what	right	can	we	insert	a	“rigid,	massless	rod”	in	our	system	and	still	maintain	that	“Newton's	third	law”

equates	R 	=	−R ?	It	is	not	as	if	the	two	masses	are	directly	exerting	forces	on	one	another,	as	our	earlier	reading

of	the	third	law	expects.	Indeed,	suppose	that	the	intervening	rod	is	curved,	rather	than	straight.	We	still	want	our

reasoning	to	hold,	yet	plainly	R 	≠	−R 	(the	vectors	point	in	quite	different	directions).

Passages	like	these	trade	upon	unnoticed	elisions	between	the	foundational	sense	of	“isolated	particle”	and	looser

policies	of	talking	of	“representative	points”	within	more	extended	bodies.	By	exploiting	our	alleged	freedom	to

place	representative	points	where	we	wish,	Greenwood	allows	point	masses	to	sometimes	sit	on	top	of	one	another

or	locate	themselves	at	the	far	ends	of	ghostly,	massless	rods.	Through	simple	appeals	of	this	character,	we	find

ourselves	miraculously	lifted	to	the	characteristic	scale	level	of	objects	far	above	the	realm	of	the	component

particles	(atoms,	molecules,	the	tiny	crystals	in	iron)	that	we	originally	sought	to	model	as	point	masses.

Observe	that	a	doctrine	that	is	essentially	philosophical	in	nature	(“scientists	idealize	their	targets	through

selecting	representative	points”)	has	been	tacitly	employed	as	a	cover	for	a	missing	stretch	of	substantial

mathematics	(“how	do	point-mass	foundations	support	the	principles	of	analytical	mechanics?”).	As	we	observed,

one	of	Hilbert's	stated	objectives	in	his	sixth	problem	was	to	study	these	lifts	in	a	more	rigorous	spirit,	although	he

did	not	observe	that	stock	textbook	arguments	like	Greenwood's	involve	moves	of	this	character.	We	also

discussed	the	general	manner	in	which	constitutive	modeling	considerations	get	mysteriously	bypassed	in

arguments	of	this	character.	But	in	the	situations	Greenwood	discusses,	we	have	somehow	persuaded	ourselves

that	we	can	derive	salient	predictions	based	upon	“general	laws”	pertinent	to	point	masses	alone,	without	needing

to	supply	any	constitutive	modeling	that	can	explain	why	systems	would	behave	differently	if	they	had	been

composed	of	nonrigid	parts.

Thus,	standard	“derivations”	of	analytical	mechanics	doctrines	from	point-mass	foundations	are	rarely	cogent,	if

scrutinized	from	the	point	of	view	of	Hilbertian	rigor.	But	none	of	our	considerations	show	that	an	alternative	set	of

foundational	principles	cannot	be	coherently	framed	that	accepts	rigid	bodies	as	its	primitive	objects,	possibly	in

conjunction	with	point	masses	as	well.	In	fact,	the	best	modern	writers	on	mechanics	recognize	that	pretending	that
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analytical	mechanics	can	be	adequately	founded	upon	point-mass	foundations	is	simply	a	mistake.	Cornelius

Lanczos	comments:

Those	scientists	who	claim	that	analytical	mechanics	is	nothing	but	a	mathematically	different	formulation

of	the	laws	of	Newton	must	assume	that	Lagrange's	principle	is	deducible	from	the	Newtonian	laws	of

motion.	The	author	is	unable	to	see	how	this	can	be	done.	Certainly	the	third	law	of	motion,	“action	equals

reaction,”	is	not	wide	enough	to	replace	Lagrange's	principle.

He	particularly	has	in	mind	some	of	the	third-law	ambiguities	discussed	in	section	2.

In	criticizing	derivations	like	Greenwood's	for	their	lack	of	rigor,	we	should	never	forget	that	the	modeling

techniques	they	are	intended	to	justify	are	of	vital	importance	to	working	physics.	For	the	import	of	virtual-work

schemes	in	practice	is	that	they	allow	us	to	avoid	working	through	an	awful	lot	of	difficult	physics	that	runs	the	risk

of	introducing	large	errors	into	our	calculations	with	little	gain	in	predictive	power.	We	have	already	discussed	the

advantages	of	working	with	data	drawn	from	a	range	of	scale	sizes.	If	we	already	know	how	the	principal	patterns

of	thrust	transmission	operate	within	our	crane	at	a	large	scale	size	ΔL ,	why	not	exploit	that	information	to	reduce

the	complexity	of	our	modeling,	even	at	the	cost	of	a	certain	degree	of	approximation	with	respect	to	the	point

masses	that	comprise	it	at	a	scale	ΔL*	The	essential	genius	of	virtual	work	and	the	other	techniques	of	analytical

mechanics	lies	in	their	ability	to	combine	data	types	in	this	manner.

Analytical	mechanics,	if	stoutly	set	on	its	own	feet	axiomatically,	should	appear	an	odd	choice	for	serving	as	a

baseline	ontology	for	classical	mechanics	due	to	the	tremendous	number	of	descriptive	holes	it	contains.	This

section	has	devoted	its	attention	to	analytic	mechanics’	prospects	as	a	foundational	enterprise	largely	because

the	subject	commonly	serves	as	a	favored	point	of	refuge	when	one	encounters	conceptual	difficulties	in	pursuing

our	other	basic	ontologies.	In	fact,	the	position	of	rigid	bodies	within	classical	physics	is	much	like	that	of	the

disreputable	uncle	who	possesses	most	of	the	money	in	the	family:	you	do	not	fully	admire	his	character	but	you

appreciate	all	of	the	good	things	he	can	buy	for	you.

We	have	already	examined	several	ways	in	which	point-mass	mechanics	commonly	appeals	to	rigid-body	notions

as	escape	hatches	when	it	finds	itself	in	descriptive	hot	water.	Thus,	we	invoke	“massless	rods”	to	hide	the	fact

that	we	do	not	know	the	special	force	laws	that	bind	two	point-masses	at	a	constant	distance.	Or	we	enlarge	our

point-mass	planets	to	become	finite	spheroids	to	avoid	Xia-type	blowups.	Or,	like	Poisson,	we	correct	the	one-

elastic-constant	deficiencies	of	a	material	modeling	by	replacing	the	point	centers	with	rigid	ellipsoids.	But	these

doors	of	conceptual	escape	swing	both	ways,	for	analytical	mechanics	commonly	evokes	the	resources	of	its

ontological	rivals	to	sustain	its	own	reasonableness.

5.	Continuum	Mechanics

Figure	2.25

If	we	could	mark	out	the	salient	differences	clearly	and	poll	most	of	the	prominent	classical	physicists	of	the	past

with	respect	to	their	favored	choice	of	foundational	object,	the	majority	would	undoubtedly	select	continuous,

flexible	bodies.	Let	us	now	try	to	articulate	principles	capable	of	governing	the	behaviors	of	continua	coherently.
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We	immediately	confront	a	more	difficult	form	of	the	surface/volume	force	coordination	problem	than	we	confronted

in	the	case	of	rigid	bodies.	In	rigid-body	mechanics,	the	relevant	traction	forces	operate	only	along	the	exterior

surfaces	∂B	of	the	rigid	body	B	under	consideration.	But	inside	a	flexible	body,	we	can	carve	out	infinitely	many

internal	surfaces	∂S	able	to	support	their	own	arrays	of	traction	vectors	as	well	(figure	2.25).

Furthermore,	the	tractions	on	each	different	∂S	will	generally	differ	from	one	another	and	from	the	exterior	tractions

applied	along	the	outer	boundary	∂B.	Indeed,	we	anticipate	that	as	we	push	and	pull	upon	∂B	in	different	ways,

these	exterior	modifications	will	make	themselves	felt	at	an	interior	point	q	through	progressively	altering	the

traction	forces	upon	all	of	the	interior	surfaces	∂S	that	surround	q.	Moreover,	this	process	of	inward	transmission

will	require	some	time	to	complete:	the	tractions	on	∂S 	must	alter	before	the	tractions	on	∂S	can	change.	Inside	a

truly	rigid	body,	however,	such	inner	tractions	and	waves	no	longer	make	sense,	for	essentially	the	same	reasons

that	the	notion	of	“absolute	pressure”	becomes	problematic	when	a	fluid	is	assumed	to	be	incompressible.	Usually,

notions	of	“rigid	body”	are	regarded	as	incompatible	with	a	continuum	physics	point	of	view.

In	the	previous	section,	we	summed	the	surface	forces	around	the	outer	boundary	∂B	and	the	volume	forces	inside

B	employing	two	integrations	whose	results	we	then	added	to	get	a	resultant	applied	force.	We	then	learned	that

we	should	also	compute	a	combined	torque	in	a	similar	manner.	With	those	two	ingredients	in	place,	Euler's	two

laws	of	motion	could	tell	us	how	our	rigid	body	would	respond.	But	in	that	context	we	only	had	to	contend	with	the

body	forces	and	traction	vectors	around	the	outer	boundary	∂B.	How	should	we	address	the	vast	army	of	differing

∂S's	that	have	now	entered	our	stage	in	the	entourage	of	flexible	bodies?	If	we	naively	compute	resultant	forces

and	torques	from	these,	we	can	obtain	substantially	different	answers	according	to	the	inner	surface	∂S	chosen.

This	is	a	surface/body	force	coordination	problem	of	considerably	greater	subtlety	than	we	addressed	earlier.

The	eventual	solution	invokes	the	notions	of	“stress”	and	“strain.”	Before	proceeding	further,	a	few	words	of

warning	are	in	order	concerning	these	innocent-looking	words.	Most	philosophers	interested	in	physics	have

already	run	across	those	words—in	the	guise,	say,	of	their	close	cousin,	the	“stress-energy	tensor”	of	general

relativity—without	reflecting	sufficiently	on	their	conceptual	oddities	(“stress”	is	not	“just	a	form	of	force”	and

“strain”	is	not	“just	a	form	of	shape	change”).	Historically,	it	was	not	until	the	end	of	the	nineteenth	century	that	the

true	novelty	of	these	constructions	was	adequately	recognized. 	Some	of	this	confusion	traced	to	the

carelessness	about	“points”	that	“representative	point”	talk	encourages.	So	let	us	reiterate	that	in	dealing	with

interior	points	like	q,	we	are	not	longer	considering	the	isolated	points	of	mass	point	physics:	our	new	points	come

densely	surrounded	by	infinitely	many	neighbors,	situated	as	close	to	them	as	one	might	like.	And	they	should	not

to	be	identified	with	points	in	the	ambient	container	space;	our	material	points	(their	most	common	name)	wander

through	that	background	space	in	a	trackable	way.

It	is	best,	at	this	preliminary	stage	of	our	discussion,	to	conceptualize	our	material	points	q,	not	as	bare	geometrical

entities,	but	as	decorated	points	or	physical

Figure	2.26
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infinitesimals	that	have	temporarily	parked	themselves	at	various	spatial	points	p	(which	are	not	“decorated”).	In

particular,	if	q	forms	part	of	a	solid	material	like	iron	and	the	material	in	q's	immediate	neighborhood	is	fully	relaxed,

we	should	picture	its	“decorated”	condition	as	an	infinitesimal	little	cube	about	the	central	point	p	(figure	2.26).

But	if	q	is	subject	to	stress,	infinitesimal	traction	vectors	should	appear	on	each	of	its	faces,	one	to	a	side	and

pointing	inward	or	outward	in	any	direction	desired.	In	response	to	these	tractions,	our	little	boxes	will	adjust	their

decoration,	by	adjusting	their	infinitesimal	volumes	or	shifting	shape	in	a	shearing	pattern	(or	displaying com-

binations	of	these	two	basic	alterations).	In	fact,	the	descriptive	purpose	of	a	stress	tensor	is	to	capture	the local	

pushes	and	pulls	of	the	traction	vectors	on	q,	while	the	usual	(Cauchy-Green)	strain	tensor	captures	q's degree	of	

distortion	from	its	cubic	relaxed	state.	Considering	our	material	over	a	broader	scale,	we	realize	that	thematerial	

points	q 	found	at	locations	near	to	q	must	be	decorated	in	a	manner	very	close	to,	but	not	identical	with, that	of	q

—otherwise,	the	material	would	display	fissures	(this	relationship	among	nearby	infinitesimals	is	called

compatibility )	(figure	2.27).

Because	all	of	these	modes	of	decoration	occur	on	an	infinitesimal	scale,	stresses	and	strains	behave	like	the

densities	introduced	earlier	in	connection	with	mass	and	force:	such	measures	do	not	sum	to	become	legitimate

masses	and	forces	until	we	consider	finite	volumes	of	material.	But	the	rules	whereby	localized	stresses	and	strains

eventually	sum	to	produce	finite	characteristics	of	the	material	stuff	to	which	they	belong	are	more	complicated

than	the	procedures	used	for	simple	densities.

I	have	highlighted	the	odd,	decorated-point	aspects	of	the	material	points	of	continuum	mechanics	to	help	readers

properly	appreciate	the	conceptual	novelties	that	lie	before	us—we	are	no	longer	considering	the	familiar	isolated

points	of	the	easy-to-comprehend	point-mass	framework.	And	although	we	shall	eventually	appeal	to	various

limiting	procedures	to	persuade	our	stresses	and	strains	to	work	together	harmoniously,	readers	should	not

presume	that	the	conceptual	difficulties	of	continuum	physics	are	merely	matters	of	“explaining	away

infinitesimals”	in	the	familiar	δ/ε	fashion	of	elementary	calculus	courses.	No:	deep	questions	of	physical	principle

are	central	to	our	concerns;	we	are	not	simply	striving	to	make	hygienic	sense	of	infinitesimal	points.	Our

foundational	difficulties	might	be	fairly	dubbed	the	problem	of	the	physical	infinitesimal,	but	our	problems	mainly

belong	to	physics	and	are	considerably	more	substantive	than	the	comparable	problem	of	the	mathematical in-

finitesimal	from	freshman	calculus.	To	be	sure,	philosophers	have	sometimes	presumed	otherwise,	but	only	as	a

result	of	underestimating	the	pertinent	physical	concerns.	It	strikes	me	that	many	of	the	deepest	worries	about

matter	in	our	philosophical	heritage	trace,	in	one	way	or	another,	to	our	“problem	of	the	physical	infinitesimal.”

Figure	2.28

With	these	warnings	not	to	underestimate	stress	and	strain	in	hand,	let	us	now	turn	to	the	foundational	ailments	for

which	they	will	eventually	provide	part	of	the	cure.	Let	us	recall	the	rather	complicated	physical	situation	that

pertains	at	the	level	of	the	complete	blob	B	of	material	to	which	q	belongs	(figure	2.28).

Its	interior	will	be	pulled	upon	by	gravity	g	and	other	action-at-a-distance	forces	of	that	ilk.	But	B	will	also	be

affected	by	the	various	twists	and	pulls	that	we	exert	directly	upon	its	exterior	surface	∂B	as	“contact	forces.”	If

the	material	inside	B	is	perfectly	rigid,	the	basic	problem	of	coordinating	these	two	classes	of	“force”	could	be

resolved	fairly	easily	by	computing	resultant	torques	and	applying	Euler's	two	laws	of	motion	for	rigid	bodies.	But
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this	simple	policy	works	only	because	the	material	is	rigid:	every	point	q 	inside	B	must	display	the	same	linear

acceleration	and	the	whole	will	rotate	in	exactly	the	same	way	no	matter	from	which	reference	point	its	torque	is

gauged.	However,	if	the	matter	inside	B	is	not	perfectly	stiff	(let	B	be	a	blob	of	jelly	or	water),	then	the	response

behavior	immediately	around	q	will	usually	look	quite	different	from	the	corresponding	behaviors	around	q 	(neither

the	local	accelerations	nor	rotations	will	be	the	same).	And	it	is	these	local	differences	within	flexible	bodies	that

allow	them	to	carry	interior	waves,	which	rigid	bodies	cannot	support.	When	we	twist	and	pull	upon	the	external

surface	of	a	flexible	body	B,	we	generate	a	lot	of	internal	tractions,	for	the	effects	of	our	surface	manipulations

generate	compression	waves	whose	effects	eventually	reach	q	by	progressively	altering	the	local	tractions	upon	a

contracting	collection	of	surfaces	S ,	S ,	S ,	…	surrounding	q.	It	is	these	internal	surfaces	and	their	shifting	arrays

of	traction	vectors	that	greatly	complicate	our	earlier	surface/body	force	coordination	problem	in	the	case	of

flexible	bodies.

That	difficulty,	the	reader	will	remember,	traces	to	the	dimensional	disparity	generated	by	the	fact	that	contact

tractions	represent	surface	“forces”	(properly	force	densities)	in	the	sense	they	must	attach	to	some	shell	of

surface	∂S	surrounding	a	point	q	before	they	can	be	coherently	integrated,	whereas	body	“forces”	(again,

densities)	such	as	gravitation	apply	directly	to	simple	points	q	and	need	to	be	integrated	over	volumes.	In	the	rigid-

body	case,	only	the	outer	layer	of	exterior	traction	pulls	needed	to	coordinate	with	its	interior	points	q,	but	in

flexible	bodies	we	are	confronted	with	a	host	of	additional	shells	∂S	to	coordinate,	appearing	as	the	interior	cuts

whose	characteristics	are	continually	altered	by	the	waves	that	pass	through	them.

Figure	2.29

Plainly	this	represents	a	fairly	complicated	physical	problematic.	It	is	often	remarked	that	physics	is	simpler	in	the

small,	indicating	that	uncomplicated	laws	of	material	behavior	can	be	elegantly	formulated	only	at	the	infinitesimal

level.	Will	this	methodology	help	us	here?	Consider	the	material	at	a	point	q,	where	it	will	display	a	local	mass

density	ρ	and	allied	characteristics	like	charge.	It	will	be	pulled	upon	directly	by	gravitation	and	other	possible	long-

distance	“body	forces,”	which	can	be	summed	to	supply	a	local	resultant	vector	g .	We	can	presume	our	material

will	react	to	its	full	schedule	of	local	pushes	and	pulls	by	manifesting	an	acceleration	D q	/	Dt 	(the	capital	D's

signify	the	material	derivative,	which	is	explained	in	every	textbook	on	continuum	mechanics).	Unfortunately,	the

compression	waves	passing	through	q	will	also	affect	its	full	schedule	of	local	pushes	and	pulls	and	it	is	these	that

make	our	force-coordination	problem	so	difficult.	It	is	easy	to	understand	how	a	passing	wave	will	affect	a	shell	of

surface	∂S:	run	a	tangent	plane	through	any	point	on	∂S	and	see	which	way	the	traction	T	supplied	by	the	wave

locally	points	across	the	plane.	So	to	understand	how	the	compression	waves	will	affect	q,	we	should	set	up	a	little

shell	around	q	and	compute	the	traction	vectors	on	∂S	created	by	the	passing	waves.	All	we	need	to	do,	it	would

seem,	is	to	compute	how	the	resulting	surface	“force”	summation	F 	should	compare	to	the	body	force	summation

g 	acting	at	q.	But	wait	a	minute:	no	part	of	∂S	is	actually	located	at	q	and,	in	fact,	we	can	easily	carve	out	a

smaller	cut	∂S 	inside	∂S	whose	integrated	tractions	may	differ	considerably	from	those	on	∂S	itself	(why?	because

∂S 	is	affected	by	different	wave	movements	than	∂S)	(figure	2.29).	And	we	can	draw	an	even	smaller	cut	∂S

inside	∂S 	where	the	same	phenomenon	reappears.	And	so	on,	ad	infinitum.

In	short,	we	have	gone	smaller	in	our	physics,	but	nothing	has	become	simpler!	The	regress	traces,	of	course,	to

the	fundamental	scale	invariance	of	homogeneous	classical	continua.	Whatever	characteristic	length	ΔL	we

choose,	volumes	of	such	materials	will	always	behave	exactly	alike	in	terms	of	the	principles	they	obey	(of	course,

one	can	also	consider	composite	continua	where	various	sectors	obey	different	rules,	but	these	raise	further

difficulties,	which	we	shall	discuss	later).

Somehow	we	must	arrest	this	regress	of	unprofitable	descent	if	we	hope	to	get	anywhere	in	continuum	physics.	But

how	can	we	do	this?	One	cannot	blithely	say,	“Oh,	just	take	a	‘limit’	as	you	shrink	to	q,”	for	it	is	not	at	all	apparent

what	should	happen	to	our	traction	forces	when	the	cuts	on	which	they	live	shrink	to	nothingness	at	q	itself.	(1)	Will

the	result	be	merely	a	simple	pressure,	which	operates	to	expand	or	contract	our	element	in	terms	of	its	volume?
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(2)	Can	such	local	“pressures”	pull	differently	in	different	directions?	(3)	Can	the	directionalities	of	our	tractions

lean	sideways	in	a	manner	that	can	shear	an	infinitesimal	blob	S	without	altering	its	volume?	(4)	If	so,	will	they	act

differently	upon	different	planes	around	S?	(5)	How	differently?	(6)	If	so,	how	much	latitude	can	they	display	with

respect	to	these	variations?	(7)	Will	turning	torques	also	leave	a	residual	infinitesimal	turning	moment	within	S?

Figure	2.30

The	standard	(although	not	invariable)	answers	to	these	questions	are:	(1)	no;	(2)	no;	(3)	no;	(4)	yes;	(5)	yes;	(6)

they	must	interrelate	in	the	manner	of	a	3D	vector	space;	(7)	no.	But	few	of	these	should	seem	entirely	obvious.

Internal	pressures,	for	example,	can	vary	considerably	across	a	fluid—mightn't	these	longer	range	inequalities

deposit	an	unbalanced	pulling	upon	our	small	blob	S	as	a	local	residue?	Prior	to	the	time	of	Cauchy,	the	greatest

practitioners	of	mechanics	answered	“no”	to	(3),	often	on	the	basis	of	the	way	in	which	they	correctly	answered

“no”	to	(7). 	Although	the	conventional	textbook	response	to	(7)	is	“no,”	there	are	well-developed	theories	of

directed	media	that	address	this	question	differently.	The	fact	that	it	is	hard	to	augur	intuitively	how	infinitesimal

portions	of	a	continuous	medium	should	behave	helps	explain	why	the	old	controversy	between	rari-	and	multi-

constant	theories	of	elasticity	took	so	long	to	resolve.

Such	questions	concern	only	the	static	responses	of	materials.	Once	dynamics	come	into	play,	an	even	wider

range	of	difficult	questions	emerge.	Can	our	infinitesimal	elements	retain	long-term	“memories”	of	their	previous

history?	Certainly,	macroscopic	media	often	behave	in	this	way:	two	identical	looking	paper	clips	made	of	the	same

material	may	respond	differently	to	bending	pressures	because	clip	A	has	been	flexed	many	times	in	the	past	but

clip	B	has	not.	Can	an	infinitesimal	blob	S	display	allied	memories	as	well,	or	must	such	processes	emerge	due	to

complicated	interactions	between	finite	portions	of	a	composite	system?	Likewise,	might	our	“infinitesimals”	display

“delayed	memories”	in	the	sense	that	a	blob	S	might	respond	to	altered	conditions	in	a	non-immediate	manner?

Again,	toothpaste	acts	like	this:	it	gradually	“remembers”	its	shape	back	in	the	tube	and	tardily	reverts	back	to	it

(figure	2.30).

Such	questions	lay	behind	the	twentieth-century	revival	of	interest	in	the	“foundations”	of	classical	continuum

mechanics:	scientists	who	confronted	with	new	industrial	substances	needed	guidance	as	to	how	such

complicated	materials	might	be	reliably	modeled.

Ultimately,	the	answers	to	all	of	these	questions	depend	upon	physics	because,	insofar	as	mathematics	is	alone

concerned,	such	issues	can	be	resolved	in	many	different	ways.	That	is	why	our	“problem	of	the	physical

infinitesimal”	(which	is	equivalent	to	answering	our	questions	coherently)	is	not	mainly	an	issue	in	δ/ε	rigorization.

In	sum,	we	are	confronted	with	a	serious	conceptual	regress:	the	complicated	behaviors	of	these	materials	never

seem	to	become	simpler	no	matter	how	small	the	portions	we	consider.	How	can	we	halt	this	unhelpful	descent	into

what	Leibniz	called	“the	labyrinth	of	the	continuum”?	I	will	first	sketch	two	traditional	answers	and	then	the	modern

view.	The	first	of	these	claims	that	at	some	minute	scale	length	ΔL,	the	volumes	S	around	q	will	“stiffen”	enough

that	we	will	see	a	simpler	physics	there.	We	will	not	want	our	infinitesimal	S	to	become	totally	rigid,	lest	we	never

recover	any	flexibility	in	the	larger	bodies	B	to	which	it	belongs,	but	perhaps	a	small	S	might	move	like	a	little

mechanism,	so	that	some	of	the	techniques	of	the	previous	section	become	applicable.	For	example,	a	standard

weighted	beam	can	be	assigned	a	small-scale	mechanical	element	that	eventuates	in	the	stock	Bernoulli-Euler

equation	for	such	structures	(figure	2.31).
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Figure	2.31

Figure	2.32

In	this	situation,	our	element	is	allowed	to	turn	about	its	centroid,	as	well	as	move	up	and	down	in	a	plane,	although

a	series	of	springs	sets	up	an	internal	resistance	to	turning.	In	addition,	gravity	acts	in	the	center	of	the	element

according	to	the	weight	W	it	bears.	In	this	situation,	Euler's	rules	for	torque	play	a	role	in	the	derivations.

Except	in	early	works, 	it	is	fairly	rare	to	see	presumed	“mechanical	elements”	decked	out	in	blocks	and	springs

quite	like	this.	But	there	are	several	alternate	modes	of	presentation	that	can	achieve	comparable	results	by

invoking	the	controlled-virtual-	work	behaviors	that	we	briefly	discussed	in	the	previous	section	(figure	2.32).

Thus,	we	might	portray	our	Bernoulli-Euler	element	as	illustrated,	where	we	have	an	element	that	is	intrinsically

flexible,	but	which	responds	to	contact	tractions	only	at	specific	sites.	As	stated	before,	such	restrictions	represent

a	diagnosis	of	how	applied	thrusts	are	expected	to	transmit	themselves	through	the	element.	It	is	evident	that	we

get	our	required	“simplification	in	the	small”	through	locating	these	sites	of	controlled	thrust;	otherwise,	we	would

simply	be	looking	at	a	small	section	S	of	the	original	blob	B	we	began	with,	displaying	exactly	the	same	behavioral

complexities	as	where	we	started.

Modern	books	in	engineering—at	least,	the	sophisticated	ones—no	longer	follow	these	old	policies,	which	trade

upon	rigid-body	mechanics	as	an	intermediary.	From	a	practical	point	of	view,	such	presentations	leave	us	rather

confused	as	to	which	behaviors	are	possible—and	which	are	not	possible—within	a	continuous	material.	A	common
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model	for	a	drumhead,	in	effect,	constrains	its	movements	in	the	mode	of	the	blocks-and-cords	construction

illustrated	in	figure	2.33.

Figure	2.33

Figure	2.34

Its	little	elements	have	been	linked	together	in	such	a	way	that	they	can	only	move	up	and	down,	but	not

horizontally.	Translating	those	limitations	into	wave	terms,	this	means	that	such	membranes	can	transmit	only

transverse	waves	(like	surface	water	waves)	but	not	compression	waves	(like	sound).	But	are	such	materials	really

possible,	except	in	coarse	approximation?	This	is	the	kind	of	inductive	guidance	with	respect	to	the	behavioral

capabilities	of	materials	that	we	would	like	continuum	mechanics	to	provide.

The	strangeness	of	our	drumhead's	hypothetical	capacities	can	be	made	quite	vivid	if	we	consider	its	one-

dimensional	analog,	an	oddity	that	lies	concealed	within	the	basic	equation	for	a	vibrating	string	discussed	in	every

classical	physics	primer	(figure	2.34).

In	its	derivation	we	tacitly	posit	that,	in	its	stretching	each	section	of	string	“remembers”	its	rest	position	well

enough	to	remain	constantly	above	it,	never	veering	left	or	right	in	the	manner	of	the	gray	arrow.	How	can	a	dumb

piece	of	string	achieve	this	remarkable	feat?	In	the	drumhead	case,	we	surreptitiously	employed	the	rigidity	of	the

blocks	to	enforce	the	vertical-only	movements,	inserting	cords	to	allow	each	element	to	become	effectively	longer

as	it	does	so.	But	our	string	lacks	any	comparable	enforcement	mechanism	of	this	kind.	Should	we	conclude	that

no	continuous	material	can	truly	behave	as	our	textbook	model	prescribes	or	simply	that	it	is	unlikely,	except	in

crude	approximation?

In	fact,	nearly	all	of	the	standard	continuum	models	studied	in	undergraduate	primers	contain	some	hidden

dimension	of	unlikely	behavior	of	this	ilk:	they	continually	ask	beams	to	bend	in	a	plane,	say,	but	to	not	bulge

outward	as	they	do	so.	But	see	if	you	can	find	a	real	material	that	will	be	so	obliging.

On	the	other	hand,	real	materials	do	display	odd	abilities	to	“remember”	their	earlier	states.	If	we	attempt	to	find	an

infinitesimal	mechanism-like	element	that	duplicates	these	capacities,	we	are	likely	to	require	strange,	Rube

Goldberg-like	devices.

So,	at	base,	our	“problem	of	the	physical	infinitesimal”	is	one	of	delineating,	with	some	measure	of	confidence,	the

full	range	of	infinitesimal	behaviors	that	can	be	legitimately	expected	of	the	points	q	within	a	continuous	body.	The

great	twentieth-century	investigations	into	the	foundations	of	continuum	mechanics	led	by	Clifford	Truesdell	and	his
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school	decided	that	traditional	approaches	of	the	character	we	have	surveyed	had	jumbled	together	three	basic

tasks	that	should	be	kept	distinct: 	(A)	to	establish	the	local	existence	of	stress,	strain,	rate	of	deformation,	and

allied	tensors	within	a	continuous	body;	(B)	to	supply	“constitutive	relationships”	that	capture	why	a	material	like

iron	differs	so	greatly	from	putty	or	water;	and	(C)	to	exploit	empirical	determinations	of	the	dominant	patterns	of

thrust	propagation	within	a	medium	to	render	the	results	of	tasks	A	and	B	more	mathematically	tractable.	According

to	this	modern	reassessment,	the	policies	pursued	by	the	great	nineteenth-century	masters	of	continuum	physics

(Kelvin,	Stokes,	and	others)	had	mixed	approximative	considerations	properly	reserved	for	task	C	together	with

the	general	theoretical	principles	required	for	Tasks	A	and	B.	Such	blurring	made	it	impossible	to	answer	our	“what

range	of	infinitesimal	behaviors	are	possible?”	question	with	any	confidence.

Figure	2.35

To	get	a	better	sense	of	what	is	at	issue	here,	let	us	return	to	our	old	problem	of	how	to	combine	the	traction

vectors	acting	upon	a	surrounding	shell	∂S	modelings	with	the	body	forces	(including	accelerations)	that	act	inside

S.	In	particular,	let	us	carve	out	a	finite	internal	volume	S	of	a	body	B	with	an	imaginary	Eulerian	cut.	As	before,

sum	(=	integrate)	all	of	these	actors	as	resultant	forces	F 	and	torques	τ 	over	S	or	∂S	according	to	need,	just	as

we	did	with	rigid	bodies.	But	where	inside	S	do	F 	and	torques	τ 	act?	What	representative	point	should	be

appropriate	for	the	finite	volume	S?	In	the	case	of	rigid	bodies,	the	answer	did	not	matter	because	of	the	rigidity,	but

lumps	of	putty	will	act	quite	differently	according	to	where	F 	is	placed.	Once	we	establish	how	S	as	a	whole

behaves,	we	might	be	able	to	assign	it	some	reasonable	representative	centers	(its	center	of	gravity,	perhaps)	but,

right	now,	such	centers	move	around	inside	S	considerably	according	to	how	the	blob	is	affected	by	the	outside

forces.	It	is	at	this	stage	that	traditionalist	approaches	invoke	rigidification	or	little	mechanisms	within	S's	that	are

sufficiently	firm	to	allow	our	F 	and	τ 	to	work	upon	them	in	a	more	determinant	manner.	But	to	gain	this	firmness,

the	traditionalists	invoke	constraints	and	other	modeling	restrictions	that	our	modernists	regard	as	approximative

and	wish	consigned	to	the	“simplify	the	mathematics”	purposes	characteristic	of	task	C's	portfolio.

Accordingly,	the	modern	approach	advises	us	to	overlook	these	“how	do	we	halt	the	regress”	concerns	for	the

moment	and	assures	us	that	we	can	nonetheless	regard	Euler's	two	basic	laws	of	motion	(or	balance	principles,	as

they	are	usually	called	in	this	context)	as	fully	applicable	to	(almost)	any	Eulerian	cut	S.	This	is	a	rather	abstract

claim	to	accept,	due	to	the	fact	that	we	possess	little	concrete	sense	of	where	or	how	F 	and	τ 	will	operate	upon

S.	“Have	patience,”	our	modernists	advise,	“we'll	trap	it	eventually.”	Crudely	speaking,	the	proposal	is	that	if	we

continue	shrinking	S	to	ever	smaller	dimensions,	in	the	final	limit,	we	will	recover	those	infinitesimal	cubes	C	we

considered	earlier	(figure	2.35).

In	fact,	these	C's	are	so	small	that	they	no	longer	qualify	as	Eulerian	S's	at	all	(the	S's	possess	finite	volumes,

whereas	our	C's	comprise	“decorated	points”).	Due	to	their	minute	character,	such	C's	will	possess	one	traction

vector	on	each	face	and	only	one	(summed)	body	force	vector	and	acceleration	inside.	Furthermore,	the	tractions

upon	opposing	faces	must	be	diametrically	opposed	lest	our	C	cube	find	itself	subject	to	an	infinitesimal	turning

moment.	The	net	effect	of	these	forces	is	to	make	C	either	alter	its	volume	or	sheer,	or	some	combination	of	the

two.	Once	we	know	what	happens	here,	then	we	can	determine	what	happens	in	cuts	with	larger	volumes	S	by

simply	integrating	all	of	the	infinitesimals	C's	that	comprise	it.
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Figure	2.36

These	procedures	probably	sound	obscure	(or	even	mystical)	due	to	the	fact	that	I	have	framed	the	proposal	in

the	language	of	infinitesimals.	So	let	us	purge	those	notions	from	my	presentation	using	tensorial	objects	instead

(the	basic	technique	for	doing	so	is	rather	abstract	but	beautiful).	To	do	this	we	must	understand	how	stress	and

strain	tensors	function.	I	will	begin	with	the	latter,	conventionally	designated	by	ε.	Take	a	point	q	inside	a	finite	blob

S	and	run	an	oriented	reference	plane	through	it	(the	orientation	is	supplied	by	the	little	gray	arrow)	(figure	2.36).

Our	strain	tensor	intuitively	provides,	in	the	guise	of	a	matrix	of	nine	numbers,	how	much	the	corresponding	face

(or	“response	plane”)	of	an	infinitesimal	cube	at	q	has	expanded	or	contracted	(according	to	whether	the	center

of	the	response	plane	has	moved	outward	or	inward	from	the	reference	plane)	and	also	the	degree	to	which	the

response	plane	has	become	tilted	with	respect	to	that	original	orientation	(obviously	it	can	tilt	in	both	x	and	y

directions).	In	other	words,	a	strain	tensor	is	a	gizmo	that	maps	planes	through	points	q	to	new	planes	(this	is	part

of	its	proper	definition).	Employing	this	strain	tensor	information	about	the	response	planes	through	q,	we	can,	in

effect,	reconstruct	our	original	strained	infinitesimal	C	by	calculating	the	dilation	(=	compression	or	expansion)	and

reorientation	experienced	by	various	choices	of	reference	frame	as	we	run	them	through	q.	Now	there	needs	to	be

a	gradualist	coherence	among	our	answers	for	we	want	our	reconstructed	“infinitesimal”	to	turn	out	to	be	a

skewed	cube	and	not,	say,	a	skewed	dodecahedron.	We	enforce	this	coherence	among	our	answers	through	the

standard	“vector	space”	qualities	demanded	of	any	tensor.	The	upshot	of	all	of	this	is	that	the	strain	tensor

attaching	to	q	can	be	fairly	characterized	as	“the	ghost	of	a	vanishing	shape”—the	technique	captures	the	data

that	we	need	to	have	installed	at	q	in	a	manner	that	explains	why	we	are	intuitively	inclined	to	picture	q's	strained

state	as	an	infinitesimal	cube	with	sides.

Figure	2.37

We	employ	the	same	techniques	to	make	sense	of	the	stress	tensor	σ	at	q,	except	that	σ	now	places	a	tilted

traction	vector	F	upon	our	reference	plane	(figure	2.37).

The	component	of	F	that	runs	normal	to	the	reference	plane	represents	the	pressure	(compressive	or	dilatory)	that

strives	to	alter	the	volume	of	S;	the	planar	component	of	F	captures	its	sheering	capacities.	Because	we	normally

do	not	want	to	deposit	any	unbalanced	torques	on	S,	we	require	the	F	on	the	other	side	of	our	cube	(=	a	reference

plane	with	a	reversed	orientation)	to	be	equal	and	opposite	in	magnitude.	Operationally,	this	requires	that	the
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matrix	of	numbers	corresponding	to	σ	must	be	symmetric,	with	only	six	independent	values.

In	any	case,	our	ε	and	σ	tensors	provide	the	basic	information	we	require	within	our	infinitesimal	cubes, 	while

eschewing	any	talk	of	infinitesimals	per	se.	I	hope	it	is	evident	that,	while	the	tensorial	method	for	eschewing

infinitesimals	is	quite	clever,	most	of	the	entangled	difficulties	within	our	physical	infinitesimal	packet	have	been	left

untouched,	for	they	largely	concern	the	question	of	the	local	traits	that	need	to	be	deposited	at	q	for	continuum

mechanics	to	work	coherently.	Once	those	physical	issues	have	been	resolved,	any	“infinitesimal”	proposal	can

be	easily	reworked	into	a	collection	of	tensors	or	allied	objects.

Figure	2.38

Using	this	language,	the	result	of	enforcing	Euler's	two	laws	of	motion	upon	(almost)	every	cut	S	we	can	carve	out

of	a	body	B	tells	us	that	stress	and	strain	tensors	will	be	locally	defined	at	(most)	points	q	inside	B	and	will,

furthermore,	obey	Cauchy's	celebrated	law	of	motion:

Here	the	divergence	operator	(div)	evaluates	how	the	stress	field	varies	in	the	vicinity	of	q	and	provides	us	with	a

vectorial	assessment	of	where	the	greatest	changes	in	σ	lie. 	This	provides	us	with	a	density	vector	that	can	be

meaningfully	summed	with	the	body	force	densities	that	act	at	q.	Observe	that	Cauchy's	principle	looks	very	much

like	Newton's	second	law	as	it	appeared	within	our	point-mass	setting	and	many	authors	identify	it	as	such

(although	that	can	be	only	regarded	as	a	rather	diffuse	“family	resemblance”	claim,	in	that	we	are	plainly	dealing

with	a	considerably	more	sophisticated	construction	now).

Indeed,	it	is	a	mistake—although	many	elementary	textbooks	encourage	the	opposite	point	of	view—to	assimilate

notions	like	stress	too	glibly	to	more	straightforward	notions	like	force	(I	devoted	a	fair	amount	of	space	to	their

proper	mathematical	nature	for	this	reason).	Thus,	many	writers	will	assure	their	readers	that	stresses	“reflect	the

short	range	forces	within	a	material,”	which	is	true	in	some	loose	“stresses	reflect	information	about	such

arrangements”	sense	(in	a	fashion	that	encourages	us	to	conceptualize	the	underlying	material	in	molecular

terms).	But	there	is	no	ready	recipe	that	converts	these	molecular	short-range	forces	into	the	numerical	values	that

belong	to	the	stresses	assigned	to	points	q	within	a	continuum	modeling	of	the	situation.

Perhaps	this	last	point	can	be	clarified	with	a	specific	example.	The	short-range	forces	active	within	most	real

materials	rarely	bind	them	into	perfect	lattices,	but	tolerate	the	irregularities	known	as	dislocations	(figure	2.38).

Large	numbers	of	these	lattice	defects	can	emerge	at	scale	lengths	that	need	to	be	treated	as	short-range	and	can

affect	the	macroscopic	qualities	of	a	material	in	significant	ways.	How,	in	a	classical	continuum	modeling	of	our

material,	should	its	dislocational	properties	be	registered?	A	lot	of	recent	work	in	extended	continuum	mechanics	(I

will	discuss	some	of	this	later)	has	supplied	a	variety	of	answers	to	this	question.	In	some	of	these	schemes,	the

dislocations	are	not	captured	in	the	material's	strain	tensor	at	all,	but	within	other	mathematical	constructions

attributed	to	the	point	q	(e.g.,	to	a	torsion	within	the	underlying	manifold	on	which	q	lives).	Such	a	torsion	can	be

recognized	as	the	“short-range	forces”	within	the	material	just	as	ably	as	does	its	conventional	strain,	but	follows	a

different	coding	scheme.

In	truth,	when	we	casually	parse	stresses	as	short-range	forces,	we	are	tacitly	making	a	lift	from	continuum
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mechanics	into	a	different	conceptual	arena	within	which	the	tricky	notion	of	stress	can	be	“rationalized”	through

a	rough	alignment	with	a	more	readily	understandable	form	of	material	structure.	Such	lifts	(which	are	a	common

occurrence	in	continuum	mechanics)	are	fully	in	accord	with	the	theory-facade	character	of	“classical

mechanics”	overall,	but	they	can	obscure	the	fact	that,	considered	in	their	own	terms,	tensor	fields	are	novel

mathematical	constructions	with	their	own	spectrum	of	characteristics	(mathematicians	did	not	isolate	the	notion

clearly	until	the	end	of	the	nineteenth	century).	Indeed,	it	is	precisely	these	special	qualities	that	allow	modernists

to	halt	our	“labyrinth	of	the	continuum”	regress	in	a	novel	way:	they	claim	that	the	traction	vectors	around

shrinking	S's	will	deposit	a	localized	residue	on	q	in	the	form	of	a	stress	tensor.	With	the	help	of	a	simple

divergence	computation,	we	can	then	extract	a	vector	to	add	to	the	body	force	and	acceleration	in	a

mathematically	coherent	manner.

If	we	survey	the	conceptual	framework	just	sketched,	we	realize	that	none	of	the	fundamental	principles	employed

directly	concern	points	q,	but	instead	talk,	in	sometimes	very	abstract	ways,	about	how	finite	volumes	S	behave.

Thus	Euler's	two	laws	of	motion	hold	only	of	finite	“cuts”	S	extracted	from	a	body	B;	they	do	not	make	sense	for

individual	points	q.	Conservation	of	mass,	likewise,	concerns	how	finite	blobs	S	relate	to	the	reference	manifold.

And	so	on.	Mathematically,	such	principles	need	to	be	expressed	by	integral	differential	equations,	not	as

localized	differential	equations	per	se.	Cauchy's	law,	to	be	sure,	is	of	the	latter	class	but	it	has	been	derived	from

fundamental	integral	principles;	it	has	not	been	posited	as	basic.

Within	the	point-mass	setting	of	section	3,	particular	materials	were	credited	with	behavioral	individualities	through

choosing	the	number	of	particles	present	within	the	system	and	assigning	them	material	constants	(mass,	charge,

etc.).	These	constants	then	turned	on	an	appropriate	set	of	special	force	laws	in	modeling,	such	as	Newton's	law	of

universal	gravitation.	Modeling	specifications	of	this	character	we	called	“constitutive	assumptions,”	secretly

borrowing	terminology	from	a	continuum	context.	When	we	have	successfully	assembled	a	closed	equational

system	by	these	procedures,	we	say	that	we	have	thereby	followed	“Euler's	recipe”.	Although	this	portrait	of

modeling	techniques	within	physics	is	both	simple	and	appealing,	in	point	of	brute	fact	one	regularly	finds

practitioners	evading	the	recipe's	dictates	through	appeal	to	ΔL 	level	constraints	and	allied	modes	of	physics

avoidance.	Indeed,	those	methodological	intrusions	have	become	so	pervasive	in	practice	that	most	point-mass

modelers	appear	to	forget	that	they	have	any	obligations	to	track	down	a	full	set	of	special	force	laws	at	all.	But	the

appeals	that	typically	displace	special	force	laws	within	such	contexts	scarcely	seem	lawlike	in	their	own	right:	“X

is	a	rigid	rod”	does	not	sound	much	like	a	law	of	nature.	In	that	sense	at	least,	it	is	misleading	to	insist	that	such

physicists	and	engineers	are	seeking	to	find	the	laws	to	which	nature	conforms.

Within	our	current	continuum-mechanics	program,	we	are	not	allowed	to	invoke	constraints	in	setting	up	our

fundamental	modeling	equations.	But	what	is	the	present	analog	to	our	former	“special	force	laws”?	The

stress/strain	constitutive	assumptions	we	have	just	examined.	“But	there	are	zillions	of	these,”	we	might	protest.

“Don't	workers	in	continuum	mechanics	attempt	to	reduce	their	multitude	to	a	smaller	collection?”	The	answer	is

no,	they	don't;	they	merely	try	to	sort	the	possibilities	into	general	classes,	so	that	the	simplest	forms	of

stress/strain	behaviors	can	be	studied	first.	In	other	words,	they	supply	a	taxonomy	of	possible	constitutive

behaviors,	but	no	reductive	listing	of	special	force	laws	is	ever	offered.	Indeed,	in	typical	modeling	practice,	the

constitutive	principles	assigned	to	a	material	are	generally	determined	through	direct	experimentation	on	large

hunks	of	the	material	in	the	laboratory.	In	this	manner,	in	a	Cauchy-recipe	modeling,	its	core	constitutive	equations

reflect	a	projection	of	behaviors	witnessed	experimentally	at	a	large	ΔL 	length	scale	down	to	an	infinitesimal

scale.
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Figure	2.39

Let	us	finally	turn	to	our	Task	C.	According	to	the	modern	program	under	review,	we	should	not	invoke	constraints

of	any	sort	in	setting	up	our	basic	constitutive	modelings.	But	this	methodological	prohibition	is	commonly	violated

within	traditionalist	presentations	of	continuum	mechanics.	Consider	again	the	illustrated	infinitesimal	element	for	a

Bernoulli-Euler	beam	(figure	2.39).	Note	that	the	applicable	pushes	and	pulls	upon	the	element	are	assumed	to

balance	along	fibers	running	across	the	material.	This	assumption	represents	a	constraint	on	permissible	behavior,

of	the	same	general	character	as	we	examined	in	the	previous	section.	According	to	Cauchy's	modeling	recipe,	we

should	properly	supply	constitutive	equations	of	a	Hooke's	law	ilk	able	to	insure	that	stresses	will	be	largely

conveyed	across	the	element	in	this	fashion.	Great—but	see	if	you	can	fill	out	a	matrix	of	coefficients	that	will	do

this.	The	sad	truth	is	that	this	task	is	not	at	all	easy—in	fact,	we	have	canvassed	this	same	problem	already,	in	the

humble	form	of	the	vibrating	string.	The	constraint	critical	to	the	simple	“derivations”	found	in	most	college

textbooks	maintains	that	string	elements	forever	hover	infallibly	above	their	original	rest	positions.	But	try	to	find	a

set	of	stress/strain	relationships	that	can	simulate	this	behavior	approximately	within	a	three-dimensional	material.

This	is	again	a	daunting	task.

Plainly,	adhering	to	the	foundational	clarity	demanded	within	our	modern	approach	places	ghastly	burdens	upon

beginners	in	continuum	physics,	for	the	path	to	the	one-dimensional	wave	equation	becomes	strewn	with	knotty

mathematical	thorns.	Such	considerations	provide	a	rationale	for	instituting	a	new,	approximative	division	of

continuum	mechanics	that	investigates	how	our	strict	Task	A/Task	B	modeling	requirements	can	be	profitably

circumvented	through	the	wise	exploitation	of	ΔL 	level	constraint	information.	Such	work	frames	a	third	Task	C	for

continuum	mechanics:	develop	mixed-level	modeling	techniques	that	relate	to	the	strict	constitutive-modeling

requirements	of	“foundational”	continuum	mechanics	in	the	same	manner	as	the	evasive	techniques	of	analytical

mechanics	relate	to	Euler's	recipe. 	From	this	point	of	view,	we	can	anticipate	that	the	characteristic	emphases	of

analytical	mechanics	will	make	a	strong	reappearance	within	practical	continuum	mechanics,	for	the	simple	reason

that	the	former	practices	the	approximative	art	of	exploiting	ΔL 	scale	constraints	to	isolate	the	pathways	of

dominating	activity	within	a	complex	ΔL-level	medium.	So	it	is	not	surprising	that	the	lore	of	old-fashioned

continuum	mechanics	appears	riddled	with	innumerable	lifts	into	rigid-body	mechanics,	for	the	demanding

requirements	of	Cauchy's	recipe	needed	to	be	relaxed	before	the	equations	that	support	the	great	eighteenth-	and

nineteenth-century	advances	in	wave	motion,	and	so	on,	could	emerge	into	central	focus.

Continuum	modeling	could	have	never	gotten	on	its	feet	historically	without	the	temporary	assistance	of	rigidified

infinitesimals	and	“little	mechanisms.”	If	d'Alembert,	the	author	of	the	first	PDE	for	a	vibrating	string,	had	felt	obliged

to	deal	with	matrix	equations	containing	21	independent	constants,	continuum	technique	would	have	been

abandoned	as	stillborn	at	birth.	All	of	this	merely	underscores	the	lessons	we	have	noted	with	respect	to	the	secret

contribution	of	lifts	with	respect	to	classical	mechanics’	triumphant	hegemony.

But	the	specific	constraint-assisted	lifts	that	helped	traditional	continuum	modelers	on	their	way	had	the	curious

effect	of	encouraging	themes	within	the	philosophy	of	science	that	continue	to	reverberate	strongly	even	to	this
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day.	They	trace	to	the	following	factors.	In	order	to	block	the	“never	simplifying”	regress	created	by	flexible

materials	that	behave	identically	on	all	size	scales,	traditional	modelers	assumed	that	small	portions	of	a	material

behave	like	little	mechanisms.	In	doing	so,	they	tacitly	credited	the	lower	scale	lengths	of	a	material	with

characteristics	that	they	did	not	believe	they	really	possess.	It	then	appears	that	we	cannot	set	up	coherent

“foundations”	for	flexible	bodies	without	injecting	patent	descriptive	fictions	to	arrest	an	otherwise	vicious	regress.

And	so	the	thesis	emerges	that	physics	cannot	begin	its	descriptive	tasks	until	it	has	first	indulged	in	a	preliminary

degree	of	essential	idealization:	smallish	portions	of	materials	must	be	credited	with	patently	incorrect

characteristics.	After	we	reach	a	completed	modeling,	we	can	throw	away	the	idealized	ladder	we	have	climbed,

for	our	final	equations	will	describe	materials	that	behave	identically	at	every	scale.	But	on	route	there,	we	must

accept,	in	the	physicist	J.	H.	Poynting's	phrase,	a	fictive	“scaffolding	from	without.”

The	assumption	that	some	form	of	essential	idealization	must	be	invoked	to	arrest	continuum	physics’	“labyrinth	of

the	continuum”	problem	has	played	an	important,	if	often	unacknowledged,	role	in	shaping	the	doctrines	of	the

philosophers	who	pondered	the	problems	of	classical	matter	carefully:	Leibniz,	Kant,	Duhem,	Hertz,	Mach,	and

others. 	Its	enduring	legacy	is	the	lingering	presumption	that	intentional	misdescription	represents	a

commonplace	activity	in	scientific	activity.	In	retrospect,	however,	this	philosophical	thesis	seems	to	have

engendered	by	the	lifts	required	to	link	Task	A/Task	B	modeling	demands	with	the	more	relaxed	standards	required

in	practical	work	of	a	Task	C	cast.

Figure	2.40

Figure	2.41

In	the	naïve	form	we	articulated,	our	Task	A	approach	to	mechanics	presumes	that	Euler's	two	laws	hold	true,	in	an

abstract	manner,	for	any	contracting	sequence	of	cuts	S,	S′,	S,	…	surrounding	a	target	point	q.	And	this	presumes

that	their	respective	perimeters	∂S,	∂S′,	∂S,	…	can	carry	full	complements	of	traction	vectors.	But	this	demand	is	too

strong,	partially	because	some	∂S	are	too	irregular	to	bear	such	measures,	but	also	because	such	requirements

need	to	fail	when	∂S	cuts	through	a	portion	of	shock	wave	surface	(some	irregularity	must	prevent	the	contracting

cuts	S,	S′,S,	…	from	installing	stress	and	strain	tensors	upon	these	problematic	points).

In	point	of	fact,	the	canonical	modelings	of	traditional	mechanics	have	long	tolerated	funny	spots,	namely

singularities,	upon	their	boundaries.	For	example,	take	a	notched	rod	and	pull	upon	its	two	open	faces	with	a uni-

form	tension	(figure	2.40).	The	result	is	an	infinite	twist	along	the	base	of	the	cut.	Modern	treatments	of	continua

employ	rather	fancy	tools	from	functional	analysis,	such	as	trace	operators,	to	bring	the	inner	and	boundary

descriptions	of	continuous	bodies	into	better	mathematical	accord.	Very	subtle	considerations	with	respect	to

energy	storage	typically	lie	in	the	background	of	such	interior/boundary	“harmonizations.”
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Figure	2.42

Here	is	an	example	of	this	phenomenon	that	I	regard	as	particularly	telling.	Pull	a	knife	through	some	water.	The

knife	draws	the	top	layer	of	the	water	with	it	(figure	2.41).	Intuitively,	we	expect	that,	after	a	certain	period	of

mixing,	the	waters	on	the	two	sides	of	the	cut	will	soon	fuse	together.	But	according	to	the	story	that	the	PDEs	of

continuum	mechanics	tell,	this	wound	can	never	heal,	for	differential	equations	cannot	alter	the	topologies	of	the

flows	they	track.	But	these	descriptive	limitations	entail	that,	without	some	significant	alteration,	the	mathematical

framework	of	orthodox	continuum	mechanics	can	model	neither	the	fusion	nor	the	fracture	of	ordinary	materials

(which	is	why	the	subject	traditionally	confines	its	attention	to	noncomposite	blobs	in	circumstances	where	they

are	unlikely	to	suffer	fracture	or	fission.

To	anyone	who	has	not	scrutinized	the	standard	lifts	of	mechanical	tradition	in	the	critical	manner	of	this	essay,

this	claim	will	seem	outrageous:	“Of	course,	classical	mechanics	can	readily	handle	mixing:	the	molecules	from

each	side	of	the	cut	rapidly	intermingle	until	it	becomes	impossible	to	determine	where	the	dividing	boundary	had

been”	(figure	2.42).	Yes,	but	observe	that	in	this	rationalization	we	have	escaped	into	a	reontologized	ΔL	domain

governed	by	point-mass	mechanics	or	something	similar.	It	is	“classical	mechanics”	all	right,	but	it	is	not	the	same

continuum	mechanics	with	which	we	started.	Due	to	these	readily	available	lifts,	one	can	learn	a	substantial

amount	of	fluid	mechanics	without	realizing	that	one's	PDE	tools	are	limited	in	this	way.

Although	I	have	here	discussed	such	issues	in	rather	formal	terms,	many	of	the	great	historical	philosophers	of

matter	(e.g.,	Locke,	Leibniz,	Kant)	commented	upon	the	fact	that	the	everyday	processes	of	cohesion	and

disassociation	appear	very	mysterious	from	a	mechanical	point	of	view.	Only	the	point-mass	approach	handles

such	topics	with	any	satisfaction.	Yet	it	is	unable	to	equip	materials	with	the	characteristics	they	need	when	they

are	not	about	the	business	of	breaking	or	fusing.	The	only	route	to	a	satisfactory	coverage	of	common	forms	of

everyday	material	behavior	is	to	weld	together	a	classical	mechanics	from	different	descriptive	platforms

assessable	to	one	another	along	suitable	escape-hatch	ladders.

6.	Conclusion

In	sum,	if	we	go	searching	for	the	“foundational	core”	of	classical	physics	practice	in	Hilbert's	manner,	we	are

likely	to	feel	as	if	we	have	become	trapped	in	a	novel	by	Kafka,	with	particular	branches	of	a	vast	bureaucracy

claiming	greater	authorities	than	they	truly	possess	and,	when	challenged,	shunting	us	off	to	other	departments

that	assist	us	no	further	in	our	quest.	And	the	most	maddening	aspect	of	these	unsettled	convolutions	is	that	the

resulting	interconnections	appear,	when	evaluated	from	the	perspective	of	brute	pragmatics,	as	exceptionally	well

plotted	in	their	organizational	architecture,	for	the	intricate	interwebbing	we	call	“classical	mechanics”	comprises

as	effective	a	grouping	of	descriptive	tools	as	man	has	yet	assembled,	at	least	for	the	purposes	of	managing	the

macroscopic	aspects	of	the	universe	before	us	with	well-tuned	efficiency.

In	the	final	analysis,	our	investigations	provide	us	with	a	richer	understanding	of	why	“family	resemblance”

structures	often	possess	great	pragmatic	utility.	The	crucial	point	to	observe	is	that	the	frequent	lifts	that	populate

the	pages	of	college	textbooks	do	not	function	as	the	“derivations”	their	authors	suppose	them	to	be,	but	instead

provide	Task	C-style	guidelines	for	how	difficult	modeling	problems	can	be	evaded	through	the	exploitation	of	data

(e.g.,	rigidity	or	principal	directions	of	thrust	propagation)	extracted	from	observation	along	a	mixture	of	scale

lengths. 	So	while	we	have	been	critical	of	such	textbook	lifts	when	evaluated	from	a	Hilbertian	point	of	view,

these	same	passages	perform	a	crucial	pedagogical	purpose	in	directing	a	modeler's	efforts	to	locally	effective

results.	In	the	final	analysis,	it	is	the	astounding	success	of	these	well-tuned	models	with	respect	to	the
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macroscopic	world	that	insure	that	“classical	physics,”	as	an	important	intellectual	activity,	will	probably	remain

with	us	forever.	So	while	it	is	important	to	recognize,	from	a	methodological	point	of	view,	that	the	routes	whereby

standard	textbook	prose	stitches	the	fabric	of	“classical	mechanics”	into	a	well-engineered	facade	rarely	comprise

“derivations”	in	a	proper	sense,	the	good	offices	they	perform	for	us	should	not	be	devalued	in	rendering	that

judgment.	I	trust	that	many	readers	had	the	uneasy	sense,	when	we	criticized	worthy	textbooks	earlier	for	failing	to

satisfy	Hilbertian	standards	of	rigor,	that	somehow	our	target	authors	were	“doing	the	right	thing”	in	their

presentations	regardless.	Yes,	but	such	passages	serve	a	different	organizational	purpose	than	we	have	been	led

to	expect.

Although	we	cannot	properly	explore	the	possibilities	here,	deeper	answers	are	still	wanted	as	to	why	the

characteristic	ingredients	of	“classical	mechanics”	bind	together	into	a	facade	as	effectively	as	they	do.	Although

Wittgensteinians	sometimes	claim	otherwise,	our	remarkable	capacities	to	sort	human	faces	into	“family”	groups

wants	explaining:	the	brain	must	perform	some	rough	form	of	statistical	analysis	over	facial	features	when	it

computes	its	groupings,	although	the	psychological	mechanisms	involved	do	not	appear	to	be	well	understood	at

present.	Just	so:	the	strong	feelings	of	“family	resemblance”	with	which	every	student	of	classical	physics	is

familiar	merit	probing	in	the	same	vein.	Tait	invokes	the	phenomenon	well:

[A]ll	who	have	even	a	slight	acquaintance	with	the	subject	know	that	the	laws	of	motion,	and	the	law	of

gravitation,	contain	absolutely	all	of	Physical	Astronomy,	in	the	sense	in	which	that	term	is	commonly

employed:	viz.,	the	investigation	of	the	motions	and	mutual	perturbations	of	a	number	of	masses	(usually

treated	as	mere	points,	or	at	least	as	rigid	bodies)	forming	any	system	whatever	of	sun,	planets,	and

satellites.	But,	as	soon	as	physical	science	points	out	that	we	must	take	account	of	the	plasticity	and

elasticity	of	each	mass	of	such	a	system,	the	amount	of	liquid	on	its	surface,	…	[etc.],	the	simplicity	of	the

data	of	the	mathematical	problem	is	gone;	and	physical	astronomy,	except	in	its	grander	outlines,

becomes	as	much	confused	as	any	other	branch	of	science.

Here	Tait	expresses	his	conviction	that	point-mass	physics	best	encapsulates	the	elusive	“central	core”	to

classical	mechanics,	although	he	realizes	that	this	“core”	must	be	dressed	within	the	confusing	garments	of

flexible	bodies	before	reliable	empirical	results	can	be	obtained.	But	what	is	the	true	nature	of	this	“central	core”?	I

believe	that	any	reasonable	answer	must	come	from	a	deeper	understanding	of	how	our	classical	descriptive	tools

sit	on	top	of	quantum	mechanics:	the	ways	in	which	we	usefully	track	macroscopic	“work”	and	“energy”	at	the

ΔL 	level	must	somehow	trace	to	the	ΔL-importance	of	correspondent	notions	within	the	quantum	domain.

However	such	issues	resolve	themselves,	classical	mechanics,	as	studied	here,	offers	many	valuable	lessons	to

philosophy	as	a	whole:	in	particular,	that	well-wrought	conceptual	structures	can	be	assembled	as	facades	tied

together	through	“look	across	size	scales”	linkages.	But	to	praise	a	family-resemblance	fabric	in	this	manner	is	not

to	deny	that	its	organizational	patterns	can	be	accorded	rational	underpinnings.	On	the	contrary,	we	should

scrutinize	lifts	and	escape	hatches	within	a	facade	with	formal	care	so	that	their	operative	strategies	of	physics

avoidance	become	accurately	identified	and	their	empirical	outreach	accordingly	improved.	As	a	prerequisite	to

those	diagnostic	endeavors,	we	must	first	recognize	that	the	“derivations”	provided	in	elementary	textbooks	rarely

satisfy	Hilbertian	demands	on	rigor	but	instead	fulfill	the	“look	across	scale	sizes”	offices	that	allow	the	basic

terminology	of	classical	mechanics	to	cover	wide	swatches	of	macroscopic	experience	with	an	admirable

efficiency.	In	these	respects,	current	work	in	continuum	mechanics	provides	an	excellent	paragon	of	how	a	useful

base	scheme	can	be	profitably	extended	to	wider	applications	once	its	conceptual	supports	have	become	viewed

without	methodological	illusion.

Notes:

(1)	This	is	an	extract	(skillfully	edited	by	Julia	Bursten)	of	a	longer	survey	to	appear	in	a	collection	of	essays

entitled	Physics	Avoidance.	I	would	like	to	thank	Julia	Bursten	and	Bob	Batterman	for	their	helpful	advice.

(2)	In	textbooks,	ontologically	mixed	circumstances	(a	point	mass	sliding	upon	a	rigid	plane)	often	appear.	Usually

these	need	to	be	viewed	as	degenerations	of	dimensionally	consistent	schemes	(i.e.,	a	ball	sliding	on	a	plane	or	a

free	mass	floating	above	a	lattice	of	strongly	attracting	masses).

(3)	If	a	mathematical	treatment	happens	to	make	two	point	masses	coincide,	that	occurrence	is	generally	viewed
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as	a	blowup	(=	breakdown	of	the	formalism)	rather	than	a	true	contact.	It	is	often	possible	to	push	one's	treatment

through	such	blowups	through	appeal	to	sundry	conservation	laws	and	the	rationale	for	these	popular	procedures

will	be	scrutinized	in	section	3.

(4)	Modern	investigations	have	shown	that	true	ODEs	and	PDEs	are	usually	the	resultants	of	foundational	principles

that	require	more	sophisticated	mathematical	constructions	for	their	proper	expression	(integro-differential

equations;	variational	principles,	weak	solutions,	etc.).	We	shall	briefly	survey	some	of	the	reasons	for	these

complications	when	we	discuss	continua	in	section	4	(although	such	concerns	can	even	affect	point-mass

mechanics	as	well).	For	the	most	part,	the	simple	rule	“ODEs	=	point	masses	or	rigid	bodies;	PDEs	=	continua”

remains	a	valuable	guide	to	basic	mathematical	character.

(5)	Often	internal	variables	such	as	spin	are	tolerated	in	these	ODEs,	even	though	they	lack	clear	counterparts

within	true	classical	tradition.

(6)	The	abstract	ruminations	of	The	Critique	of	Pure	Reason,	for	example,	appear	to	have	derived	in	part	from	the

nitty-gritty	worries	about	flexible	matter	that	we	shall	review	later.	We	look	forward	to	Michael	Friedman's	big	book

on	these	issues.

(7)	Charles	Darwin,	The	Descent	of	Man	and	Selection	in	Relation	to	Sex,	Part	II	(New	York:	American	Dome,

1902),	780.

(8)	David	Hilbert,	“Mathematical	Problems,”	in	Mathematical	Developments	Arising	from	Hilbert	Problems,	ed.

Felix	Browder	(Providence,	RI:	American	Mathematical	Society,	1976),	14.

(9)	Georg	Hamel,	Theoretische	Mechanik:	Eine	einheitliche	Einführung	in	die	gesamte	Mechanik	(Berlin:	Springer

Verlag,	1949).

(10)	Isaac	Newton,	Principia,	vol.	1	(Berkeley:	University	of	California	Press,	1966),	349.

(11)	Hilbert,	“Mathematical	Problems,”	15.

(12)	I	do	not	have	the	space	to	survey	such	modern	studies	here,	which	attempt	to,	for	example,	recover	the

tenets	of	rigid	body	mechanics	from	continuum	principles	by	allowing	certain	material	parameters	to	become

infinitely	stiff	(thus	“degeneration”).	Generally	the	results	are	quite	complex,	with	corrective	modeling	factors

emerging	in	the	manner	of	Prantdl's	boundary	layer	equations.	Sometimes	efforts	are	made	to	weld	our	different

foundational	approaches	into	unity	through	employing	tools	like	Stieltjes-Lesbeque	integration.	More	generally,	a

“homogenization”	recipe	smears	out	the	detailed	processes	occurring	across	a	wide	region	ΔW	in	an	“averaging”

kind	of	way,	whereas	“degeneration”	instead	concentrates	the	processes	within	ΔW	onto	a	spatially	singular

support	like	a	surface	(the	Riemann-Hugoniot	approach	to	shock	waves	provides	a	classic	exemplar).

(13)	After	a	sufficient	range	of	mechanical	considerations	has	been	surveyed	in	later	sections,	we	shall	be	able	to

sketch	a	more	favorable	view	of	the	useful	offices	that	standard	textbook	lifts	provide.	I	should	also	add	that	we

shall	generally	consider	our	“ΔL	to	ΔL*	lifts”	in	two	simultaneous	modes:	(1)	as	a	modeling	shift	from	one	finite

scale	length	to	another	(e.g.,	from	ΔL 	to	ΔL 	in	our	steel	bar	example)	and	(2)	as	a	mathematical	shift	from	a

lower	dimensional	object	(a	point	mass	or	line)	to	a	higher	dimensional	gizmo	such	as	a	three-dimensional	blob.

Properly	speaking,	these	represent	distinct	projects,	although,	in	historical	and	applicational	practice,	they	blur

together.

(14)	Strictly	speaking,	a	lift	to	continuous	variables	from	an	ODE-style	treatment	involving	a	large	number	of

discrete	variables	at	the	ΔL	level	should	not	be	called	a	“reduced	variable”	treatment,	as	we	actually	increased

the	number	of	degrees	of	freedom	under	the	lift	(normally,	a	true	“reduced	variable”	treatment	will	supply	a	ΔL*

level	manifold	lying	near	to	some	submanifold	contained	within	the	ΔL	phase	space).	However,	the	descriptive

advantages	of	a	lift	to	continuous	variables	often	resembles	those	supplied	within	a	true	“reduced	variable”

treatment,	so	in	the	sequel	I	will	often	consider	both	forms	of	lift	under	a	common	heading.

(15)	In	many	statistical	problems,	the	population	under	review	is	artificially	increased	to	an	infinite	size,	simply	so

that	the	applicable	mathematics	will	supply	crisp	answers	to	the	questions	we	commonly	ask.	Left	to	its	own

devices,	mathematics	is	rather	stupid	in	a	literal-minded	kind	of	way	and	finds	it	very	difficult	to	answer	questions
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in	a	“well,	almost	all	of	the	time”	vein,	which	is	often	the	best	that	can	be	achieved	with	respect	to	a	finite

population.	But	if	the	same	community	is	modeled	as	infinite,	we	can	often	fool	the	mathematics	into	supplying	us

with	the	brisk	replies	we	desire.

(16)	Isaac	Newton,	op.	cit.	13–14.

(17)	William	Thomson	(Lord	Kelvin)	and	P.	G.	Tait,	Treatise	on	Natural	Philosophy,	Vol.	1,	(retitled	as	Principles	of

Mechanics	and	Dynamics)	(New	York:	Dover,	1962),	219.

(18)	Newton,	Principia	Mathematica,	416.

(19)	In	many	circumstances,	it	is	natural	to	borrow	Coulomb's	law	from	Maxwellian	electrodynamics,	but,	strictly

speaking,	this	rule	only	suits	static	circumstances.	Accommodating	dynamic	circumstances	within	a	“classical

physics”	frame,	we	must	normally	introduce	a	foreign	element	(the	electromagnetic	field)	that	carries	us	beyond

the	limits	of	our	point-mass	framework.	Indeed,	no	one	has	yet	figured	out	a	wholly	satisfactory	way	to	amalgamate

classical	point	masses	with	such	a	field.

(20)	Sometimes	this	phrase	is	tacitly	restricted	by	further	requirements	on	the	locations	q(i,t):	it	seems	strange	to

say	that	we	have	supplied	a	“constitutive	modeling”	for	a	cuckoo	clock	if	we	are	willing	to	consider	that	“modeling”

in	a	condition	where	its	component	masses	are	scattered	across	the	wide	universe!

(21)	Z.	Xia,	“The	Existence	of	Non-collision	Singularities	in	Newtonian	Systems,”	Annals	of	Mathematics	135

(1992),	411–468.

(22)	For	a	more	detailed	discussion	of	these	issues,	see	Mark	Wilson,	“Determinism:	The	Mystery	of	the	Missing

Physics,”	British	Journal	for	the	Philosophy	of	Science	(2009),	173–193.	I	might	add	that	the	common	technique	of

dropping	dimensions	(e.g.,	confining	point	masses	to	a	plane	with	no	specification	of	the	forces	that	keep	them

there)	should	be	considered	as	a	further	variety	of	“Euler's	recipe	avoiding”	policy	(such	moves	should	be

scrutinized	with	a	close	methodological	eye	whenever	they	are	invoked).

(23)	Thomson	and	Tait,	Treatise	on	Natural	Philosophy,	1:	248.

(24)	Cf.	the	entries	“Constitution	of	Bodies,”	“Atom,”	and	“Attraction”	in	J.	C.	Maxwell,	Collected	Scientific	Papers,

ed.	Ivan	Niven	(New	York:	Dover,	1952).	Maxwell	also	worried	that	point-mass	swarms	could	not	remain	structurally

stable	when	vigorously	shaken	or	explain	the	fact	that	the	world's	wide	variety	of	materials	only	displays	a	very

limited	palette	of	spectra.	Reint	de	Boer,	Theory	of	Porous	Media	(New	York:	Springer,	2000)	provides	a	good

capsule	summary	of	these	developments.

(25)	J.	S.	Rowlinson,	Cohesion	(Cambridge:	Cambridge	University	Press,	2002),	110–126	(this	book	is	an	excellent

introduction	to	the	fascinating	conceptual	problems	that	attach	to	“cohesion”	generally).

(26)	If	no	kinetic	energy	is	lost	to	heat	(a	so-called	“purely	elastic	collision”),	then	we	possess	enough

“conservation	laws”	(energy	and	linear	momentum)	to	guide	two	colliding	point	masses	uniquely	through	a	collision

(as	every	elementary	college	text	demonstrates).	But	these	principles	alone	are	not	adequate	to	three-way

collisions,	energetic	losses,	or	to	more	oblique	modes	of	scattering.

(27)	Constraint	relationships	are	sometimes	maintained	through	factors	external	to	the	device	(such	as	the

pressures	of	an	ambient	fluid	or	the	gravitational	attraction	that	binds	a	cam	to	its	follower),	in	which	case	the

device	is	said	to	be	force	closed.	Descartes,	for	example,	essentially	dissected	the	universe	into	component

mechanisms,	but	they	were	usually	held	together	through	force	closure	rather	than	internal	pinning.

(28)	Such	contacts	are	further	classified	as	“higher	or	lower	pairs”	according	the	contacting	geometry	they

implement.

(29)	Thomson	and	Tait,	Treatise	on	Natural	Philosophy,	Vol.	2,	§441,	2.

(30)	Indeed,	it	is	not	evident	to	which	body	the	contact	point	“belongs”	(one	needs	to	beware	of	making	simplistic

assumptions	about	“how	points	belong	to	bodies”	in	such	circumstances).
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(31)	It	is	common	to	designate	the	external	closure	of	a	body	B	with	the	notation	“∂B.”

(32)	In	this	context,	“Euler's	First	Law”	is	often	viewed	as	simply	“Newton's	Second	Law”	in	application	to	rigid

bodies.	Credit	for	regarding	the	“F	=	ma”	scheme	as	a	framework	upon	which	“recipes”	for	differential	equations

for	both	forms	of	mechanics	can	be	built	is	historically	due	to	Euler,	not	Newton.	As	we	shall	see,	the	analogous

recipe	for	continua	relies	upon	a	formula	traditionally	called	“Cauchy's	Law,”	which	many	writers	regard	as	yet

“another	version	of	F	=	ma”	(although	it	actually	employs	the	tricky	notion	of	stress	that	Cauchy	originated).	The

similarities	of	these	three	“recipe”	formulas	support	the	strong	“family	resemblance”	character	of	“classical

mechanics.”	Terminological	issues	become	more	confusing	within	the	context	of	continua,	in	which	analogs	of

Euler's	two	laws	are	also	applied	to	the	sub-bodies	in	the	interior	of	container	blobs.	In	such	contexts,	these

analogs	are	often	dubbed	the	“balance	principles”	for	momentum	and	angular	momentum.	In	the	context	of	rigid

bodies,	once	specific	values	for	moments	of	inertia	et	al.	have	been	computed	with	respect	to	such	entities,	these

values	remain	the	same,	allowing	the	import	of	Euler's	principles	to	be	expressed	as	equations	of	ODE	type.	Within

flexible	bodies,	in	contrast	such	values	fluctuate	as	they	flex	and	so	PDEs	are	required	to	capture	the	requisite

relationships.

(33)	Although	I	have	quoted	Lagrange's	principle	in	its	standard	textbook	form,	it	conceals	a	subtle	ambiguity;

specifically	as	to	whether	the	“r”	cited	is	a	true	position	coordinate	or	rather	represents	something	“generalized”

like	an	angle.	If	the	latter	(which	is	usually	what	is	needed),	then	the	corresponding	“mass”	terms	“m”	must	be

read	as	moments	of	inertia,	etc.	Presumably,	we	require	some	instruction	in	how	these	“generalized	inertial	terms”

are	to	be	found.	Such	unnoticed	shifts	are	often	sites	of	significant	“lifts”	(and	sometimes	outright	errors,	which	are

common	in	this	branch	of	mechanics).

The	restriction	to	“virtual	variations”	is	necessary	because	the	mechanical	advantages	of	most	mechanisms

continuously	adjust	as	they	move	through	their	cycles.	This	means	that	inputted	forces	F ,	F ,	F 	on	our	crane	will

not	be	able	to	balance	quite	the	same	output	force	F 	when	the	machine	stands	in	a	different	configuration.	But	the

“instantaneous	work”	performed	by	the	input	forces	will	always	equal	the	“instantaneous	work”	expended	at	the

outputs,	which	is	the	key	idea	that	we	need	to	capture	in	our	“virtual	work”	formula	for	static	situations.

(34)	Donald	T.	Greenwood,	Classical	Dynamics	(New	York:	Dover,	1997),	16–18.	I	do	not	intend	these	remarks	to

be	as	critical	as	they	may	presently	seem.	Eventually,	we	come	to	see	Greenwood's	“proofs”	as	functioning,	not

as	derivations	proper,	but	as	“Task	C”	indicators	of	profitable	ways	to	avoid	ΔL	constitutive	assumptions	through

the	exploitation	of	knowledge	of	a	material's	ΔL 	behaviors	(specifically,	its	apparent	“rigidities”).

(35)	Ibid.,	p.	16.

(36)	Cornelius	Lanczos,	The	Variational	Principles	of	Mechanics	(New	York:	Dover,	1986),	70.

(37)	Cf.	Clifford	Truesdell,	“The	Creation	and	Unfolding	of	the	Concept	of	Stress,”	in	Essays	in	the	History	of

Mechanics	(Berlin:	Springer-Verlag,	1968:184–238).	One	needs	to	be	wary	of	framing	one's	conception	of	these

notions	from	one-dimensional	continua	such	as	strings	or	lamina,	for	in	such	reduced	contexts	“stress”	does

appear	like	a	simple	force	density.	In	the	main	text,	I	am	trying	to	bring	forth	the	funny	kind	of	three-dimensional

structuring	that	is	inherent	in	the	notion	of	a	“tensor.”

(38)	This	proviso	is	enforced	within	a	PDE	modeling	through	the	Saint-Venant	compatibility	equations.

(39)	One	can	witness	some	of	this	struggle	in	Kant's	Metaphysical	Foundations	of	Natural	Science	(Cambridge:

Cambridge	University	Press,	2004)	where	he	is	plainly	aware	that	some	source	of	sheer	is	needed	to	make	sense

of	conventional	“solidity,”	but	cannot	find	a	way	to	incorporate	such	a	quantity	into	his	descriptive	framework.

(40)	I	have	patterned	my	first	Bernoulli-Euler	“element”	after	a	diagram	that	Leibniz	provides	for	a	loaded	beam.	Cf.

Clifford	Truesdell,	The	Rational	Mechanics	of	Flexible	or	Elastic	Bodies	1638–1788,	(editor's	introduction	to	Euler,

Opera	Omnia	II,	vol.	12)	(Lausanne:	1954).

(41)	Clifford	Truesdell,	A	First	Course	in	Rational	Continuum	Mechanics	(San	Diego,	CA:	Academic	Press,	1991)

and	C.	Truesdell	and	R.	A.	Toupin,	“Classical	Continuum	Physics,”	in	S.	Flugge,	ed.,	Handbook	of	Physics,	Vol.	3/i

(Berlin:	Springer,	1960:226–376).	Morton	Gurtin,	Eliot	Fried,	and	Lallit	Anand,	The	Mechanics	and	Thermodynamics

of	Continua	(Cambridge:	Cambridge	University	Press,	2010)	is	also	recommended	and	up	to	date.	I	should	also
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indicate	that	many	researchers	outside	of	Truesdell's	school	contributed	to	the	new	understandings	we	shall

outline,	without	fully	embracing	the	“purism”	characteristic	of	the	latter's	approach.

(42)	Philosophers	new	to	the	peculiar	world	of	continuum	physics	parlance	should	prepare	themselves	for

phraseology	such	as	“dimensionless	point	cube”	(J.	D.	Reddy,	An	Introduction	to	Continuum	Mechanics

(Cambridge:	Cambridge	University	Press,	2008),	126—an	excellent	book,	by	the	way).

(43)	A.	N.	Whitehead	did	some	foundational	work	in	mechanics	at	the	turn	of	the	twentieth	century	and	his	“method

of	extensive	abstraction”	was	later	popularized	by	Bertrand	Russell	in	Our	Knowledge	of	the	External	World

(London:	Routledge,	2009).	I	am	not	sure	how	Whitehead	understood	his	construction	(which	shrinks	in	on	points

through	decreasing	volumes),	but	Russell	plainly	regarded	the	technique	entirely	as	a	logical	procedure	for

“defining	away	points.”	Russell's	misunderstanding	of	the	underlying	physical	problematic	continues	to	reverberate

within	the	halls	of	analytic	philosophy.	For	a	survey,	see	Mark	Wilson,	“Beware	of	the	Blob,”	in	Dean	Zimmerman,

ed.,	Oxford	Studies	in	Metaphysics	(Oxford:	Oxford	University	Press,	2008).

A	subtle	point	:	when	we	combine	our	stress	and	strain	information,	should	our	resultant	vectors	situate

themselves	on	the	reference	or	the	response	planes?	This	matter	becomes	important	in	nonlinear	elasticity	and

requires	the	careful	delineation	of	different	stress	tensors	(“Piola-Kirchhoff”	versus	“Cauchy”)	that	one	finds	in

modern	textbooks.

(44)	ρg,	it	will	be	recalled,	captures	the	summed	body	forces	acting	upon	q.	In	following	this	standard

representation,	we	are	tacitly	ignoring	the	third	law	demands	that	persuaded	us	to	distinguish	V(q)	from	V (q )

earlier	(the	mathematics	of	continua	is	rough	enough	without	fussing	about	that!).	It	is	important	to	realize	that	the

accelerative	term	behaves	mathematically	very	much	like	g	and	is	often	called	an	“inertial	force”	as	a	result	(some

of	the	third	law	ambiguities	surveyed	earlier	trace	to	this	drift	in	the	significance	of	“force”).	And	an	important

symmetry	with	respect	to	constitutive	equations	is	relevant	as	well:	materials	(usually)	respond	to	an	applied

schedule	of	accelerations	by	exactly	the	same	rules	as	they	react	to	a	comparable	array	of	genuine	forces	(this

requirement	is	called	“material	frame	indifference”	or	“objectivity”).

(45)	For	a	vivid	illustration	of	the	divergence	between	traditional	methods	and	the	approved	“modern”	approach,

see	Stuart	S.	Antman,	“The	Equations	for	the	Large	Vibration	of	Strings,”	American	Mathematical	Monthly	87

(1980).	Drops	in	dimension	through	appeal	to	symmetries	usually	act	in	the	manner	of	constraints.

(46)	As	we	have	seen,	traditional	modelers	commonly	appealed	to	little	mechanisms	as	a	means	of	introducing

Task	C	simplifications	into	their	modelings,	so	that	analytical	mechanics	serves	as	a	convenient	house	of	refuge	for

continuum	mechanics	as	well.

(47)	J.	H.	Poynting,	“1899	Presidential	Address	to	the	Mathematical	and	Physical	Section	of	the	British	Association

(Dover),”	British	Association	Report	(1899),	615–624.

(48)	As	a	case	in	point,	a	key	document	within	the	rise	of	“anti-realism”	is	Karl	Pearson's	once	influential	The

Grammar	of	Science	(London:	Thoemmes	Continuum,	1992),	which	is	very	explicit	in	its	continuum	mechanics

roots,	commingled	with	a	variety	of	neo-Kantian	themes.

(49)	The	discussion	in	Richard	E.	Meyer,	An	Introduction	to	Mathematical	Fluid	Dynamics	(New	York:	Dover,

2007)	brought	home	the	point	to	me.

(50)	In	the	applications	considered	here,	only	two	characteristic	scale	lengths	are	generally	relevant,	but

Batterman's	essay	in	this	volume	surveys	some	of	the	exciting	recent	work	that	promises	a	capacity	to	intermingle

data	extracted	from	a	wider	array	of	scale	sizes.

(51)	P.	G.	Tait,	Heat	(London:	MacMillan,	1895),	9–10.

(52)	The	claim	that	everyday	classificatory	words	operate	along	organizational	principles	similar	to	those	surveyed

here	comprises	the	chief	argumentative	burden	of	my	Wandering	Significance:	An	Essay	on	Conceptual	Behavior

(Oxford:	Oxford	University	Press,	2006).
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Abstract	and	Keywords

This	chapter	discusses	causation	in	classical	mechanics	and	addresses	the	skeptical	argument	that	causation	is

not	a	fundamental	feature	of	the	world	which	was	initiated	by	Bertrand	Russell.	It	discusses	Russell's	skepticism	and

explains	that	considerations	of	causality	are	often	invoked	by	physicists	when	evaluating	equations,	including

candidates	for	fundamental	equations	of	classical	physics.	The	chapter	identifies	areas	where	the	principle	of

causality	applies.	These	include	Green's	functions,	radiation	theory,	equations	of	motion,	and	dispersion	theory.

Keywords:	causation,	classical	mechanics,	Bertrand	Russell, 	skepticism,	physicists,	classical	physics,	Green's	functions,	radiation	theory,	equations

of	motion,	dispersion	theory

Before	the	nineteenth	century,	it	was	common	to	think	that	much	of	our	understanding	of	the	physical	world	was

organized	around	the	concept	of	cause	and	general	“causal	principles.”	According	to	David	Hume,	“All

reasonings	concerning	matters	of	fact	[roughly,	non-tautologous	truths]	seem	to	be	founded	on	the	relation	of

Cause	and	Effect”	(Hume	1748,	16).	Later,	for	Immanuel	Kant,	the	category	of	cause	was	one	of	the	pure

categories	of	the	understanding	which	the	mind	uses	to	structure	its	experiences	and	without	which

comprehension	of	a	coherent	world	would	be	impossible.	By	the	late	nineteenth	century,	however,	it	became

common	among	physicists	and	like-minded	philosophers	to	assert	that,	at	bottom,	the	concept	cause	was	not

particularly	important	for	understanding	the	physical	world	because	careful	study	of	the	physical	world	had

revealed	causation	to	be	absent	from	it.

The	backdrop	in	philosophy	for	most	contemporary	discussions	of	such	skepticism	about	causation	and	its	importis

Bertrand	Russell,	who	claimed	that	considerations	of	causation	play	no	role	in	theorizing	in	advanced	sciences,

especially	physics. 	Although	Russell's	discussion	is	complex	and	involves	a	number	of	distinct	considerations,	two

of	the	main	points	seem	to	be	the	following:

1.	It	is	impossible	to	unequivocally	identify	“causes”	and	“effects”	within	the	fundamental	equations	of

physics,	but	physics	gets	along	just	fine	in	spite	of	that	fact. 	This	shows	that	causation	is	not	a	fundamental

feature	of	the	world.

2.	There	are	no	general	causal	principles	that	place	restrictions	on	physical	behavior	that	are	not	otherwise

there.

With	regard	to	the	latter	point,	Russell	claims,	“The	law	of	causality,	I	believe,	like	much	that	passes	muster	among

philosophers,	is	a	relic	of	a	bygone	age,	surviving,	like	the	monarchy,	only	because	it	is	erroneously	assumed	to

do	no	harm”	(Russell	1981,	132).	Russell's	explicit	target—the	“law	of	causality”—seems	to	be	“same	cause,	same

effect,”	but	the	general	tenor	of	his	discussion	suggests	that	he	would	also	reject	maxims	like	“everything	has	a

cause”	and	“the	cause	comes	before	the	effect.”

These	days,	many	think	that	Russell's	skepticism	is	misguided. 	For,	it	is	noted	that	physicists	frequently	invoke
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considerations	of	“causality”	when	evaluating	equations,	including	candidates	for	fundamental	equations	of

classical	physics.	Although	“causality”	can	mean	different	things	(e.g.,	determinism	and	restrictions	on	the	velocity

of	causal	propagation), 	I	shall	focus	in	this	essay	on	the	maxim,“the	cause	precedes	the	effect,”	and	on	some

places	within	classical	physics	where	appeal	to	it	allegedly	enters. 	(My	discussion	will	be	limited	to	issues	that

arise	already	in	a	flat	spacetime	without	closed	causal	curves. )	Here	is	a	brief	list	of	the	places	where	it	is	claimed

that	a	“Principle	of	Causality”	applies:

1.	Advanced	Green's	functions—to	be	described	later—are	often	declared	by	physicists	to	be	unphysical

because	they	are	“acausal.”	They	suggest	that	the	effect	comes	before	the	cause.

2.	In	radiation	theory,	the	Sommerfeld	radiation	condition	is	used	to	rule	out	waves	collapsing	in	on	a	source

from	infinity.	Intuitively,	these	are	waves	that	are	caused	by	the	source	but	are	caused	“into	the	past.”	So,	we

invoke	the	Sommerfeld	radiation	condition	so	as	to	adhere	to	causality.

3.	Some	equations	of	motion—for	example,	the	Abraham-Lorentz	Equation	and	the	related	Lorentz-Dirac

Equation—are	dismissed	by	physicists	because	they	violate	causality.

4.	In	dispersion	theory,	dispersion	relations	are	shown	to	follow	for	systems	which	are	causal.	Since	one

invokes	causality	early	on	in	the	theory	of	dispersion,	it	might	be	thought	that	causality	is	an	important,

fundamental	principle	in	physics.

I	shall	discuss	each	of	these	items	more	or	less	in	turn	with	an	eye	toward	examining	what	role—if	any—

assumptions	of	causality	play.	A	complete	weighing	of	the	role	of	causality	is	out	of	the	question	in	an	essay	of	this

scope.	But,	I	hope	to	give	at	least	a	sense	of	the	sorts	of	arguments	that	have	been	presented.

1.	Identifying	Causes	and	Effects:	Advanced	and	Retarded	Green's	Functions

Although	Russell's	skepticism	is	not	obviously	coming	from	these	quarters,	one	major	driving	force	for	causal

skepticism	of	the	sort	that	he	advocates	is	the	denial	that	there	is	any	reason	to	privilege	the	so-called	“retarded”

Green's	function	for	a	system	over	the	“advanced”	Green's	function.	Green's	functions	will	be	described	in	detail

below,	but	roughly	a	Green's	function	describes	the	effect	of	an	instantaneous	impulse	acting	on	a	system.	The

retarded	Green's	function	describes	the	effect	as	coming	after	the	cause,	whereas	the	advanced	Green's	function

describes	the	effect	as	preceding	the	cause.

As	a	sociological	matter,	it	is	certainly	not	uncommon	for	physicists	to	announce	the	privilege	of	the	retarded

Green's	function	or	related	notions	like	the	retarded	potentials.	The	following	quotations	will	give	some	sense	of	the

ubiquity	of	such	claims:

•	“Although	the	advanced	potentials	are	entirely	consistent	with	Maxwell's	equations,	they	violate	the	most

sacred	tenet	in	all	of	physics:	the	principle	of	causality.”	(Griffiths	1981,	399)

•	“In	the	usual	theory	one	omits	the	advanced	solutions	[or	advanced	Green's	functions]	as	[their]	existence

would	be	in	violation	of	our	ordinary	concept	of	causality.”	(Weigel	1986,	194)

•	“The	advanced	potentials	are	mathematically	allowed	solutions,	but	they	conflict	with	the	basic	physical

concept	of	causality.”	(Johnson	1965,	21)

•	“For	the	time	being,	at	least,	we	discard	the	advanced	solution	as	unphysical.”	(Vanderline	2004,	272)

I	shall	begin	with	the	very	basic	example	of	an	undamped	harmonic	oscillator,	since	much	of	the	problematic

already	arises	in	this	simple	context.	An	example	of	a	harmonic	oscillator	would	be	a	block	attached	to	a	spring

having	a	linear	restoring	force	with	no	damping	present.	The	equation	for	a	simple	harmonic	oscillator	is	just	a

concrete	instance	of	Newton's	Second	Law,	F	=	ma:	(1)

where	dots	represent	time	derivatives	and	ω	 	is	taken	to	be	constant.	In	(1),f(t)	is	an	“inhomogeneous	term,”	a

term	that	does	not	involve	the	dependent	variable	(in	this	case	x).	Such	terms	are	typically	thought	to	represent	a

cause	acting	on	the	system	from	outside.	There	are	several	reasons	for	this	thought:	insofar	as	the

inhomogeneous	term	does	not	involve	the	dependent	variable,	it	is	not	representing	something	that	is	a	function	of

the	internal	state	of	the	system	being	modeled.	But	since	it	makes	a	difference	to	the	evolution	of	the	system,	it

represents	an	outside	influence	on	it.	Another	consideration	is	that	a	nonzero	inhomogeneous	term	will	increase
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(or	decrease	as	the	case	may	be)	the	energy	of	the	oscillator,	but	there	should	not	be	any	such	energy	change	in

a	system	that	is	“closed”	(in	the	sense	of	being	noninteracting	with	its	environment).

Perhaps,	we	have	found	a	rationale	for	thinking	of	f(t)	as	a	cause	of	changes	to	the	system.	Insofar	as	this	is	so,

the	first	claim	frequently	made	by	causal	skeptics—	that	one	cannot	identify	causes	in	physics—appears	to	be

overblown.	However,	a	consequence	sometimes	drawn	from	this	skeptical	claim	might	still	be	thought	to	be

correct:	Nothing	terribly	important	hinges	upon	the	identification	of	f(t)	as	a	cause	for	the	purposes	of	doing

mathematical	physics;	one	can	solve	the	equation—	given	some	f(t)	and	suitable	conditions	leading	to	uniqueness

—without	thinking	of	f(t)	as	representing	a	cause,	and	such	a	solution	would	give	the	entire	evolutionary	history	of

the	oscillator.	Since	one	derives	the	entire	trajectory	of	the	system	without	having	to	identify	f(t)	as	a	cause	of

anything,	it	is	not	so	obvious	that	the	identification	of	causes	is	particularly	important	for	physics.	I	shall,	however,

leave	the	question	of	what	import	this	identification	has	to	one	side.	For,	even	bracketing	that	issue,	we	still	have

not	seen	that	we	can	locate	causes	and	effects.	What	is	the	effect	of	the	cause	represented	by	the

inhomogeneous	term,	f(t)?

Since	such	a	term	can	be	rather	complex	depending	upon	what	function	f(t)	is,	it	is	easiest	to	think	in	terms	of	a

“point-source,”	a	source	that	acts	only	at	a	single	instant	of	time.	This	will	be	fruitful	in	this	case,	since	we	have	a

linear	equation,	and	one	will	be	able	to	use	this	simpler	inhomogeneous	term	to	compose	more	complex	ones.	Such

an	instantaneous	source	is	represented	by	the	Dirac	delta	function.	A	solution	to	(1)	(along	with	other	conditions)

when	there	is	a	Dirac	delta	function	source	is	known	as	a	Green's	function. 	Thus,	the	Green's	function	problem	is

based	around	the	following	equation,	which	tells	us	how	a	harmonic	oscillator	responds	to	a	delta	function	kick	or

gives	the	effect	of	such	a	kick:	(2)

Any	g(t)	that	solves	the	Green's	function	problem	is	a	Green's	function.

The	easiest	path	to	a	Green's	function	is	via	Fourier	transforms. 	The	Fourier	transform	of	a	function,	f(t),	may	be

defined	as	follows:	(3)

Thinking	for	a	moment	of	(1),	we	can	Fourier	transform	each	term	of	the	equation:	(4)

Using	the	fact	that	the	Fourier	transform	of	a	derivative	is	−	iω	times	the	Fourier	transform	of	the	undifferentiated

function,	we	get	(5)

where	 	indicates	the	Fourier	transform	of	x.	Simple	algebra	gets	us	to	(6)

One	hopes	to	arrive	at	the	solution	to	equation	(1)	via	inverse	Fourier	transform	from	(6):	(7)

Let	us	return	to	the	Green's	function	problem	where	f(t)	=	δ(t).	Up	to	a	factor	of	 ,	the	Fourier	transform	of	δ(t)

has	the	value	that	e 	takes	at	t	=	0. 	By	Euler's	identity,	this	is	just	the	value	that	cosωt	+	i	sin	ωt	takes	at	t	=	0,

and	this	is	just	1.	So,	for	the	Fourier	transform	of	the	Green's	function,	we	derive	(8)

11

12

x̂

1

2π√
iwt 13

PDF Compressor Free Version 



Causation in Classical Mechanics

Page 4 of 24

Figure	3.1 	Contours	for	harmonic	oscillator	Green's	functions.

To	get	“the”	Green's	function,	one	just	needs	to	take	the	inverse	Fourier	transform:	(9)

The	problem	with	the	standard	interpretation	of	this	integral	is	that	ĝ(ω)	has	poles	on	the	real	axis	(at	ω	 	=±ω).	To

make	sense	of	the	integral	one	may	choose	a	contour	that	goes	around	the	poles	(like	the	contours	in	figure	3.1

where	“x”	represents	a	pole	of	ĝ(ω)).	One	then	takes	some	limit	so	that	the	contour	encompasses	the	entire	real

axis	(except	for	the	dimples	around	the	poles)	with	the	contribution	from	the	large	semi-circle	going	to	zero.	(More

details	about	this	will	follow	when	the	damped	oscillator	is	discussed.)	Depending	upon	what	contour	one	takes,

one	gets	either	the	retarded	Green's	function,	g ,	or	the	advanced	Green's	function,	g ,	or	some	linear

combination	of	them.	Those	functions	are	as	follows	(Butkov	1968,	282):	(10)

(11)

The	first	arises	from	taking	the	integral	along	a	contour	including	the	real	axis	but	with	dimples	that	go	over	the

poles	(as	in	the	left	of	figure	3.1).	The	second	arises	from	a	contour	with	dimples	that	go	under	the	poles	(as	in	the

right	of	figure	3.1). 	A	linear	combination	of	the	two	arises	from	taking	a	contour	that	goes	over	one	pole	and

under	the	other.

Insofar	as	these	Green's	functions	represent	the	response	of	the	system	to	a	Dirac	delta	function	cause,	it	seems

reasonable	to	think	that	they	represent	the	effect	of	such	a	cause	for	a	harmonic	oscillator	system.	Unfortunately,

however,	we	have	not	found	a	unique	effect.	We	have,	rather,	two 	different	evolutions	associated	with	the	Dirac

delta	function	cause.	The	retarded	Green's	function	suggests	that	the	Dirac	delta	function	kick	causes	harmonic

oscillations	after	the	kick	is	applied	to	the	system;	the	advanced	Green's	function	suggests	that	similar	oscillations

are	caused	before	the	application	of	the	kick.	A	causal	skeptic	can	note	here	that	we	have	failed	to	identify	the

effect	of	the	delta	function	kick,	but	it	is	not	clear	that	we	are	the	worse	for	it.

The	situation	is	analogous	for	Maxwell's	equations	describing	the	behavior	of	the	electromagnetic	field	in	a

vacuum.	After	some	mathematical	work	to	decouple	the	equations,	one	gets	the	wave	equation	for	the	electric	field

(and	an	analogous	equation	for	the	magnetic	field):	(12)

If	one	solves	for	“the”	Green's	function	for	the	wave	equation	via	such	Fourier	transform	means,	one	finds	that

what	one	gets	depends	upon	a	contour	since,	as	in	the	case	of	the	harmonic	oscillator,	the	Fourier	transform	of	the

Green's	function	has	poles	on	the	real	axis	(Griffel	1981,	74;	Barton	1989,	406).	The	retarded	Green's	function	for

the	wave	equation	suggests	that	if	the	field	is	subject	to	a	Dirac	delta	function	kick,	a	spherical	wave	spreads	out

at	the	speed	of	light	into	the	future.	The	advanced	Green's	function,	on	the	other	hand,	suggests	that	such	a	wave

collapses	in	on	the	source	at	the	speed	of	light.	Unless	one	can	find	some	reason	to	privilege	one	of	these

representations	of	the	effect	of	a	Dirac	delta	function	kick,	we	have	failed	to	determine	the	effect	of	such	a	kick.

1.1	Privileging	the	Retarded	Green's	Function

Equations	(1)	and	(12)	are	insufficient	to	uniquely	determine	the	effect	of	the	inhomogeneous	term.	Nevertheless,
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there	are	two	standard	approaches	to	selecting	the	retarded	Green's	function	as—in	some	sense—preferred.	They

apply	similarly	in	the	oscillator	and	wave	equation	cases.	The	first	is	to	think	in	terms	of	a	different	differential

equation	for	which	the	Fourier	transform	procedure	sketched	above	gives	a	unique	Green's	function.	The	second

is	to	add	additional	constraints	to	the	differential	equation	for	the	Green's	function	but	without	modifying	the

differential	equation.	Let	me	consider	them	in	turn.

1.1.1	Adding	Damping

One	standard	“physical	motivation”	for	a	particular	contour	of	integration	is	that	any	real,	macroscopic	oscillator

will	have	damping	(Butkov	1968,	281).	For	example,	for	a	block	attached	to	a	spring,	there	would	be	internal

damping	in	the	spring	but	also	from	the	ambient	air.	Since	such	damping	was	not	included	in	the	equation,	there	is

missing	physics	in	the	undamped	oscillator	equation.	To	remedy	this,	one	turns	to	the	damped	oscillator	equation.	If

we	add	dissipation	(of	a	simple	sort),	we	get	(13)

where	γ	〉	0	and	constant.	As	in	the	undamped	case,	we	Fourier	transform	everything	to	get	(14)

Solving	for	the	Fourier	transform	of	x(t),	we	get	(15)

Thinking	in	terms	of	a	delta	function	forcing,	we	arrive	at	the	Fourier	transform	of	the	Green's	function	for	the	case

as	before:	(16)

The	Fourier	transform	of	the	Green's	function	for	this	case	has	poles	in	the	lower	half	of	the	complex	plane,	not	on

the	real	axis. 	In	fact,	adding	damping,	however	small,	to	the	undamped	oscillator	will	bring	the	poles	of	the

Fourier	transform	of	the	Green's	function	down	into	the	lower	part	of	the	complex	plane.	Because	of	this,	one	no

longer	has	the	issue	of	what	contour	to	take	around	the	poles	lying	on	the	real	axis,	since	the	poles	no	longer	lie

on	the	real	axis.

Figure	3.2 	Contours	for	the	damped	oscillator.

From	the	inverse	Fourier	transform,	one	gets	a	Green's	function	for	the	damped	oscillator	that	is	retarded	in	the

sense	that	it	is	zero	before	the	application	of	the	delta	function	kick.	To	give	a	picture	of	how	one	arrives	at	this

result,	one	takes	the	inverse	Fourier	transform	of	the	Green's	function	(17)

via	contour	integration.	One	starts	by	evaluating	the	integral	over	a	contour	from	−R	to	R	on	the	real	axis	along

with	a	semi-circle	either	over	or	under	that	interval	and	then	taking	the	limit	as	R	goes	to	infinity.	(See	figure	3.2.)	If

one	closes	the	contour	downward	via	a	semi-circle	in	the	lower	half	of	the	complex	plane,	it	can	be	made	to

include	the	poles	of	the	integrand	and,	thus,	by	the	Residue	Theorem	the	integral	will	be	−2πi	times	the	sum	of	the

residues	of	those	poles	(since	the	curve	is	oriented	clockwise).	One	then	shows	that	as	R	goes	to	infinity,	the

integral	along	the	semi-circle	will	go	to	zero	when	t	〉	0.	So,	in	the	limit,	the	integral	over	the	contour	is	just	the

integral	on	the	real	axis,	since	the	contribution	from	the	semi-circle	goes	to	zero,	but	the	integral	is	nonzero,	since

there	are	poles	within	the	contour.	This	will	not,	however,	represent	g(t)	for	t	〈	0	for,	in	that	case,	the	integral	over
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the	chosen	semi-circle	would	not	vanish;	in	fact,	it	becomes	unbounded. 	However,	if,	instead,	one	closes	the

contour	of	integration	with	a	semi-circle	in	the	upper	half	of	the	complex	plane,	one	does	get	a	representation	of

g(t)	for	t	〈	0	since,	in	that	case,	the	contribution	of	the	semi-circle	does	vanish	as	one	takes	the	limit	as	R	goes	to

infinity.	However,	since	the	integrand	is	analytic	within	that	contour,	one	gets	that	the	value	of	the	integral	is	zero.

Thus,	g	(t)	turns	out	to	be	0	when	t	〈	0.	As	such,	one	arrives	via	these	means	at	a	retarded	Green's	function.	(For

details	of	the	derivation,	see	Butkov	(1968,	277–80);	see	also	Wallace	(1984,	157–160).)

The	motivation,	then,	for	thinking	that	the	retarded	Green's	function	for	the	undamped	oscillator	truly	reveals	the

causal	direction	of	the	system	is	the	following:	the	equation	for	the	undamped	oscillator	really	is	just	an

approximate	model	of	a	system	for	which	the	damping	is	quite	small;	in	reality,	there	are	no	macroscopic,

undamped	oscillators.	So,	we	know	that	the	system	we	are	modeling	is	actually	damped.	As	such,	the	correct

Green's	function	is	the	retarded	one,	since	that	is	the	only	one	that	arises	via	this	procedure	for	the	damped

oscillator.	So,	the	retarded	Green's	function	correctly	represents	the	causal	directionality	of	the	system.	We	just

started	with	an	approximate	equation,	the	one	for	the	undamped	oscillator.	But,	had	we	used	a	better	equation,	the

one	for	the	undamped	oscillator,	we	would	have	gotten	the	causal	directionality	of	the	system	right.

Note	that	on	this	approach	the	retarded	Green's	function	for	the	oscillator	is	not	privileged	because	it	is	the	only

one	that	obeys	the	maxim,	“the	cause	is	prior	to	the	effect.”	Rather,	it	turns	out	that	the	cause	is	prior	to	the	effect

because	there	is	damping	in	any	real	macroscopic	oscillator.	So,	it	does	not	look	as	if	there	is	any	brute	appeal	to

a	“causality	maxim”	here.	Rather,	all	of	the	work	in	privileging	the	retarded	Green's	function	follows	from	the	actual

presence	of	damping.	So,	roughly,	the	constraint	is:	“If	there	is	phenomenological	damping,	add	damping	to	the

model.”	Once	we	invoke	that,	we	do	not	have	to	invoke	anything	like	“the	cause	is	prior	to	the	effect.”	So,	this	is

prima	facie	a	case	where	one	is	not	imposing	“causality”	but	is	imposing	something	else.

Moreover,	even	if	this	were	the	right	way	to	think	of	the	privilege	of	the	retarded	Green's	function	in	the	oscillator

case,	it	is	not	clear	that	it	is	an	appropriate	way	to	think	of	all	cases	of	interest.	In	a	vacuum,	the	classical

electromagnetic	field	is	taken	genuinely	to	be	described	by	the	undamped	wave	equation	(12)	even	though	the

poles	of	the	Fourier	transform	of	the	Green's	function	for	it	lie	along	the	real	axis.	In	this	case	too,	if	one	adds

damping,	one	ends	up	with	a	retarded	Green's	function.	But,	if	we	do	not	think	that	the	undamped	equation	is	just

an	approximation	to	a	better	equation	involving	damping,	why	would	we	think	that	we	have	learned	something

about	the	causal	directionality	of	the	electromagnetic	field	in	a	vacuum	from	considering	damped	systems?

One	possible	response	is	that	we	learn	from	other	systems	what	the	appropriate	causal	directionality	is	for	this

system	because	from	these	other	systems	we	learn	about	causal	directionality	tout	court,	causal	directionality	in

nature	as	a	whole	rather	than	in	this	or	that	system.	Since	waves	in	a	material	medium	are	damped,	we	learn	that

retarded	Green's	functions	properly	represent	causal	directionality	tout	court.	If	it	were	the	case	that	some

materials	were	anti-damped	and,	thus,	give	rise	to	advanced	Green's	functions	via	the	Fourier	transform

procedure,	we	would	not	be	able	to	assign	a	unique	causal	directionality	tout	court. 	Rather,	we	would	have	to

talk	of	the	causal	directionality	of	this	or	that	system.	But,	if	there	are	no	anti-damped	materials,	we	are	able	to

assign	a	causal	directionality	tout	court.	As	such,	we	are	able	to	assign	a	causal	directionality	for	waves	in	a

vacuum,	and	that	directionality	is	properly	represented	by	the	retarded	Green's	function.

At	this	point,	however,	a	causal	skeptic	will	want	to	know	what	reason	we	have	for	thinking	that	there	is	causal

directionality	tout	court.	Why	doesn't	the	fact	that	we	did	not	find	unambiguous	causal	directionality	in	the	wave

equation	show	that	there	is	not?	The	claim	that	there	is	causal	directionality	tout	court	is	motivated	by	the	claim

that	for	all	systems	that	have	a	privileged	causal	direction,	it	is	the	same	direction.	Even	if	that	is	true	it	does	not

change	the	fact	that	there	are	some	systems	that	do	not	have	one.	On	the	other	hand,	there	are	some	grounds	for

thinking	that	the	equations	that	do	not	reveal	a	privileged	causal	direction	should	be	our	guide	to	whether	there	is

causal	directionality	tout	court.	For,	typically,	the	most	fundamental	equations	of	classical	physics	do	not	have	the

time	asymmetry	that	appears	in	equations	with	damping.	Thus,	one	might	think	that	the	undamped	equations	are	a

better	guide	to	causal	directionality	in	nature	than	the	damped	equations.	However,	they	show	the	absence	of

causal	directionality.	As	such,	we	still	have	not	been	able	to	uniquely	identify	effects.

Of	course,	we	have	found	causal	directionality	in	the	damped	oscillator	equation.	This	suggests	that	it	is	not	true

that	it	is	impossible	to	identify	causes	and	effects	within	some	of	the	equations	of	physics.	But,	if	the	equations	that

do	not	have	causal	directionality	are	more	fundamental	than	the	ones	that	do,	one	does	not	get	the	impression	that
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causal	directionality	is	a	fundamental	feature	of	the	world	as	is	sometimes	thought.

1.1.2	“Causality”:	The	Initial	Value	Problem

There	is	another	approach	to	selecting	the	retarded	Green's	function	that	is	more	commonly	associated	with

invoking	a	maxim	of	“causality.”	Here,	one	does	not	look	to	a	modified	equation	of	motion,	so	no	new	physics	is

added.	Rather,	one	adds	supplementary	data	that	will	select	out	the	retarded	Green's	function	as	unique.	In

particular,	one	posits	that	the	Green's	function	satisfies	the	following	initial	condition:	For	t	〈	0	(18)

It	is	evident	that	this	rules	out	the	advanced	Green's	function	and	also	any	nontrivial	linear	combination	of	the

advanced	and	retarded	Green's	functions.	Often,	this	condition	is	referred	to	as	a	causality	condition.	However,

one	might	like	a	motivation	for	imposing	this	condition.	A	causal	skeptic	will	not	be	too	impressed	with	the	claim	that

we	impose	it	so	that	the	cause	precedes	the	effect,	since	he	is	skeptical	about	both	the	truth	of	that	claim	and	of	its

importance.	As	we	shall	see,	a	motivation	for	such	initial	conditions	can	be	found,	but	once	we	see	what	it	is	we

may	note	that	it	has	little	to	do	with	causation	per	se	and	that	certain	elements	of	the	buildup	to	it	are	optional.

Let	us	start	by	thinking	generally	about	the	initial	value	problem.	The	general	solution	to	an	initial	value	problem	for

an	inhomogeneous	equation	like	(1)	is	the	sum	of	the	general	solution	to	the	associated	homogeneous	equation—

i.e.,	(1)	with	f(t)	set	to	zero—and	a	particular	solution	to	(1).	Thus,	the	general	solution	to	(1)	is	as	follows:	(19)

where	x (t)	is	the	general	solution	to	the	homogeneous	equation	and	x (t)	is	a	particular	solution	to	the

inhomogeneous	equation.	To	get	a	unique	solution,	however,	one	typically	assigns	both	the	amplitude	x(t)	and	the

velocity	x(t)	at	a	particular	time.	Suppose	one	assigns	such	initial	conditions	at	a	time	t ,	before	the

inhomogeneous	term	turns	on.	In	this	case,	a	simple	way	to	write	the	solution	is	to	build	the	initial	conditions	into	the

solution	to	the	homogeneous	equation	in	the	sense	that	x (t )	=	x(t )	and	 .	Because	it	satisfies	the

initial	conditions,	let	us	call	that	part	of	the	solution	x (t).	The	solution	to	the	relevant	inhomogeneous	problem	may

now	be	written	in	terms	of	the	Green's	function	as	follows:	(20)

But,	for	this	to	work	out,	one	needs	some	further	conditions	upon	g(t	−	t′)	so	that	one	does	not	end	up

contradicting	one's	initial	conditions.	What	one	does	not	want	is	for	 	to	have	either	a	nonzero

total	value	or	a	nonzero	velocity	at	the	initial	moment,	t .	One	can	intuitively	see	that	if	one	were	to	add	the

advanced	Green's	function	arising	from	a	source	later	than	t 	to	x (t),	one	will	have	contradicted	one's	initial

conditions.	In	more	detail:	How	could	the	integral	in	(20)	acquire	a	nonzero	value	at	t ?	In	the	setup,	f(t)	is	zero

until	after	t 	only	becoming	nonzero	at	some	later	time	t ; 	let	us	suppose	that	it	remains	nonzero	until	t .	The

integral	can	only	acquire	a	nonzero	value	at	t 	if	g(t 	−	t′)	and	f(t′)	are	nonzero	together	(and	are	so	on	more	than

a	set	of	Lebesgue	measure	zero).	If	g(t 	−	t′)	is	nonzero	on	more	than	a	set	of	Lebesgue	measure	zero	in	the

interval	where	t′	ranges	from	t 	to	t ,	then	there	risks	being	a	contribution	to	the	integral.	However,	all	of	the	times

in	that	interval	are	later	than	t .	So,	g(t 	−	t′)	has	a	negative	argument	along	that	interval.	If	g(t	−	t′)	takes	only	the

value	zero	for	negative	arguments,	then	the	integral	cannot	have	a	nonzero	value	at	t .	So,	one	will	want	to	think

of	the	Green's	function	as	satisfying	the	initial	condition	(18)	in	addition	to	(2).	These	conditions	leave	only	the

retarded	Green's	function	standing.	Thus,	the	desired	solution	to	the	problem	can	be	written	as	follows:	(21)

Many	view	imposing	condition	(18)	on	the	Green's	function	as	imposing	“causality.”	However,	the	motivation	for

(18)	given	above	has	nothing	to	do	with	wanting	to	maintain	the	truth	of	any	causal	dictum	like	“the	cause

precedes	the	effect.”	Instead,	it	had	to	do	with	not	wanting	to	violate	the	principle	of	noncontradiction:	once	we

have	assigned	initial	conditions	that	represent	the	state	of	the	oscillator	at	t0	and	we	have	built	those	initial

conditions	into	the	solution	to	the	homogeneous	equation,	the	solution	to	the	inhomogeneous	equation	that	we	add

to	it	cannot	be	such	as	to	contradict	them.	It	is	a	bit	odd	to	call	this	approach	the	imposition	of	“causality”	when	the

real	driving	force	in	the	argument	is	the	principle	of	noncontradiction	and	not	anything	having	to	do	with	causation.
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As	a	matter	of	fact,	quite	often,	physicists	are	considerably	more	lax	about	allowing	advanced	Green's	functions	to

play	a	role	when	there	is	no	possibility	of	contradicting	specified	state	values.	For	example,	advanced	Green's

functions	are	often	allowed	to	play	a	role	in	the	derivation	of	an	equation	of	motion	for	a	charged	point-particle	that

senses	its	own	field—an	equation	that	includes	a	particle's	“self-interaction”	or	“radiation	reaction.”	Assuming	that

a	charged	particle	with	a	nonzero	radius,	a,	gives	rise	to	a	purely	retarded	field	as	it	moves	in	one	dimension,	the

force	on	it	from	its	own	field	is	(Feynman	et	al.	1989,	2:	28–6)	(22)

where	α	and	ƛ	depend	upon	the	shape	of	the	particle	and	the	charge	distribution.	Like	the	last	term	written

explicitly,	all	later	terms	go	to	zero	as	a	goes	to	zero.	However,	the	first	term	blows	up	in	that	limit.	So,	we	cannot

by	this	means	define	the	self-force	on	a	point-particle.	Essentially	the	same	problem	with	the	limit	would	face	us	if

we	had,	instead,	assumed	that	the	accelerated	charge	gives	rise	to	an	advanced	field,	but	in	that	case,	we	would

get	(23)

for	the	self-force.

Since	Dirac,	it	has	been	common	to	derive	an	equation	of	motion	for	a	point-electron	by	assuming	that	the

interaction	of	the	electron	with	itself	is	a	combination	of	the	advanced	and	retarded	potentials,	specifically,	one-half

of	the	difference	of	the	advanced	potential	and	the	retarded	potential.	If	we	assume	this,	the	first	term	which	is

problematic	in	the	limit	goes	away.	Since	the	later	terms	all	go	to	zero	in	the	limit,	we	are	left	with	(24)

as	the	self-force	on	a	point-charge	(where	 	is	the	time	it	takes	for	light	to	cross	the	classical	electron

radius).	The	equation	of	motion	for	a	charged	point-particle,	known	in	the	nonrelativistic	case	as	the	Abraham-

Lorentz	equation,	is	(25)

(See	Jackson	1975	for	further	details.)

We	will	return	to	this	equation	later,	but	for	now	it	is	worth	noting	that	the	assumptions	in	the	derivation	above	are

not	always	rejected	as	violating	causality.	For	example,	Feynman	rehearses	Dirac's	derivation,	and	insofar	as	he	is

dismissive	of	it,	it	is	because	it	contains	an	“arbitrary”	assumption	not	because	of	any	violation	of	“causality”

(Feynman	et	al.	1989,	2–28–5).	At	any	rate,	when	one	derives	this	equation	of	motion,	there	are	no	imposed	initial

conditions,	since	one	is	not	solving	an	initial	value	problem.	As	such,	there	is	no	fear	of	contradicting	one's	initial

conditions.	And,	when	this	is	so,	it	is	much	less	common	to	balk	at	the	inclusion	of	the	advanced	potentials	even

though,	presumably,	the	causal	interpretation	of	them	as	involving	backward	causation	would	remain.	This

provides	evidence	that	when	physicists	reject	the	advanced	potentials	as	acausal	they	are	not	abhorring	the

cause	coming	after	the	effect	per	se.	Rather,	they	are	thinking	in	terms	of	an	initial	value	problem	where	the	initial

conditions	are	already	built	into	the	solution	to	the	homogeneous	equation	and	the	retarded	Green's	function	must

be	used	on	pain	of	contradiction.

Further	fuel	for	the	causal	skeptic	comes	from	realizing	that	various	elements	within	the	motivation	for	representing

motion	in	terms	of	the	retarded	Green's	function	are	optional.	In	particular,	one	does	not	need	to	build	the	initial

values	into	the	solution	to	the	homogeneous	equation.	Rather,	among	other	things,	one	can	also	solve	a	“final

value	problem”	where	the	state	of	the	system	is	assigned	at	a	time	after	the	inhomogeneous	term	has	stopped

acting.	In	this	case,	the	very	same	solution	will	be	represented	as	(26)

where	x (t)	is	a	solution	to	the	homogeneous	equation,	which	is	determined	by	a	“final	condition”	after	the

inhomogeneous	term	becomes	zero. 	In	this	case,	so	as	not	to	contradict	the	“final	condition”	one	needs	to	use

the	advanced	Green's	function.	But	here,	except	in	special	cases,	x (t)	will	not	satisfy	the	initial	conditions	used	in

  =  tr
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the	previous	representation.	Only	the	sum	 	will	satisfy	those	initial	conditions.

But,	one	can	represent	the	exact	same	solution	via	the	retarded	Green's	function	and	we	are,	thus,	left	without	any

sense	of	what	it	gets	wrong.

Of	course,	some	might	claim	that	the	advanced	Green's	function	represents	the	causal	directionality	in	the	system

incorrectly,	since	it	depicts	the	system	as	if	the	cause	comes	after	the	effect.	This	is	just	to	baldly	assert	that	the

retarded	Green's	function	correctly	represents	causation,	since	it	is	the	one	that	adheres	to	the	maxim,	“the	cause

precedes	the	effect.”	However,	we	have	not	thereby	gained	any	insight	into	why	we	take	the	maxim	to	be	true	and

substantive.	Why	not,	on	the	contrary,	think	that	the	maxim	is	(or	might	be)	false	or	of	indeterminate	truth	value?	A

causal	skeptic	will	continue	to	wonder	here	what	the	grounds	are	for	thinking	that	the	advanced	Green's	function

incorrectly	represents	the	effect	of	an	impulsive	force.	Moreover,	one	will	wonder	why	one	needs	to	enter	this

causal	morass	in	the	first	place:	one	could	capture	the	entire	motion	of	the	system	via	the	advanced	Green's

function	and	a	suitable	solution	to	the	homogeneous	equation.	So,	it	is	not	clear	what	one	will	have	missed	if	one

did	not	get	into	the	business	of	trying	to	privilege	the	retarded	Green's	function	in	the	first	place.

1.2	The	Wave	Equation	and	Spatial	Propagation

The	drama	above	involving	the	Green's	function	of	the	harmonic	oscillator	carries	over	rather	straightforwardly	to

the	wave	equation.	But,	the	wave	equation	contains	additional	complexities	because	it	is	a	partial	differential

equation	and,	as	such,	involves	spatial	propagation	in	addition	to	mere	temporal	evolution.	For	now,	consider	the

homogeneous	wave	equation:	(27)

Solving	this	in	all	of	infinite,	unbounded	space	involves	a	pure	initial	value	problem	or	pure	Cauchy	problem.	Since

it	is	second	order	in	time,	the	wave	equation	needs	two	initial	conditions:	(28)

and	(29)

where	x	represents	all	three	spatial	variables.	For	the	wave	equation	in	all	of	space,	these	conditions	are	sufficient

to	yield	a	unique	solution	(assuming	sufficient	differentiability	of	the	initial	data ).	As	such,	with	the	wave	equation

it	is	not	necessary	to	impose	a	“radiation	condition”	at	infinity	to	rule	out	solutions	that	involve	spherical	waves

collapsing	down	onto	a	point.	Rather,	a	specification	of	the	de	facto	initial	conditions	will	be	sufficient	to	rule	out

waves	collapsing	at	a	point	if,	in	fact,	there	are	none.	Nature	does	not	need	extra	constraints	so	as	to	keep	“waves

from	coming	in	from	infinity.”

1.3	The	Wave	Equation	in	a	Bounded	Spatial	Domain

There	are,	of	course,	other	sorts	of	problems	than	a	pure	initial	value	problem	for	the	wave	equation.	If	one	thinks

in	terms	of	a	bounded	spatial	domain,	one	needs	to	supply	boundary	conditions,	as	well	as	initial	conditions.	There

are	a	variety	of	different	types	of	boundary	conditions	applicable	to	the	wave	equation,	which	I	will	not	discuss	in

detail	here.	For	each	type	of	them,	one	specifies	some	aspect	of	the	behavior	of	the	field	on	the	spatial	boundary.

In	a	bounded	spatial	domain,	the	Green's	function	will	be	required	to	solve	homogeneous	boundary	conditions,

meaning	that	some	aspect	of	its	behavior	on	the	boundary—either	its	value	or	the	value	of	its	derivative—is	set	to

zero.	One	can	use	such	a	Green's	function	to	give	a	rather	interesting	and	useful	decomposition	of	a	solution	to	an

initial	and	boundary-value	problem.	A	solution	to	the	wave	equation	in	bounded	regions	can	be	decomposed	as

follows	(Barton	1989,	245):	(30)

(31)

 (t)  +   (t − ) f( )dxf ∫ ∞

−∞
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(32)

(33)

(34)

(35)

where	f(x,	t)	is	an	inhomogeneous	term,	g(x,	t,	x′,	t′)	is	a	retarded	Green's	function,	t 	is	the	initial	time,	and	ψ	

represents	ψ	on	the	spatial	boundary	surface	S.	Gabriel	Barton	calls	this	rather	quaintly	the	“magic	rule”	for	solving

the	wave	equation,	since	it	allows	one	to	arrive	at	the	solution	via	quadrature	when	the	Green's	function	is	known.

One	might	think	of	these	functions	as	follows:	ψf	(x,	t)	gives	the	dependence	on	the	inhomogeneous	term	(i.e.,	the

forcing	term);	it	is	a	solution	of	the	inhomoge-neous	equation	with	homogeneous	boundary	conditions	and

homogeneous	initial	conditions;	ψ	 (x,	t)	gives	the	dependence	on	the	boundary	conditions;	it	is	a	solution	of	the

homogeneous	equation	with	inhomogeneous	boundary	conditions	and	homogeneous	initial	conditions;	ψ	 (x,	t)

gives	the	dependence	on	the	initial	conditions;	it	is	a	solution	of	the	homogeneous	equation	with	homogeneous

boundary	conditions.

The	Green's	function	in	the	magic	rule	above	is	the	retarded	Green's	function.	However,	a	retrodictive	“magic	rule”

involving	the	advanced	Green's	function	also	exists.	So,	why	don't	we	typically	represent	the	solution	using	the

advanced	Green's	function?	Barton	claims	the	following:

The	reason	why	less	attention	is	paid	to	retrodiction	than	to	prediction	is	that	in	general	the	requisite	input

information	about	the	future	is	not	available,	and	that	one	seldom	needs	to	construct	the	past	(even	though

the	requisite	data	are	known,	referring	as	they	do	to	the	present).	(Barton	1989,	257)

However,	advanced	Green's	functions	are	not	“unphysical”	in	the	sense	of	being	useless	for	the	accurate

description	of	physical	processes.	In	fact,	in	final	value	problems,	one	has	to	use	them	in	the	retrodictive	magic

rule.

A	causal	skeptic	can	also	note	the	following:	there	is	room	to	quibble	over	whether	these	functions	represent	the

way	the	solution	breaks	up	into	contributions	from	the	various	physical	aspects	of	the	system.	For	example,	I

described	ψ	 	(x,	t)	as	giving	the	dependence	of	the	solution	on	the	initial	conditions.	But,	it	is	not	obvious	that	this

is	the	right	way	to	think	about	it.	To	simplify,	suppose	that	the	problem	being	solved	involves	homogeneous

boundary	conditions	of	the	“Dirichlet	variety”	(i.e.,	the	specification	that	ψ(x,t)	vanishes	on	the	boundary)	and	that

there	is	no	forcing.	In	this	case,	ψ	 	(x,	t)	will	be	the	only	contribution	to	the	system.	Because	it	involves	such

homogeneous	boundary	conditions,	waves	will	reflect	off	of	the	boundary,	and	such	reflection	will	be	present	in	ψ

(x,	t).	As	such,	the	statement	of	dependence	given	above	suggests	that	a	wave	that	is	present	in	the	initial

conditions	but	reflects	off	of	the	boundary	is	caused	by	the	initial	conditions	and	not	by	the	boundary.	But,	one

could	plausibly	reason	in	either	of	the	following	two	ways:	(1)	With	homogeneous	boundary	conditions,	the

boundary	is	not	really	doing	anything;	it	is	not	pumping	energy	into	the	system.	There	is	no	source	present	in	that

sense.	The	energy	that	is	there	in	the	reflected	wave	can	simply	be	traced	back	to	the	initial	conditions.	So,	it	is

caused	by	them	and	not	by	the	boundary.	Thus,	the	reflecting	homogeneous	boundary	conditions	really	do

represent	what	the	initial	conditions	cause	correctly:	the	reflected	wave	is	due	to	the	initial	conditions.	Or:	(2)	Were

the	boundary	not	there,	there	would	not	have	been	any	reflection	of	waves	present	in	the	initial	data.	So,	the

reflected	waves	that	have	been	attributed	to	the	initial	conditions	are	attributed	incorrectly.	Rather,	they	are	due	to

the	boundary	rather	than	(or,	perhaps,	in	addition	to)	the	initial	conditions,	since	it	is	the	boundary	that	reflects	the

waves.

Insofar	as	it	is	difficult	to	assess	which	of	these	two	patterns	of	reasoning	is	“right,”	there	is	some	sense	in	which
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our	“concept	of	cause”	does	not	push	us	to	a	natural	“effect”	of	the	initial	conditions.	But,	all	of	this	provides	a

new	reason	to	wonder	whether	there	is	a	uniquely	correct	“causal”	decomposition	of	the	field.	This	reason	remains

even	if	we	have	decided	that	the	retarded	Green's	function	correctly	represents	the	temporal	direction	of

causation.	Clearly,	there	is	no	unique	mathematical	decomposition	of	the	field,	but	it	is	not	even	obvious	that	there

is	a	unique	decomposition	that	most	nearly	reflects	our	thinking	about	causality.	But,	for	all	that,	we	do	not	seem	to

be	any	worse	off	in	terms	of	understanding	electromagnetism	or	other	fields	of	physics	where	the	wave	equation

plays	a	role.

2.	Where	and	Why	Does	One	Need	a	Radiation	Condition?

For	the	wave	equation	in	all	of	space,	the	initial	conditions	suffice	to	determine	a	unique	solution.	In	a	bounded

domain,	the	“magic	rule”	gives	the	solution	directly	from	the	applied	data	involving	the	forcing	term,	initial

conditions,	and	boundary	conditions.	In	neither	case	does	one	need	to	invoke	an	additional	radiation	condition	so

as	to	select	a	unique	solution.	There	are,	however,	contexts	in	which	a	radiation	condition	is	invoked	so	as	to

ensure	uniqueness.	The	most	famous	such	condition	is	applied	to	the	Helmholtz	equation	(which	will	be	derived

below	in	several	ways)	and	is	called	the	Sommerfeld	radiation	condition:	(36)

uniformly	in	all	directions.	What	this	condition	does	is	rule	out	solutions	that	involve	“incoming	waves,”	waves	that

originate	from	infinity	and	propagate	inward	toward	a	source.

Figure	3.3 	Waveguide.

Here,	I	explore	where	and	why	such	a	condition	is	needed.	Let	us	start	with	a	simple	problem	of	radiation: 	we

imagine	a	channel	starting	at	z	=	0	but	having	an	infinite	length	along	the	positive	z	axis.	(See	figure	3.3.)	We	will

imagine	radiation	being	pumped	into	the	channel	via	a	time-dependent	boundary	condition.	Our	main	equation	is,

of	course,	the	wave	equation	(27)	in	which	we	shall	assume	that	c	=	1.	In	addition,	the	time-dependent	boundary

condition	along	the	z	=	0	boundary	is	(37)

We	also	need	boundary	conditions	along	the	other	sides	of	the	cavity.	For	simplicity,	we	can	assume	that	it	is	a

perfectly	reflecting	cavity.	This	is	ensured	by	requiring	that	(38)

along	all	of	those	other	sides.	Moreover,	we	assume	the	following	initial	conditions	at	t 	=	0:	(39)

and	(40)

Lastly,	we	assume	a	“finiteness	condition”	at	z	=	∞. 	This	finiteness	condition,	in	itself,	does	not	have	the	content

of	the	Sommerfeld	radiation	condition,	since	“incoming	waves”	can	be	finite	at	infinity.	In	theory,	the	conditions

imposed	here	are	enough	to	yield	a	unique	solution	to	the	problem	without	any	sort	of	radiation	condition,	but	that

does	not	mean	that	we	can	easily	find	the	solution	that	fits	the	given	data.	One	typically	employs	(as	we	did	above

to	find	Green's	functions)	a	“transform”	technique	of	some	kind:	one	solves	the	problem	in	the	transformed	format

and	then	transforms	back—via	an	inverse	transformation—to	the	original	setting.
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2.1	The	Laplace	Transform	Technique

One	path	to	the	solution	is	via	the	Laplace	transform.	The	Laplace	transform	of	ψ(x,	t)	is	as	follows:	(41)

where	in	this	subsection	 	indicates	the	Laplace	transform	of	ψ	rather	than	its	Fourier	transform.	To	solve	the	wave

equation,	we	want	to	Laplace	transform	each	term	of	it.	First,	the	second	time	derivative	transforms	as	follows:	(42)

Next,	one	transforms	the	second	derivatives	of	the	spatial	variables.	I	show	what	this	amounts	to	for	one	spatial

variable	only,	but	it	obviously	works	equally	for	the	others:	(43)

Once	everything	is	Laplace	transformed,	the	wave	equation	ends	up	just	being	(44)

But,	because	of	the	quiescent	initial	conditions	that	we	assumed	(we	are	trying	to	solve	the	original	problem),	those

last	two	terms	are	just	zero.	So,	one	ends	up	with	(45)

which	is	known	as	the	“Helmholtz	equation”	or	the	“reduced	wave	equation.”

To	solve	the	original	problem	for	the	wave	equation,	one	wants	to	solve	the	Helmholtz	equation	with	the	Laplace-

transformed	boundary	conditions	and	then	take	the	inverse	transform	so	as	to	get	back	to	the	desired	ψ(x,	t),

which	has	some	time-dependence. 	When	one	does	this	(which	is	not	trivial),	one	sees	that	ψ(x,	t)	remains	zero

until	the	source	(i.e.,	the	z-boundary	behavior)	starts.	After	the	source	is	turned	on,	there	is	a	wave	that	travels	in

the	outward	z-direction	but	not	one	that	travels	in	the	inward	z-direction.	But,	as	this	simply	falls	out	of	the	imposed

initial	and	boundary	conditions	no	“radiation”	or	“causal	condition”	needs	to	be	applied	in	this	context	so	as	to	rule

out	an	incoming	wave.	In	the	next	section,	we	shall	see	when	it	does	have	to	be	applied	to	it.

2.2	The	Fourier	Transform	Technique

Let	us	now	look	at	the	Fourier	transform	treatment	of	the	case.	The	Fourier	transform	is	(46)

where	 	is	(once	again)	the	Fourier	transform	of	ψ	with	respect	to	t.	When	we	take	the	Fourier	transform	of	the

wave	equation,	we	again	arrive	at	the	Helmholtz	equation,	but	this	time	for	the	Fourier	transform:	(47)

We	again	solve	the	Helmholtz	equation.	After	discarding	solutions	that	do	not	fit	the	boundary	conditions	and

including	a	time-dependence,	we	get	solutions	of	the	form	(Snider	2006,	558)	(48)

where	x 	represents	the	rightmost	boundary	in	the	x-direction,	y 	represents	the	uppermost	boundary	in	the	y-

direction,	and	m	and	n	are	the	numbers	of	“wave	guide	modes.”	The	first	summand	of	this	solution	represents	an

incoming	wave	that	needs	to	be	eliminated	by	the	Sommerfeld	radiation	condition.	So,	here	is	where	such	a

radiation	condition	is	needed.

Why	do	we	have	an	incoming	wave	in	this	case	but	not	when	we	used	the	Laplace	transform?	Snider	provides	a

clear	answer:

ψ̂
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[W]hat	is	the	story	behind	the	incoming	wave?	And	why	didn't	it	appear	in	the	Laplace	Transform?

This	is	best	understood	by	recalling	that	the	Fourier	description	is	tailored	to	represent	a	system	for	all

time,	from	minus	infinity	to	plus	infinity.	Its	“initial	conditions”	cor	respond	to	the	system's	status	at	t	=−∞

…Now	since	the	waveguide	extends	from	z	=	0	to	z	=	−∞,	if	there	were	some	disturbance	in	the	tube	at	“t

=	−∞”	then	by	any	finite	time	t	its	outgoing	components	would	have	propagated	past	every	finite	point	z,

but	its	incoming	components	would	keep	arriv	ing	(there	being	no	damping	mechanism).	This	possibility

has	to	be	accommodated	by	the	Fourier	description	…

In	the	Laplace	description	we	prescribed	quiescent	initial	conditions	throughout	the	waveguide	at	t	=	0.

This	had	the	effect	of	zeroing	out	such	“built-in”	waves,	and	no	indeterminacy	occurred	in	the

computations.	(Snider	2006,	558–559)

In	the	case	of	the	Laplace	transform	derivation	of	the	Helmholtz	equation,	one	has	the	occasion	to	apply	the	initial

conditions	for	the	problem	on	the	route	to	the	Helmholtz	equation.	In	the	Fourier	transform	derivation,	one	does	not.

Thus,	one	needs	some	other	way	to	impose	the	correct	initial	conditions	for	the	problem.	This	is,	in	effect,	what	the

Sommerfeld	radiation	condition	does.	However,	in	essence,	the	Sommerfeld	radiation	condition	has	not	been

invoked	so	as	to	adhere	to	some	general	principle	of	causality.	Rather,	it	has	been	invoked	so	as	to	get	the	correct

solution	to	the	initial	value	problem	that	one	is	solving,	a	solution	that	does	not	have	incoming	waves.

2.3	Time	Harmonic	Waves

In	addition	to	the	two	paths	to	it	given	above,	the	Helmholtz	equation	results	from	the	wave	equation	via	separation

of	variables.	If	we	assume	that	a	solution	to	the	wave	equation	ψ(x,	t)	is	such	that	ψ(x,	t)	=	ψ (x)ψ	 (t),	we	end	up

with	two	functions:	ψ (x),	which	can	be	shown	to	be	a	solution	to	the	Helmholtz	equation	and	ψ	 (t),	which	gives	a

harmonic	time-dependence	(Zachmanoglou	and	Thoe	1986,	267).	There	are	time-harmonic	solutions	to	the	wave

equation	that	contain	only	“outgoing	waves”	but	others	that	contain	“incoming	waves.”	The	latter	solutions	are

eliminated	by	the	imposition	of	the	Sommerfeld	radiation	condition.

One	thing	that	is	odd	about	such	time-harmonic	solutions	to	the	wave	equation	is	that	throughout	all	of	space,

waves	are	present.	One	can	show	that	a	solution	to	the	Helmholtz	equation	that	is	twice	differentiable	(i.e.,	a

classical	solution	to	the	Helmholtz	equation)	is	analytic	(Colton	and	Kress	1998,	18).	So,	if	a	solution	to	it	vanishes

in	an	open	subset,	it	vanishes	everywhere.	Thus,	there	are	no	spatial	regions	that	waves	have	not	reached	in

these	time-harmonic	solutions	to	the	wave	equation.

This	might	make	one	wonder	how	such	time-harmonic	solutions	to	the	wave	equation	relate	to	solutions	arising

from	certain	initial	value	problems	for	the	wave	equation.	For,	in	many	initial	value	problems,	one	starts	with	a	field

that	is	nonzero	only	in	a	bounded	region	of	space.	So	what	is	the	relation	between	these	two	types	of	solutions?

Here	is	a	reasonable	suggestion	from	J.	J.	Stoker's	classic	book	Water	Waves:

A	point	of	view	which	seems	to	the	author	reasonable	is	that	the	difficulty	[in	selecting	sensible	radiation

conditions	in	certain	cases	where	it	is	unclear	what	conditions	should	apply]	arises	because	the	problem

of	determining	simple	harmonic	motions	is	an	unnatural	problem	in	mechanics.	One	should	in	principle

rather	formulate	and	solve	an	initial	value	problem	by	assuming	the	medium	to	be	originally	at	rest

everywhere	outside	a	sufficiently	large	sphere,	say,	and	also	assume	that	the	periodic	disturbances	are

applied	at	the	initial	instant	and	then	maintained	with	a	fixed	frequency.	As	the	time	goes	to	infinity	the

solution	of	the	initial	value	problem	will	tend	to	the	desired	steady	state	solution	without	the	necessity	to

impose	any	but	boundedness	conditions	at	infinity.

The	steady	state	problem	is	unnatural—in	the	author's	view,	at	least—because	a	hypothesis	is	made	about

the	motion	that	holds	for	all	time,	while	Newtonian	mechanics	is	basically	concerned	with	the	prediction—in

a	unique	way,	furthermore—of	the	motion	of	a	mechanical	system	from	given	initial	conditions.	Of	course,

in	mechanics	of	continua	that	are	unbounded	it	is	necessary	to	impose	conditions	at	∞	not	derivable

directly	from	Newton's	laws,	but	for	the	initial	value	problem	it	should	suffice	to	impose	only	boundedness

conditions	at	infinity.	(Stoker	1957,	175)

Essentially,	one	thinks	of	the	radiation	condition	as	selecting	that	solution	to	the	Helmholtz	equation	that

x t

x t
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corresponds	to	the	infinite	time	limit	of	an	initial	value	problem	involving	the	wave	equation	where	there	is	fixed-

frequency	periodic	forcing	from	the	initial	moment	and	the	field	either	is	initially	absent	or	it	starts	out	confined	to	a

bounded	region.	The	problem	of	finding	the	solution	to	the	Helmholtz	equation	corresponding	with	a	certain	initial

value	problem	of	the	forced	wave	equation	in	the	infinite	time	limit	is	sometimes	called	the	“Principle	of	Limiting

Amplitude.”	(Tikhonov	and	Samarskii	1990,	573–575).	From	thinking	in	these	terms,	one	can	see	why	one	wants	to

eliminate	certain	solutions	from	the	Helmholtz	equation	by	using	the	radiation	condition:	when	one	applies	a

specific	harmonic	time-dependence	to	them,	they	do	not	correspond	with	the	infinite	time	limit	of	the	initial	value

problem	to	the	wave	equation	that	one	is	solving.	So,	in	essence,	what	is	motivating	their	dismissal	is	that	they

violate	the	long-time	behavior	associated	with	the	imposed	initial	conditions	and	forcing.	This	is	easy	to	lose	sight

of	since,	being	elliptic	and	not	involving	the	time	variable,	the	Helmholtz	equation	does	not	accept	initial	conditions.

But,	in	the	end,	what	one	is	doing	is	getting	one's	solution	to	the	Helmholtz	equation	(with	supplemental	harmonic

time-dependence)	to	correspond	with	the	behavior	resulting	from	the	given	initial	conditions	attached	to	the	wave

equation	in	the	infinite	time	limit.

In	these	cases	of	time-harmonic	wave	motions,	the	radiation	condition	is	not	justified	by	appeals	to	maxims	like	“the

cause	precedes	the	effect.”	Rather,	the	project	initiated	by	Stoker	is	to	get	away	from	such	vague	appeals.	In

pursuit	of	a	project	that	is	similar	to	Stoker's,	Wilcox	(1959,	133)	starts	with	the	following	claim:

Nearly	fifty	years	have	passed	since	Sommerfeld	introduced	his	radiation	condition.	During	this	period	it

has	become	customary	to	use	the	condition	in	formulating	and	solving	the	boundary	value	problems

associated	with	the	diffraction	of	time-harmonic	waves.	The	radiation	condition	is	satisfactory	from	the

mathematical	viewpoint	in	that	it	leads	to	boundary	value	problems	having	unique	solutions.	However,	the

physical	reasons	usually	advanced	for	adopting	it,	rather	than	some	other	condition,	are	far	from

convincing.	Our	purpose	here	is	to	provide	a	more	satisfying	foundation	for	use	of	Sommerfeld's	condition

by	deriving	it	from	other	facts	concerning	wave	propagation	that	are	both	mathematically	demonstrable

and	evident	to	physical	intuition.

Wilcox	shows	that,	among	other	radiation	conditions,	Sommerfeld's	radiation	condition	is	a	consequence	of	a

certain	property	of	the	solution	to	an	initial	and	boundary-value	problem 	for	the	wave	equation	in	the	infinite	time

limit.	Moreover,	as	Stoker	notes,	in	many	cases	when	one	is	dealing	with	the	Helmholtz	equation,	the	path	to	the

right	radiation	conditions	to	impose	comes	from	thinking	in	these	terms.	But,	this	suggests	that	the	precise

mathematical	content	of	such	radiation	conditions	is	being	driven	by	solutions	to	certain	initial	and	boundary-value

problems.	A	slogan	like	“the	cause	precedes	the	effect”	will	not	get	one	to	such	mathematical	content	and	is,	thus,

comparatively	worthless.	Moreover,	in	well-posed	initial	and	boundary-value	problems	involving	the	wave	equation,

the	solution	is	determined	without	a	causality	condition.	Thus,	such	a	causality	condition	does	not	seem	to	be	of

fundamental	importance.

3.	Backward	Causation	in	Point-Particle	Electrodynamics

Even	if	the	radiation	condition	is	not	justified	by	a	brute	imposition	of	the	maxim	“the	cause	precedes	the	effect,”

there	are	other	interesting	cases	in	which	a	causality	principle	is	frequently	claimed	to	be	invoked.	Above	I	noted

Dirac's	derivation	of	an	equation	of	motion	(25)	for	a	charged	point-particle	with	self-interaction.	That	equation

does	raise	worries	among	some	physicists	though	some	seem	to	take	it	to	be	an	acceptable	classical	equation	of

motion. 	One	feature	of	the	equation	that	one	is	not	totally	accustomed	to	is	that	it	is	of	the	third	order,	whereas

standard	classical	equations	of	motion	for	point-particles	are	second	order.	So,	one	is	confronted	by	a	different

sort	of	beast	than	is	usual.

Many	of	the	worries	about	(25)	surround	the	fact	that	it	allows	both	runaway	solutions	(that	is,	solutions	such	that

the	acceleration	grows	continually	even	in	the	absence	of	external	forces)	and	pre-accelerations	(that	is,

accelerations	that	happen	in	advance	of	a	force	being	applied).	Runaway	solutions	are	not	in	evidence	in	nature.

So,	one	would	like	to	rule	them	out.	The	general	solution	to	(25)	is	(Levine	et	al.	1977,	75)	(49)

If	one	selects	the	initial	acceleration	to	be	(50)
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it	results	formally	in	the	acceleration	at	temporal	infinity	being	zero,	and	for	runaway	solutions	the	acceleration	at

temporal	infinity	is	not	zero.	So,	one	might	motivate	imposing	this	initial	acceleration	by	the	desire	to	rule	out

runaway	solutions.	By	imposing	this	condition,	one	arrives	at	a	new	equation,	sometimes	called	the	“nonlocal”	(in

time)	equation	(Levine	et	al.	1977,	75;	Jackson	1975,	797),	(51)

This	equation,	however,	obviously	involves	pre-acceleration	insofar	as	the	acceleration	at	t	depends	upon	an

integral	involving	values	of	the	force	at	future	times.	Thus,	a	particle	can	start	to	accelerate	due	to	forces	on	it	in

the	future.

Such	pre-acceleration	is	sometimes	declared	“unphysical.”	But,	this	does	not	give	us	much	of	a	sense	of	what	is

wrong	with	it.	Often	“unphysical”	just	means	defying	our	antecedent	expectations	as	to	what	ought	to	happen.

There	are	many	reasons	that	we	would	not	have	expected	such	pre-acceleration.	Nothing	in	classical	mechanics

would	have	led	us	to	expect	this,	since	it	is	not	found	in	the	standard	Newtonian	equation	of	motion.	But,	sometimes

such	pre-acceleration	is	declared	unphysical	because	it	represents	a	violation	of	causality.	Some	of	Mathias

Frisch's	claims	that	causality	requirements	enter	physical	theory	refer	to	this	equation	and	its	dismissal	by

physicists.	For	example,	he	claims,

[A]	causal	interpretation	of	Dirac's	theory	[of	charged	point-particles]	also	seems	to	be	at	the	root	of	the

feeling	of	unease	that	many	physicists	have	toward	the	theory.	For	the	causal	structure	of	the	theory

violates	several	requirements	we	would	like	to	place	on	causal	theories.	If	nothing	more	were	at	issue	than

questions	of	determination,	the	nonlocal	character	of	the	equation	of	motion	ought	not	to	be	troubling.	That

is,	physicists	themselves	appear	to	be	guided	by	causal	considerations	in	their	assessment	of	the	theory.

(Frisch	2005,	99)

Presumably,	the	idea	here	is	that	a	“causal	interpretation”	involves	the	following	ideas:	(1)	Forces	cause

accelerations.	(2)	Insofar	as	a	particle	can	accelerate	even	though	it	only	has	forces	on	it	in	the	future,	one	can

see	from	the	nonlocal	equation	(51)	that	later	forces	are	causing	the	acceleration.	(3)	But,	that	involves	pernicious

backward	causation,	and	that	explains	some	of	the	unease	toward	the	equation.

Even	if	that	does	capture	how	some	physicists	are	thinking	when	they	reject	the	equation,	not	all	physicists	reject	it

on	these	grounds.	And,	even	if	they	all	did,	that	alone	is	merely	a	sociological	matter	which	does	not	give	us	much

of	a	feel	for	whether	they	are	warranted.	Reasons	as	to	why	such	a	causality	violation	should	be	particularly

troublesome	are	not	typically	given.	In	some	cases,	it	is	merely	claimed	that	the	equation	“violates	our	ordinary

conception	of	causality.”	That	might	be	true	as	a	psychological	matter	and	it	might	explain	some	unease,	but	it

gives	one	no	sense	as	to	why	one	ought	to	feel	unease	here.	Perhaps	our	ordinary	conception	is	simply	naive.

Obviously,	physics	has	tended	to	show	us	that	our	ordinary	conceptions	(of	space,	of	time,	of	the	behavior	of	the

microscopic,	etc.)	are	not	particularly	respected	by	nature.

If	the	dominant	worry	about	(51)	were	only	that	it	involves	backward	causation	but	nothing	concrete	could	be	said

about	why	that	is	a	genuine	worry	(other	than,	perhaps,	psychological	facts	about	us),	then	no	one	who	shares

Russell's	causal	skepticism	needs	to	be	persuaded	that	there	is	a	legitimate	constraint	that	ought	to	rule	out	the

equation.	Moreover,	one	could	note	that	the	derivation	of	the	Abraham-Lorentz	equation	that	was	given	above	that

ultimately	led	to	(51)	assumed	backward	causation	when	it	assumed	that	the	field	associated	with	the	charge	is	a

combination	of	the	retarded	and	advanced	potentials.	Presumably,	if	backward	causation	is	a	cause	for	complaint,

one	never	should	have	been	willing	to	assume	a	premise	involving	it	in	the	first	place.	One	ought	to	have	been

antecedently	dismissive	of	the	initial	steps	of	the	derivation	on	these	grounds.	However,	as	we	have	seen,

Feynman	was	not.	We	have	yet	to	see	a	reason	to	be.	Of	course,	maybe	the	backward	causation	that	appears	in

the	nonlocal	equation	(51)	is	somehow	worse	than	the	backward	causation	openly	assumed	in	the	derivation:

perhaps	not	all	backward	causation	is	equally	bad.	But,	if	something	can	be	said	about	what	makes	some

backward	causation	worse	than	others,	then	it	might	be	the	case	that	it	is	not	really	backward	causation	per	se	that

is	the	problem.	Rather,	it	is	the	feature	of	the	derived	equation	that	makes	the	backward	causation	in	it	be

particularly	pernicious.
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There	are,	to	be	sure,	other	derivations	of	(25)	that	work	via	energy-momentum	conservation	and	that	assume	that

the	field	associated	with	an	accelerating	charge	is	fully	retarded.	(For	the	two	routes,	see	Poisson	(1999).	See	also

the	derivation	in	Parrott	(1987,	136–141).)	Someone	who	prefers	derivations	that	start	along	those	lines	can	reject

the	backward	causation	of	the	resulting	equation	in	good	faith	since,	at	least,	he	did	not	openly	and	willingly

assume	it	in	the	derivation.	However,	one	still	lacks	any	feel	for	why	backward	causation	is	a	real	source	for

complaint.	And,	perhaps,	now	it	will	be	even	harder	to	say	why	one	ought	to	reject	the	resulting	equation	on

grounds	of	causality	violation:	even	if	one	thinks	that	violation	of	our	ordinary	concept	of	causality	creates	some

presumption	(however	weak)	of	falsity,	certainly	a	derivation	from	such	relatively	more	secure	ideas	as

conservation	of	energy	might	be	thought	to	defeat	that	presumption. 	So,	it	is	not	clear	how	strong	the	grounds

are	for	rejecting	(25)	or	(51)	on	the	basis	of	the	maxim	“the	cause	precedes	the	effect”	alone.

This	is	not	to	say	that	there	are	not	troubling	circumstances	surrounding	(25)	and	its	relativistic	variant,	the

Lorentz-Dirac	equation	(Rohrlich	1965,	145):	(52)

This	equation	also	has	pre-acceleration	solutions	and	runaway	solutions.	Moreover,	the	Lorentz-Dirac	equation

suggests	highly	counterintuitive	behavior	that,	as	far	as	we	know,	does	not	appear	in	the	world.	In	particular,	as

Eliezer	originally	proved	(Parrott	1987,	198),	there	are	solutions	to	the	Lorentz-Dirac	equation	according	to	which	a

negatively	charged	particle	heading	toward	a	positively	charged	one	will	not	collide	with	it,	but	will	ultimately	be

turned	away	with	the	negative	charge	accelerating	away	from	the	positive	charge	in	runaway	fashion.	As	noted	in

Parrott	(1987),	this	behavior	is	certainly	not	what	one	would	expect	from	two	oppositely	charged	particles,	which

would	be	expected	to	collide	since	opposite	charges	attract. 	Perhaps,	then,	there	are	grounds	for	thinking	that

this	equation	is	not	an	appropriate	classical	equation	of	motion,	but	it	is	not	clear	that	worry	over	backward

causation	is	or	should	be	a	major	driving	force	in	its	rejection,	even	if	one	chooses	to	reject	it	as	the	right	classical

equation—which	not	all	physicists	do.

4.	From	Causality	to	Dispersion	Relations

As	fuel	for	his	anti-Russellian	stance,	Frisch	has	recently	brought	up	dispersion	theory	as	an	arena	in	which

causality	plays	a	role. 	The	cornerstone	of	dispersion	theory	is	the	derivation	of	“dispersion	relations”	which

express	the	real	part	of	some	function	of	a	complex	variable	in	terms	of	its	imaginary	part	and	vice	versa.	Here	is

how	such	derivations	can	go:	suppose	we	start	with	a	Green's	function	that	allows	us	to	write	the	state	of	a	system

as	follows:	(53)

We	may	think	of	x(t)	as	the	effect	(or	“output”)	and	f(t)	as	the	“cause”	(or	“input”).	Next,	it	is	typical	to	invoke

“causality,”	that	the	effect	does	not	start	before	the	cause.	To	ensure	this,	it	is	required	that	(54)

for	t	〈	t′.	Because	of	(54),	the	Fourier	transform	of	g(τ)	(where	τ	=	t	−	t′)	can	be	written	as	(55)

The	fact	that	this	integral	extends	only	over	the	positive	reals	ensures	that	g(ω)	has	an	analytic	continuation	into

the	upper	half	of	the	complex	plane	(i.e.,	when	the	imaginary	part	of	ω	is	greater	than	zero).

Once	that	is	established,	one	starts	via	consideration	of	the	following	Cauchy	integral	(56)

over	a	contour	C	like	the	one	that	appears	on	the	right	of	figure	3.2.	Provided	that	g(ω′)	is	analytic	inside	and	on

the	contour, 	Cauchy's	integral	formula	assures	us	(Saff	and	Snider	2003,	495–496)	that	when	ω	(in	the

denominator)	lies	on	the	contour,	the	following	holds:	(57)
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where	P	indicates	a	Cauchy	principle	value	integral.	We	now	assume	that	the	integral	along	the	semi-circle	in	the

upper	part	of	the	complex	plane	vanishes	as	R	goes	to	infinity, 	and	we	take	that	limit.	We	end	up	with	(58)

From	here,	we	think	in	terms	of	the	real	and	imaginary	parts	of	ĝ(ω)	=	ĝ (ω)	+	iĝ (ω):

Since	the	second	summand	in	the	last	line	is	real,	ĝ (ω)	can	be	equated	to	it.	The	first	summand	is	imaginary	so

iĝ (′)	can	be	equated	to	it.	One	concludes	that	the	real	and	imaginary	parts	of	ĝ(′)	are	Hilbert	transform	pairs.	That

is,	(60)

(61)

These	relations	are	known	as	dispersion	relations	(or	Kramer's-Kronig	relations).	In	the	theory	of	waves	in	a

dispersive	medium,	among	the	relevant	functions	of	a	complex	variable	is	the	relative	permittivity	(or	dielectric

constant),	e,	whose	imaginary	part	gives	the	absorptive	properties	of	the	medium	while	its	real	part	gives	the

dispersive	properties.	Since	the	major	driving	engine	of	this	derivation	of	dispersion	relations	is	causality,	it	is

typical	to	claim	that	causality	implies	such	dispersion	relations.	But,	of	course,	other	assumptions	went	into	the

derivation	as	well.	In	particular,	it	was	assumed	that	ĝ(ω′)	had	no	poles	inside	or	on	the	contour	of	integration.

A	simple	illustration	of	a	system	for	which	such	dispersion	relations	hold	is	that	of	the	damped	oscillator.	In	this

case,	the	real	and	imaginary	parts	of	(16)	are	as	follows:	(62)

and	(63)

Those	are,	in	fact,	Hilbert	transform	pairs.

After	this	ground-setting,	I	want	to	suggest	(following	to	some	degree	Norton	(2009))	that,	at	a	minimum,	it	is	not

clear	that	causality	is	a	fundamental	principle	that	plays	the	role	in	dispersion	theory	that	Frisch	believes.	Both

Norton	and	Frisch	focus	largely	on	the	approach	in	Jackson's	standard	text.	Part	of	what	is	at	issue	is	whether

Jackson	invokes	causality	in	his	derivation	of	dispersion	relations.	In	the	derivation	of	Kramers-Kronig	relations,

Jackson	starts	(as	is	typical)	with	an	equation	like	(Jackson	1975,	307)	(64)

where	D	is	the	displacement	describing	charges	in	materials	and	E	is	the	electric	field.	At	this	point,	Frisch	sees

“causality”	as	being	invoked	so	as	to	limit	the	values	of	E	that	matter	to	D.	He	claims,

The	next	step	in	the	derivation	is	to	impose	an	additional	constraint	that	is	generally	identified	as	a
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causality	condition.	The	condition	is,	as	John	Toll	([1956])	puts	it,	‘no	output	can	occur	before	the	input.’

More	precisely,	we	demand	that	the	output	field	at	time	t	is	fully	determined	by	the	input	field	at	all	times

prior	to	t.	(Frisch	2009a,	463).

Frisch	sees	the	need	for	the	causality	condition	as	arising	from	a	larger	part	of	the	interpretation	of	these

equations:	We	do	not	take	them	just	as	functional	dependencies	pace	Russell.	Rather	“we	interpret	them

causally”;	we	interpret	E	as	the	cause	of	D.	This	is	supposed	to	explain	why	Jackson	follows	(64)	with	(65)

However,	as	Norton	notes,	this	is	not	actually	how	Jackson's	derivation	goes.	Rather,	Jackson	starts	out	assuming

that	g(τ)	is	the	inverse	Fourier	transform	of	ε(ω)	−	1	(i.e.,	of	the	relative	permittivity	minus	1).	He	had	previously

derived	that	ε(ω)	−	1	is	 .	From	there,	Jackson	then	derives	that	g(τ)	is	a	retarded	Green's	function	as	we

did	above	for	the	damped	harmonic	oscillator.	In	fact,	one	can	see	that	the	equation	for	ε(ω)	−	1	is	relevantly

similar	to	the	Fourier	transform	of	the	damped	oscillator	Green's	function.	Jackson	never	postulates	“causality”	in

this	derivation.	Of	course,	some	assumptions	went	into	the	derivation	of	ε(ω)	−	1.	Jackson	derives	the	formula	for	it

from	an	assumption	about	a	“phenomenological	damping	force”	acting	on	the	electrons	of	the	medium	in	which

electromagnetic	waves	are	propagating	(Jackson	1975,	285).	But,	Jackson	has	not	concluded	here	that	the	Green's

function	must	be	retarded	because	E	causes	D.	Rather,	that	the	Green's	function	is	retarded	follows	from	a

(partially	phenomenological)	model	of	the	medium.	So,	it	does	not	seem	like	the	“causal	interpretation”	of	the

relation	between	D	and	E	plays	any	role	in	Jackson's	actual	derivation.

Of	course,	as	(Frisch	2009b)	notes,	Jackson	assumes	a	model	for	the	medium	that	is	not	time-reversal	invariant

(since	it	includes	damping).	However,	this	is	not	the	same	as	invoking	causality	as	a	restriction	on	the	model.	That

is	something	that	Jackson	does	not	(initially)	do.	Rather,	Jackson	adds	a	phenomenological	damping	term.	So,	he

invokes	the	condition	noted	above	in	the	discussion	of	the	damped	oscillator	in	section	1.1.1:	If	there	is

phenomenological	damping,	add	damping	to	the	model.	Once	one	has	done	that,	causality	(for	that	model)	follows

and	is	not	needed	as	an	independent	condition.

The	appearance	of	phenomenological	equations	that	are	not	time-reversal	invariant	is,	of	course,	something	about

which	much	has	be	written	that	cannot	even	be	approached	with	any	rigor	in	an	essay	of	this	scope. 	Moreover,

many	investigations	into	the	source	of	irreversibility	take	one	outside	of	classical	physics	to	arenas	of	physics	that

are	more	appropriate	to	the	microscopic	and	also	to	grand	cosmological	considerations.	As	such,	in	an	essay	of

this	scope,	I	can	only	note	that	there	is	controversy	over	what,	exactly,	the	source	of	the	irreversibility	in	Jackson's

model	is.

Leaving	Jackson's	actual	derivation	aside,	Frisch	claims	that	it	is	not	so	much	that	causality	is	invoked	in	any

particular	derivation	where	a	particular	model	of	a	material	has	been	given.	Rather,	causality	is	invoked	in	some

more	general	sense	in	the	derivation	of	Kramers-Kronig	relations.	He	claims,

Of	course,	once	we	have	specified	a	particular	model	for	the	dielectric	constant	ε,	the	causality	condition

provides	no	additional	constraint	on	that	particular	model.	Rather	the	condition	provides	a	general

constraint	on	any	physically	legitimate	model	of	ε	and	as	such	has	content	going	beyond	what	is

contained	in	any	finite	list	of	such	models.	(Frisch	2009a,	467)

As	applied	to	derivations	of	dispersion	relations,	the	idea	seems	to	be	that	we	are	able	to	derive	dispersion

relations	without	any	particular	model	in	mind:	“a	derivation	of	the	dispersion	relations	that	begins	with	[the

causality	condition]	allows	us	to	ignore	the	details	of	the	medium	in	question	and	its	detailed	interaction	with	the

field”	(Frisch	2009a,	468)	But,	for	some	models,	Hilbert	transform	dispersion	relations	do	not	follow.	For	metals,	ε(ω)

has	a	pole	at	ω	=	0	(Landau	and	Lifshitz	1960,	260).	So,	one	has	to	take	a	contour	around	this	point	in	a	derivation

of	Hilbert-transform-like	relations	as	above.	Because	of	this,	the	second	of	the	dispersion	relations	is	modified	by	an

addition	of	4πσ	/ω,	where	σ	is	the	conductivity.	So,	the	model	matters	somewhat	to	what	one	gets	out	of	these

derivations	and	cannot	be	completely	ignored.

Moreover,	we	are	left	with	little	sense	of	the	status	of	the	causality	principle	that	is	invoked.	Just	as	it	is	unclear

what	the	source	of	the	damping	is	in	Jackson's	model,	it	is	unclear	what	the	source	of	the	irreversibility	that	results
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in	causality	in	material	media	more	generally	is.	Typically,	appeal	is	made	to	“initial	conditions”	involving	a	low

entropy	past.	But,	it	is	not	clear	that	that	has	anything	directly	to	do	with	causality.	Initial	conditions	are	just	a

specification	of	the	state	(or	sometimes	a	range	of	possible	states)	of	the	universe	at	a	time.	As	such,	they	will	not

be	expected	to	say	anything	about	what	causes	what	or	even	what	can	cause	what.	At	a	minimum,	someone	of

Russell's	bent	would	want	to	hear	more	about	why	it	is	suspected	that	causality	has	a	fundamental	status	if	it

results	from	special	initial	conditions.

On	the	other	hand,	Frisch	does	not	seem	particularly	wedded	to	the	idea	that	causality	is	fundamental.	His	main

point	is	that	it	plays	an	ineliminable	role	in	macroscopic	electrodynamics.	He	claims,”	Even	if	the	asymmetric

causal	constraint	were	ultimately	in	some	sense	reducible,	it	remains	part	of	a	genuinely	scientific	theory	and

within	certain	contexts	is	explanatorily	indispensable.”	(Frisch	2009b,	491).	As	I	have	described	Russell's	claims

above,	this	is	consistent	with	Russell's	view,	since	I	limit	the	claim	that	causation	is	not	found	in	physics	to	the

fundamental	equations	of	physics.	To	be	fair,	it	is	not	clear	whether	this	limitation	is	found	in	Russell.	But,	that	is	a

question	of	Russell	scholarship,	not	a	claim	that	will	take	us	closer	to	understanding	the	status	of	causality	in

classical	physics.	So,	I	will	not	pursue	it	further.

As	for	whether	invoking	causality	is	indispensable,	more	would	need	to	be	said	about	its	indispensability	and	the

scope	of	it.	For	linear	systems,	one	need	not	invoke	a	claim	that	the	system	in	question	obeys	causality	to	derive

dispersion	relations.	One	could	invoke	instead	that	the	system	is	“passive,”	where	a	system	is	passive	if	it	absorbs

energy	but	does	not	create	it.	One	can	show	that	a	system	which	is	passive	and	linear	is	also	causal	in	the	sense

of	(54)	(Zemanian	1965,	300–303;	Nussenzveig	1972,	391–392).	Passivity	is	a	notion	whose	relation	to	causality	is

not	particularly	transparent	antecedently.	Zemanian,	for	example,	claims	that	the	connection	between	passivity

and	causality	is	a	“remarkable	fact”	(Zemanian	1965,	302).	Prima	facie	passivity	is	a	distinct	property	that	can	be

invoked	in	the	derivation	of	dispersion	relations	within	the	linear	theory.	As	such,	in	a	certain	sense	causality	is	not

indispensable	within	the	linear	theory	that	Frisch	discusses	since	one	can	invoke	passivity	instead.

5.	Closing	Thoughts

It	would	be	difficult	to	summarize	the	outcome	of	this	essay	with	respect	to	whether	the	imposition	of	causality	in

the	intended	sense	is	important.	Of	course,	space	limitations	render	any	such	discussion	grossly	incomplete

anyway.	It	seems	to	me,	however,	that	Russell's	position	(at	least	as	I	have	rendered	it)	looks	somewhat	better	than

is	sometimes	suggested.	We	have,	at	least,	failed	to	find	any	clear	sense	in	which	the	retarded	Green's	function	for

a	system	like	the	undamped	wave	equation	is	privileged.	Moreover,	we	have	seen	where	a	radiation	condition

(often	thought	to	impose	causality)	is	needed	and	where	it	is	not.	This	has	given	us	some	sense	that	causality	is	a

derivative	condition	used	to	incorporate	certain	initial	conditions	in	cases	where	there	has	been	no	occasion	to

implement	them.	Moreover,	we	have	seen	that	there	are	grounds	to	dismiss	the	Abraham-Lorentz	equation,	but

most	of	them	remain	even	if	one	did	not	have	scruples	about	backward	causation	per	se.	And,	it	is	not	clear	how

seriously	one	should	take	the	worry	that	the	equation	involves	a	causality	violation.	Lastly,	we	have	seen	that	the

assumption	of	causality	only	gets	one	so	far	in	the	derivation	of	Hilbert-transform	dispersion	relations.	Rather,

assumptions	as	to	the	material	constitution	of	the	medium	are	needed	as	well,	since	one	needs	to	know	whether

the	Fourier	transform	of	the	Green's	function	has	poles	along	the	real	axis.	But,	when	one	has	a	model	of	the

material	medium	such	as	Jackson	gives,	causality	can	be	derived	rather	than	postulated.	Moreover,	within	the

linear	theory	one	could	invoke	something	other	than	causality	in	the	derivation	of	dispersion	relations.	As	such,

Russell	might	argue	that	causality	is	not	such	an	ineliminable,	fundamental	principle	in	linear	dispersion	theory.

Even	if	I	have	not	convinced	the	reader	that	Russell's	skepticism	is	more	warranted	than	sometimes	supposed,	I	will

be	content	to	have	framed	the	issues	in	a	useful	way.

References

Barton,	G.	(1989).	Elements	of	Green's	functions	and	propagation:	potentials,	diffusion,	and	waves.	Oxford:

Oxford	University	Press.

Born,	M.,	and	Wolf,	E.	(1999).	Principles	of	optics.	7th	ed.	Cambridge:	Cambridge	University	Press.

PDF Compressor Free Version 



Causation in Classical Mechanics

Page 20 of 24

Butkov,	E.	(1968).	Mathematical	physics.	Reading,	MA:	Addison-Wesley.

Cartwright,	N.	(1983).	How	the	laws	of	physics	lie.	Oxford:	Clarendon	Press.

———	(1989).	Nature's	capacities	and	their	measurement.	Oxford:	Clarendon	Press.

Colton,	D.,	and	Kress,	R.	(1998).	Inverse	acoustic	and	electromagnetic	scattering	theory.	2nd	ed.,	New	York:

Springer-Verlag.

Comay,	E.	(1993).	Remarks	on	the	physical	meaning	of	the	Lorentz-Dirac	equation.	foundations	of	Physics	23(8):

1121–1136.

DuChateau,	P.,	and	Zachman,	D.	(2002).	Applied	partial	differential	equations.	New	York:	Dover	Publications.

Earman,	J.	(1986).	A	primer	on	determinism.	Dordrecht:	D.	Reidel	Publishing	Company.

———	(1987).	Locality,	nonlocality,	and	action	at	a	distance:	A	skeptical	review	of	some	philosophical	dogmas.	In

Kargon,	R.,	and	Achinstein,	P.,	editors,	Kelvin's	Baltimore	lectures	and	modern	theoretical	physics,	449–490.

Cambridge,	MA:	MIT	Press.

———	(1995).	Bangs,	crunches,	whimpers	and	shrieks:	Singularities	and	acausalities	in	relativistic	spacetimes.

New	York:	Oxford	University	Press.

———	(2007).	Aspects	of	determinism	in	modern	physics.	In	Butterfield,	J.,	and	Earman,	J.,	editors,	Handbook	of	the

philosophy	of	physics,	Part	A,	1369–1434.	Amsterdam:	North-Holland	Press.

Erber,	T.	(1961).	The	classical	theory	of	radiation	reaction.	fortschritte	der	Physik	9:	343–392.

Fetter,	A.,	and	Walecka,	J.	D.	(1980).	Theoretical	mechanics	of	particles	and	continua.	New	York:	McGraw-Hill,	Inc.

Feynman,	R.,	Leighton,	R.,	and	Sands,	M.	(1989).	The	Feynman	lectures	on	physics.	Redwood	City,	CA:	Addison-

Wesley.

Frisch,	M.	(2005).	Inconsistency,	asymmetry,	and	non-locality:	A	philosophical	investigation	of	classical

electrodynamics.	Oxford:	Oxford	University	Press.

———	(2009a).	“The	most	sacred	tenet”?	Causal	reasoning	in	physics.	British	Journal	for	the	Philosophy	of

Science	60(3):	459–474.

———	(2009b).	Causality	and	dispersion:	A	reply	to	John	Norton.	British	Journal	for	the	Philosophy	of	Science

60(3):	487–495.

Greiner,	W.	(1998).	Classical	electrodynamics.	New	York:	Springer-Verlag.

Griffel,	D.	H.	(1981).	Applied	functional	analysis.	New	York:	Halsted	Press.

Griffiths,	D.	(1981).	Introduction	to	electrodynamics.	2d	ed.,	Englewood	Cliffs,	N.J:	Prentice	Hall.

Hawking,	S.,	and	Ellis,	G.	(1973).	The	large	scale	structure	of	space	and	time.	Cambridge:	Cambridge	University

Press.

Hilgevoord,	J.	(1960).	Dispersion	relations	and	causal	description.	Amsterdam:	North-Holland	Publishing	Company.

Hitchcock,	C.	(2007).	What	Russell	got	right.	In	Price	and	Corry	(2007),	Causation,	physics,	and	the	constitution	of

reality:	Russell's	republic	revisited,	45–65.	Oxford:	Clarendon	Press.

Hume,	D.	([1748]	1977).	An	enquiry	concerning	human	understanding.	Indianapolis:	Hackett	Publishing	Company.

Jackson,	J.	D.	(1975).	Classical	electrodynamics.	New	York;	John	Wiley	and	Sons,	Inc.

Johnson,	C.	(1965).	field	and	wave	electrodynamics.	New	York:	McGraw-Hill.

PDF Compressor Free Version 



Causation in Classical Mechanics

Page 21 of 24

Landau,	L.,	and	Lifshitz,	E.	(1960).	Electrodynamics	of	continuous	media.	Reading,	MA:	Addison-Wesley	Publishing

Company,	Inc.

Levine,	H.,	Moniz,	E.,	and	Sharp,	D.	(1977).	Motion	of	extended	charges	in	classical	electrodynamics.	American

Journal	of	Physics	45(1):	75–78.

Maudlin,	T.	(2002).	Quantum	non-locality	and	relativity.	Oxford:	Blackwell	Publishers.

Norton,	J.	(2006).	The	dome:	A	simple	violation	of	determinism	in	Newtonian	mechanics.	Philosophy	of	Science

Assoc.	20th	Biennial	Meeting	(Vancouver):	PSA	2006	Symposia.

———	(2007a).	Causation	as	folk	science.	In	Price	and	Corry	(2007),	Causation,	physics,	and	the	constitution	of

reality:	Russell's	republic	revisited,	11–44.	Oxford:	Clarendon	Press.

———	(2007b).	Do	the	causal	principles	of	modern	physics	contradict	causal	anti-fundamentalism?	In	Machamer,

P.	K.,	and	Wolters,	G.,	editors,	Thinking	about	causes:	From	Greek	philosophy	to	modern	physics,	222–234.

Pittsburgh:	University	of	Pittsburgh	Press.

———	(2009).	Is	there	an	independent	principle	of	causality	in	physics?	British	Journal	for	the	Philosophy	of

Science	60(3):	475–486.

Nussenzveig,	H.	M.	(1972).	Causality	and	dispersion	relations.	New	York:	Academic	Press.

Parrott,	S.	(1987).	Relativistic	electrodynamics	and	differential	geometry.	New	York:	Springer-Verlag.

Parrott,	S.	(1993).	Unphysical	and	physical(?)	solutions	of	the	Lorentz-Dirac	equation.	Foundations	of	Physics

23(8):	1093–1119.

———	(2005).	Variant	forms	of	Eliezer's	theorem.	arXiv:math-ph/0505042v1,	1–10.

Poisson,	E.	(1999).	An	introduction	to	the	Lorentz-Dirac	equation.	arXiv:gr-qc/9912045v1,	1–14.

Price,	H.	and	Corry,	R.,	eds.	(2007).	Causation,	physics,	and	the	constitution	of	reality:	Russell's	republic

revisited.	Oxford:	Clarendon	Press.

Richards,	J.	I.	and	Youn,	K.	K.	(1990).	Theory	of	distributions:	A	nontechnical	introduction.	Cambridge:	Cambridge

University	Press.

Rohrlich,	F.	(1965).	Classical	charged	particles.	Reading,	MA:	Addison-Wesley.

Russell,	B.	(1981).	On	the	notion	of	cause.	In	Mysticism	and	Logic,	chapter	9,	132–151.	Totowa,	NJ:	Barnes	and

Noble	Books.

Saff,	E.	and	Snider,	A.	D.	(2003).	fundamentals	of	complex	analysis.	3rd	ed.,	Englewood	Cliffs,	NJ:	Prentice-Hall.

Snider,	A.	(2006).	Partial	differential	equations:	Sources	and	solutions.	New	York:	Dover	Publications,	Inc.

Steiner,	M.	(1986).	Events	and	causality.	Journal	of	Philosophy	83(5):	249–264.

Stoker,	J.	J.	(1956).	On	radiation	conditions.	Communications	on	Pure	and	Applied	Mathematics	9:	577–595.

———	(1957).	Water	waves:	The	mathematical	theory	with	applications.	New	York:	Interscience	Publishers,	Inc.

Tikhonov,	A.,	and	Samarskii,	A.	A.	(1990).	Equations	of	mathematical	physics.	New	York:	Dover	Publications,	Inc.

Vanderline,	J.	(2004).	Classical	electromagnetic	theory.	Dordrecht:	Kluwer	Academic	Publishers.

Wallace,	P.	R.	(1984).	Mathematical	analysis	of	physical	problems.	New	York:	Dover	Publications,	Inc.

Weigel,	F.	(1986).	Introduction	to	path-integral	methods	in	physics	and	polymer	science.	Singapore:	World

Scientific.

PDF Compressor Free Version 



Causation in Classical Mechanics

Page 22 of 24

Wilcox,	C.	(1959).	Spherical	means	and	radiation	conditions.	Archive	for	Rational	Mechanics	and	Analysis	3(1):

133–148.

Wilson,	M.	(1989).	Critical	notice:	John	Earman's	A	primer	on	determinism.	Philosophy	of	Science	56:	502–532.

Zachmanoglou,	E.,	and	Thoe,	D.	W.	(1986).	Introduction	to	partial	differential	equations	with	applications.	New

York:	Dover	Publications,	Inc.

Zemanian,	A.	(1965).	Distribution	theory	and	transform	analysis.	New	York:	Dover	Publications,	Inc.

Notes:

(1)	Three	recent	papers	that	are	sympathetic	to	Russell	are	Norton	(2007a),	Norton	(2007b),	and	Hitchcock	(2007).

See,	more	generally,	the	papers	in	Price	and	Corry	(2007).

(2)	Whether	this	is	actually	an	accurate	interpretation	of	Russell	is	an	open	question.	It	does,	I	believe,	represent	a

view	that	has	become	associated	with	his	name.

(3)	Russell	never	puts	the	point	this	way,	but	he	does	claim,	“In	the	motions	of	mutually	gravitating	bodies,	there	is

nothing	that	can	be	called	a	cause,	and	nothing	that	can	be	called	an	effect;	there	is	merely	a	formula”	(Russell

1981,	141).

(4)	My	formulation	of	this	claim	owes	to	Norton	since	this	is	how	he	often	expresses	his	own	skepticism	about

causal	principles	(Norton	2007a).

(5)	Among	those	who	argue	this	via	examination	of	physical	theory	are	Steiner	(1986),	Cartwright	(1983,	1989),

and	Frisch	(2005,	2009a).

(6)	For	interesting	discussion	of	the	status	of	determinism	in	classical	physics,	see	Earman	(1986,	2007),	Norton

(2006,	2007a),	and	Wilson	(1989).	For	discussion	of	restrictions	on	the	velocity	of	propagation,	see	Earman	(1987)

and	Maudlin	(2002).	Obviously,	in	a	relativistic	context,	if	there	is	causation	over	spacelike	separation,	then	there

is	backward	causation	in	some	frames	of	reference	unless	one	“reinterprets”	the	direction	of	causation	in	such

frames.	I	will	limit	myself,	however,	to	cases	of	backward	causation	that	are	within	or	on	the	light	cone.

(7)	Mathias	Frisch	prefers	to	frame	the	principle	as	“the	cause	does	not	come	after	the	effect.”	This	way	of	stating

the	principle	seems	to	have	as	its	sole	motivation	the	desire	to	maintain	that	nothing	is	amiss	with	equations	like

Newton's	Second	Law,	f	=ma,	even	though	the	force	does	cause	the	acceleration	but	does	not	come	before	it,

since	they	are	simultaneous.	However,	because	I	will	not	discuss	alleged	cases	of	simultaneous	causation,	I	will

stick	with	the	more	standard	wording,	since	nothing	will	depend	upon	the	difference.

(8)	For	discussion	of	“causality	restrictions”	in	curved	spacetimes	brought	about	by	the	existence	of	closed-causal

curves	in	some	models	of	General	Relativity,	see	Hawking	and	Ellis	(1973)	and	Earman	(1995).

(9)	Frisch	has	appealed	to	nearly	all	of	these	items	from	physics	in	support	of	the	importance	of	causality

considerations	within	physics	(Frisch	2005,	2009a).

(10)	Frisch,	someone	who	thinks	that	causality	does	play	a	substantive	role	in	theorizing,	points	to	this	passage

among	others	(Frisch	2009a).

(11)	Typically,	a	Green's	function	will	be	a	“weak	solution,”	which	means	that	it	is	not	sufficiently	differentiable	to

be	a	solution	in	the	classical	sense.

(12)	Some	of	what	follows	requires	the	theory	of	distributions	to	be	made	rigorous.

(13)	For	a	proof	of	this	using	the	theory	of	distributions,	see	Richards	and	Youn	(1990,	67).

(14)	As	will	be	clear	from	the	discussion	of	the	damped	oscillator	to	follow,	the	contours	depicted	in	figure	3.1

represent	the	Green's	function	only	for	t	〈	0.
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(15)	In	fact,	again,	there	are	more	than	two,	since	other	contours	of	integration	result	in	linear	combinations	of

those	two.

(16)	For	discussion	of	their	placement,	see	Butkov	(1968,	277).

(17)	This	is	not	hard	to	see.	If	we	think	of	ω	as	a	complex	variable,	ω 	+	iω	 ,	the	e− in	the	numerator	of	the

inverse	Fourier	transform	is	 .	When	t	〈	0	and	ω	 	〈	0,	the	second	exponent	is

positive	and	will	grow	as	ω	 	gets	smaller	in	the	limit.

(18)	It	is	not	obvious	that	there	could	not	be	anti-damped	materials.

(19)	If	one	envisions	cases	where	there	is	forcing	before	t ,	one	still	has	a	rationale	for	taking	f(t)	to	be	zero	before

that	time.	Either	the	forcing	before	that	time	has	no	effect	on	the	state	at	t 	or	its	effect	is	already	fully	taken	into

account	in	x (t).

(20)	This	is	just	another	way	of	writing	the	general	solution	to	(1)	that	uses	a	different	particular	solution	to	it

(Hilgevoord	1960,	10).

(21)	Failing	such	differentiability,	one	may	turn	to	a	generalized	wave	equation,	but	I	do	not	discuss	the	details	of

that	here.

(22)	The	details	and	setup	of	this	problem	are	from	the	excellent	Snider	(2006,	554),	which	should	be	consulted	for

additional	insight.

(23)	One	might	wonder	why	one	assumes	this.	The	reason	here	is	that	(below)	we	are	trying	to	solve	the	wave

equation	via	the	Helmholtz	equation	and	it	requires	the	elimination	of	certain	solutions	that	are	unbounded	at

spatial	infinity	Such	solutions	clearly	will	not	represent	the	solution	to	the	wave	equation	we	are	seeking	here.

(24)	To	make	matters	rather	confusing	and	misleading,	I	know	of	some	texts	that	refer	to	it	as	the	wave	equation	in

spite	of	the	fact	that	it	is	not	identical	with	the	wave	equation	above.	In	part,	that	is	because	it	does	not	involve	the

time	variable.	In	essence,	that	has	been	partially	transformed	away	and	then	further	eliminated	by	the	imposition	of

initial	conditions.

(25)	One	may	find	the	solution	to	these	problems	in	Snider	(2006,	555).

(26)	Given	the	time-dependence	ψ 	(t)	=	e ,	a	spherically	symmetric	outgoing	solution	is	 .	The

analogous	incoming	solution	is	 .	The	sum	of	those	two	is	a	standing	wave.	See	Barton	(1989,	336)	for	a

discussion	of	the	various	types	of	solutions.	The	Sommerfeld	radiation	condition	rules	out	standing	waves	in

addition	to	incoming	waves.

(27)	This	point	of	view	is	further	elaborated	along	with	proofs	in	Stoker	(1956).

(28)	Wilcox	is	thinking	in	terms	of	what	is	known	as	an	“exterior	boundary-value	problem”:	Conditions	are	given	on

the	boundary	of	some	bounded	volume	such	as	a	sphere	and	one	solves	for	the	state	of	the	field	external	to	that

surface.

(29)	For	a	summary	of	issues	surrounding	(25),	see	Erber	(1961).

(30)	See	Norton	(2006)	for	a	more	detailed	discussion	of	various	notions	attached	to	“unphysical.”

(31)	One	will	be	able	to	find	something	to	complain	about	in	nearly	every	derivation	of	the	equation.	Discussion	of

how	rigorous	derivations	of	the	equation	really	are	is	ongoing	as	are	attempts	to	derive	it	more	rigorously.	But,	it	is

not	clear	why	our	ordinary	conception	of	causality	ought	to	be	thought	to	be	more	secure	than	the	steps	in	any

particular	derivation.

(32)	Eliezer-type	results	have	been	reinforced	in	Parrott	(1993)	and	Parrott	(2005).	Even	some	who	disagree	with

Parrott's	earlier	analysis	concede	that	there	are	problems	surrounding	Eliezer's	theorem	that	await	resolution

(Comay	1993,	1131–1132).
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(33)	For	an	exchange	about	causality	in	dispersion	theory,	see	Frisch	(2009a),	Norton	(2009),	and	Frisch	(2009b).

Some	of	this	exchange	is	reviewed	below.

(34)	See	Fetter	and	Walecka	(1980,	315–6),	and	Greiner	(1998,	396).	The	rough	way	to	think	of	the	reason	for	this

is	as	follows:	if	the	Fourier	transform	converges	for	real	values	of	ω,	it	converges	better	for	values	in	the	upper	part

of	the	complex	plane.	The	integral	((59))

now	contains	the	term	e ,	which	keeps	the	function	regular	when	ω	 	〉	0.

(35)	Since	we	later	take	the	limit	as	R	goes	to	infinity,	the	contour	ultimately	encompasses	the	entire	real	axis.

Since	the	frequency,	ω,	will	be	real,	it	will,	thus,	lie	on	the	contour.

(36)	If	this	is	not	the	case,	one	may	use	the	“method	of	subtraction”	to	get	around	that	but	I	do	not	discuss	that

here.

(37)	Time-reversal	invariance	does	not	hold	in	fundamental	physics.	However,	the	failure	of	time-reversal	invari-

ance	in	the	decay	of	neutral	K	mesons	is	not	thought	to	be	responsible	for	the	sort	of	damping	that	makes

Jackson's	model	viable	nor	for	thermodynamical	behavior	more	generally.

Sheldon	R.	Smith

Sheldon	R.	Smith	is	Professor	of	Philosophy	at	UCLA.	He	has	written	articles	on	the	philosophy	of	classical	mechanics,	the
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Abstract	and	Keywords

This	chapter	examines	the	theory	underlying	the	science	of	materials,	evaluates	the	progress	in	the	understanding

of	the	thermodynamic	phases	of	matter,	and	discusses	condensed	matter	physics	and	the	idea	that	changes	in

phase	involve	the	presence	of	a	mathematical	singularity.	It	also	argues	that	the	understanding	of	the	behavior	of

systems	at	and	near	phase	transitions	requires	a	synthesis	between	standard	statistical	mechanical	uses	of

probabilities	and	concepts	from	dynamical	systems	theory.

Keywords:	science	of	materials,	phases	of	matter,	condensed	matter	physics,	mathematical	singularity,	phase	transitions,	probabilities,	dynamical

systems	theory

1.	Introduction

1.1	The	Discovery	and	Invention	of	Materials

From	the	“stone	age”	through	the	present	day	humankind	has	made	use	of	the	materials	available	to	us	in	the

earth	and	equally	to	materials	we	could	manufacture	for	further	use.	Jared	Diamond	(1997),	for	example,	in	his

book	Guns,	Germs	and	Steel,	has	pointed	out	how	crucial	metalworking	was	to	the	spread	of	European	power.

However,	it	is	only	in	relatively	recent	times	that	we	were	able	to	bring	scientific	understanding	of	the	inner

workings	of	materials	to	human	benefit.	The	latter	half	of	the	nineteenth	century	brought	the	beginning	of	two	major

theoretical	advances	to	the	science	of	materials,	advances	that	would	deepen	and	grow	into	the	twentieth	century

so	that	today	we	can	boast	of	a	fundamental	understanding	of	the	main	properties	of	many	materials.	These

advances	are	a	theory	of	statistical	physics	developed	initially	by	Rudolf	Clausius	(Brush	1976),	J.	C.	Maxwell

(Garber,	Bush,	and	Everett	1986),	and	Ludwig	Boltzmann	(Brush	1976,	1983)	and	an	understanding	of	the	different

phases	of	matter	based	in	part	upon	an	understanding	of	the	changes	from	one	phase 	to	another.	These	changes

are	called	phase	transitions	and	our	understanding	of	them	is	based	upon	the	work	of	Thomas	Andrews	(1869),

Johannes	van	der	Waals	(Levelt-Sengers	1976),	and	Maxwell.	It	is	the	purpose	of	this	essay	to	develop	a

description	of	the	development	of	these	basic	ideas	from	the	1870s	to	the	last	quarter	of	the	twentieth	century.

Much	of	our	first	principles	understanding	of	materials	is	based	upon	the	fact	that	they	are	composed	of	many,

many	atoms,	electrons,	and	molecules.	This	means	that	we	cannot	hope	or	wish	to	follow	any	motion	of	their

individual	constituents,	but	that	instead	we	must	describe	their	average	or	typical	properties	through	some	sort	of

statistical	treatment.	Further,	though	we	should	believe	that	the	properties	of	these	materials	are	built	upon	the

properties	of	the	constituents,	we	should	also	recognize	that	the	properties	of	a	huge	number	of	constituents,	all

working	together,	might	be	quite	different	from	the	behaviors	we	might	infer	from	thinking	about	only	a	few	of	these

particles	at	once.	P.	W.	Anderson	has	emphasized	the	difference	by	using	the	phrase	“More	Is	Different”	(1972;

Ong	and	Bhatt	2001).

1
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There	are	two	surprising	differences	that	have	dominated	the	study	of	materials:	irreversibility	and	the	existence	of

sharply	distinct	thermodynamic	phases.	First,	irreversibility:	even	though	the	basic	laws	of	both	classical

mechanics	and	quantum	mechanics	are	unchanged	under	a	time	reversal	transformation,	any	appropriately

statistical	treatment	of	systems	containing	many	degrees	of	freedom	will	not	show	such	an	invariance.	Instead,

such	systems	tend	to	flow	irreversibly	toward	an	apparently	unchanging	state	called	statistical	equilibrium.	This

flow	was	recognized	by	Clausius	in	his	definition	of	entropy,	detailed	by	Boltzmann	in	his	gas	dynamic	definition	of

the	Boltzmann	equation,	and	used	by	Gibbs	(Rukeyser	1942)	in	his	definitions	of	thermodynamics	and	statistical

mechanics.	It	is	a	behavior	that	is	best	recognized	as	a	property	of	a	limiting	case,	either	of	having	the	number	of

degrees	of	freedom	become	infinite	or	having	an	infinite	observation	time.	Time	reversal	asymmetry	is	not

displayed	by	any	finite	system	described	over	any	finite	period	of	time.

Figure	4.1 	Splash	and	snowflake.	This	picture	is	intended	to	illustrate	the	qualitative	differences	between

the	fluid	and	solid	phases	of	water.	On	the	left	is	liquid	water,	splashing	up	against	its	vapor	phase.	Its

fluidity	is	evident.	On	the	right	is	a	crystal	of	ice	in	the	form	of	a	snowflake.	Note	the	delicate	but	rigid

structure,	with	its	symmetry	under	the	particular	rotations	that	are	multiples	of	sixty	degrees.

This	essay	is	concerned	with	thermodynamic	equilibrium	resulting	from	this	irreversible	flow.	It	focuses	upon

another	property	of	matter	that,	as	we	shall	see,	only	fully	emerges	when	we	consider	the	limiting	behavior	as	an

equilibrium	material	becomes	infinitely	large.	This	property	is	the	propensity	of	matter	to	arrange	itself	into	different

kinds	of	structures	that	are	amazingly	diverse	and	beautiful.	These	structures	are	called	thermodynamic	phases.

Figure	4.1	illustrates	three	of	the	many	thermodynamic	phases	formed	by	water.	Water	has	many	different	solid

phases.	Other	fluids	form	liquid	crystals,	in	which	we	can	see	macroscopic	manifestations	of	the	shapes	of	the

molecules	forming	the	crystals.	The	alignment	of	atomic	spins	or	electronic	orbits	can	produce	diverse	magnetic

materials,	including	ferromagnets,	with	their	substantial	magnetic	fields,	and	also	many	other	more	subtle	forms	of

magnetic	ordering.	Our	economic	infrastructure	is,	in	large	measure,	based	upon	the	various	phase-dependent

capabilities	of	materials	to	carry	electrical	currents:	from	the	refusal	of	insulators,	to	the	flexibility	of semiconduc-

tors,	to	the	substantial	carrying	capacity	of	conductors,	to	the	weird	resistance-free	behavior	of superconductors.	

This	flow,	and	other	strange	properties	of	superconductors,	are	manifestations	of	the	subtle behavior	of	quantum	

systems,	usually	only	seen	in	microscopic	properties,	but	here	manifested	by	these	materials on	the	everyday	

scales	of	centimeters	and	inches.	I	could	go	on	and	on.	The	point	is	that	humankind	has,	in	part,understood	these	

different	manifestations	of	matter,	manifestations	that	go	under	the	name	“thermodynamic phases.”	Scientific	work	

has	produced	at	least	a	partial	understanding	of	how	the	different	phases	change	into	one another.	This	chapter	is	

a	brief	description	of	the	ideas	contained	in	the	science	of	such	things.

As	is	the	case	with	irreversibility,	the	differences	among	solid,	liquid,	and	gas;	the	distinctions	among	magnetic

materials	and	between	them	and	nonmagnetic	materials;	and	the	differences	between	normal	materials	and super-

fluids	are	all	best	understood	as	distinctions	that	apply	in	the	limit	in	which	the	number	of	molecules	is	infinite. For	

any	finite	body,	these	distinctions	are	blurry	with	the	different	cases	merging	into	one	another.	Only	in	the infinite	

limit	can	the	sharp	distinction	be	maintained.	Of	course,	our	usual	samples	of	everyday	materials	contain	a huge	

number	of	molecules,	so	the	blur	in	the	distinction	between	different	phases	is	most	often	too	fine	for	us	todiscern.	

However,	if	one	is	to	set	up	a	theory	of	these	materials,	it	is	helpful	to	respect	the	difference	between	finiteand	

infinite.

1.2	Different	Phases;	Different	Properties

Three	of	the	phases	of	water	are	illustrated	in	figure	4.1,	which	depicts	a	snowflake	(a	crystal	of	a	solid	phase	of

water)	and	a	splashing	of	the	liquid	phase.	A	third	phase	of	water,	the	low-density	phase	familiar	as	water	vapor,	or

steam,	exists	in	the	empty-looking	region	above	and	around	the	splashing	liquid.

2
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Different	phases	of	matter	have	qualitatively	different	properties.	As	you	see,	ice	forms	beautiful	crystal	structures.

So	do	other	solids,	each	with	its	own	characteristic	shape	and	form.	Each	crystal	picks	out	particular	spatial

directions	for	its	crystal	axes.	That	selection	occurs	because	of	forces	produced	by	the	interactions	of	the

microscopic	constituents	of	the	crystals.	Crystalline	materials	are	formed	at	relatively	low	temperatures.	At	such

temperatures,	microscopic	forces	tend	to	line	up	neighboring	molecules	and	thereby	produce	strong	correlations

between	the	orientations	of	close	neighbors.	Such	correlations	extend	through	the	entire	material,	with	each

molecule	being	lined	up	by	several	neighbors	surrounding	it,	thereby	producing	an	ordering	in	the	orientation	of

the	molecules	that	can	extend	over	a	distance	a	billion	times	larger	than	the	distance	between	neighboring	atoms.

This	orientational	order	thus	becomes	visible	in	the	macroscopic	structure	of	the	crystal,	as	in	figure	4.1,	forming	a

macroscopic	manifestation	of	the	effects	of	microscopic	interactions.

The	same	materials	behave	differently	at	higher	temperature.	Many	melt	and	form	a	liquid.	The	long-range

orientational	order	disappears.	The	material	gains	the	ability	to	flow.	It	loses	its	special	directions	and	gains	the	full

rotational	symmetry	of	ordinary	space.

Many	of	the	macroscopic	manifestations	of	matter	can	be	characterized	as	having	broken	symmetries.	Phases

other	than	simple	vapors	or	liquids	break	one	or	more	of	the	characteristic	symmetry	properties	obeyed	by	the

microscopic	interactions	of	the	constituents	forming	these	phases.	Thus,	a	snowflake's	outline	changes	as	it	is

rotated	despite	the	fact	that	the	molecules	forming	it	can,	when	isolated,	freely	rotate.

1.2.1	Broken	Symmetries	and	Order	Parameters

A	previous	publication	(Kadanoff	2009)	describes	the	development	of	the	theory	of	phase	transitions	up	to	and

including	the	year	1937.	In	that	year,	Lev	Landau	(Landau	1937)	put	together	a	theoretical	framework	that

generalized	previously	existing	mean	field	theories	of	phase	transitions.	In	Landau's	approach,	a	phase	transition

manifests	itself	in	the	breaking	of	a	mathematical	symmetry.	This	breaking	is,	in	turn,	reflected	in	the	behavior	of	an

order	parameter	describing	both	the	magnitude	and	nature	of	the	broken	symmetry.	Two	different	phases	placed	in

contact	are	seen	to	be	distinguished	by	having	different	values	of	the	order	parameter.	For	example,	in	a

ferromagnet	the	order	parameter	is	the	vector	magnetization	of	the	material.	Since	the	spins	generate	magnetic

fields,	this	alignment	is	seen	as	a	large	time-independent	magnetic	field	vector,	pointing	in	some	particular

direction.	The	order	parameter	in	this	example	is	then	the	vector	describing	the	orientation	and	size	of	the

material's	magnetization	and	its	resulting	magnetic	field.	Note	that	the	orientation	of	the	order	parameter	describes

the	way	in	which	the	symmetry	is	broken,	while	the	magnitude	of	this	parameter	describes	how	large	the	symmetry

breaking	might	be.

Other	order	parameters	describe	other	situations.	A	familiar	order	parameter	characterizes	the	difference	between

the	liquid	and	the	vapor	phases	of	water.	This	parameter	is	simply	the	mass	density,	the	mass	per	unit	volume,

minus	the	value	of	that	density	at	the	critical	point.	This	parameter	takes	on	positive	values	in	the	liquid	phase	and

negative	ones	in	the	vapor	phase.	These	phases	are	clearly	exhibited	in	processes	of	condensation,	or	boiling,	or

when	the	two	phases	stand	in	contact	with	one	another.	In	superfluid	examples,	ones	in	which	there	is	particle	flow

without	dissipation,	a	finite	fraction	of	the	particles	are	described	by	a	single,	complex	wave	function.	The	order

parameter	is	that	wave	function.

The	alignment	of	atomic	spins	or	electronic	orbits	can	produce	diverse	magnetic	materials,	including	ferromagnets,

with	their	substantial	magnetic	fields,	and	also	many	subtler	forms	of	magnetic	ordering.	A	crystal	in	which	the

magnetization	can	point	in	any	direction	in	the	three-dimensional	space	conventionally	labeled	by	the	X,	Y,	and	Z

axes	is	termed	an	“XYZ”	ferromagnet.	Another	kind	of	ferromagnet	is	called	an	“XY”	system,	and	is	one	in	which

internal	forces	within	the	ferromagnet	permit	the	magnetization	to	point	in	any	direction	in	a	plane.	The	next	logical

possibility	is	one	in	which	there	a	few	possible	axes	of	magnetization,	and	the	magnetization	can	point	either

parallel	or	antiparallel	to	one	of	these	axes.	A	simple	model	describing	this	situation	is	termed	an	Ising	model,

named	after	the	physicist	Ernst	Ising	(1925),	who	studied	it	in	conjunction	with	his	adviser	Wilhelm	Lenz	(Brush

1967;	Niss	2005)	(see	section	2).

1.2.2	Dynamics	and	Equilibrium

We	have	already	mentioned	the	propensity	of	condensed	matter	systems	to	approach	an	unchanging	state	called

thermodynamic	equilibrium.	This	approach	can	be	either	extremely	fast	or	extremely	slow,	depending	upon	the
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situation.	When	an	electrical	current	in	a	metal	is	set	in	motion	by	an	applied	voltage	it	can	take	as	little	as	a

millionth	of	a	billionth	of	a	second	for	the	current	to	reach	close	to	its	full	value.	On	the	other	hand,	impurities	may

take	years	to	diffuse	through	the	entire	volume	of	a	metal.	Because	of	this	very	broad	range	of	timescales,	and

because	of	the	wide	variety	of	mechanisms	for	time-dependence,	dynamics	is	a	very	complex	subject.

Equilibrium	is	much	simpler.	The	equilibrium	state	of	a	simple	material	is	characterized	by	a	very	few	parameters

describing	the	thermodynamic	environment	around	the	material.	To	define	the	thermodynamic	state	of	a	container

filled	with	water,	one	needs	to	know	its	temperature,	the	volume	of	the	container,	and	the	applied	pressure.	One

can	then	directly	calculate	the	mass	of	the	water	in	the	volume	using	the	data	from	what	is	called	the	equation	of

state.

By	the	time	our	story	begins,	in	the	early	twentieth	century,	kinetic	theory	will	be	well-developed	as	a	description

of	common	gases	and	liquids.	That	theory	includes	the	statement	that	molecules	in	these	fluids	are	in	rapid	motion,

with	a	kinetic	energy	proportional	to	the	temperature.	Thermodynamics	provides	a	more	broadly	applicable	theory,

brought	close	to	its	present	state	by	J.	Willard	Gibbs	in	1878	(Gibbs	1961;	Rukeyser	1942	pp.	55–371).	That

discipline	provides	relations	among	the	properties	of	many-particle	systems	based	upon	conservation	of	energy

and	the	requirement	that	the	system	always	develops	in	the	direction	of	thermodynamic	equilibrium.

Thermodynamic	calculations	are	based	upon	thermodynamic	functions,	for	example,	the	Helmholtz	free	energy

used	in	this	essay.	This	function	depends	upon	the	material's	temperature,	volume,	and	the	number	of	particles	of

various	types	within	it.	One	can	calculate	all	kinds	of	other	properties	by	calculating	derivatives	of	the	free	energy

with	respect	to	its	variables.	The	free	energy	has	the	further	important	property	that	the	actual	equilibrium

configuration	of	the	system	will	produce	the	minimum	possible	value	of	the	free	energy.	Any	other	configuration	at

that	temperature,	in	that	volume,	with	those	constituents	will	necessarily	have	a	higher	free	energy.

To	understand	phase	transitions,	one	has	to	go	beyond	thermodynamics,	which	concerns	itself	with	relations

among	macroscopic	properties	of	materials,	to	the	subject	of	statistical	mechanics	that	defines	the	probabilities	for

observing	various	phenomena	in	a	material	in	thermodynamic	equilibrium,	starting	from	a	microscopic	description

of	the	behavior	of	the	materials’	constituents.	Statistical	mechanics	further	differs	from	thermodynamics	in	that	the

latter	treats	only	summed	or	gross	properties	of	matter,	while	the	former	looks	to	the	individual	constituents	and

asks	about	the	relative	probabilities	for	their	different	configurations	and	motions.

To	use	statistical	mechanics,	in	principle,	all	one	needs	to	know	is	a	function	called	the	Hamiltonian,	which	gives

the	system's	energy	as	a	function	of	the	coordinates	and	momenta	of	the	particles. 	In	practice,	for	many-particle

systems,	the	actual	calculations	are	sufficiently	hard	so	that	in	large	measure	they	only	became	possible	after

World	War	II.

Statistical	mechanics	is	classically	defined	by	using	a	phase	space	given	by	the	momenta	and	coordinates	of	the

particles	in	the	system.	The	state	of	a	particular	classical	system	is	then	defined	by	giving	a	point	in	that	space.

The	basics	of	statistical	mechanics	were	put	forward	by	Boltzmann	(Cercignani	1998	p.	8,	ch.	7;	Uffink	2005;

Gallavotti	2008)	and	then	clearly	stated	by	Gibbs	(1902)	in	essentially	the	same	form	as	it	is	used	today.	It

describes	the	probability	for	finding	a	classical	system	in	a	particular	configuration,	c,	in	the	phase	space.	The

probability	of	finding	the	system	in	a	small	volume	of	phase	space,	dΩ,	around	configuration	c	is	given	by	(1)

Here,	 	is	the	energy	in	this	configuration,	T	is	the	absolute	temperature	in	energy	units,	and	F	is	a	constant,

which	turns	out	to	be	the	free	energy.	Since	the	total	probability	of	all	configurations	of	the	system	must	add	up	to

unity,	one	can	determine	the	free	energy	by	(2)

where	the	integral	covers	all	of	phase	space.

This	probability	formulation,	the	basis	of	all	of	statistical	mechanics,	is	known	as	the	Maxwell-Boltzmann	distribution,

to	most	physicists	and	chemists,	or	the	Gibbs	measure,	to	most	mathematical	scientists.

This	probability	of	Eq.	(1)	describes	a	collection	of	identical	materials	arrayed	in	different	configurations.	Gibbs

calls	the	“ensemble”	of	configurations	thus	assembled	a	“canonical	ensemble ”.

3
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1.2.3	Phase	Transitions

A	treatment	of	phase	transitions	may	properly	start	with	the	1869	experimental	studies	of	Andrews	(1869),	who

investigated	the	phase	diagram	of	carbon	dioxide	and	thereby	discovered	the	qualitative	properties	of	the	liquid–

gas	phase	transition.	His	results,	as	illuminated	by	the	theoretical	work	of	van	der	Waals	and	Maxwell	(Levelt-

Sengers	1976),	are	shown	in	figure	4.2.	This	plot	gives	the	pressure	as	it	depends	upon	volume	in	a	container	with

a	fixed	number	of	particles.	Each	curve	shows	the	behavior	of	the	pressure	at	a	given	value	of	the	temperature.

The	two	curves	at	the	bottom	show	results	quite	familiar	from	our	experience	with	water.	At	high	pressures	one	has

a	liquid	and	the	liquid	is	squeezed	into	a	relatively	small	volume.	Since	the	density	of	the	liquid	is	the	(fixed)

number	of	particles	divided	by	a	varying	volume,	this	high-pressure	region	is	one	of	high	density.	The	curve	moves

downward	showing	a	reduced	pressure	as	the	liquid	is	allowed	to	expand.	At	a	sufficiently	low	pressure,	the	liquid

starts	to	boil	and	thereby	further	reduce	its	density	until	a	sufficiently	low	volume	is	reached	so	that	it	has	attained

the	density	of	vapor.	The	boiling	is	what	is	called	a	first-order	phase	transition.	The	boiling	occurs	at	a	constant

pressure	and	has	liquid	and	vapor	in	contact	with	one	another.	Then	after	the	vapor	density	is	reached,	additional

expansion	produces	a	further	reduced	density.	At	somewhat	higher	temperatures	this	same	scenario	is	followed,

on	a	higher	curve,	except	that	the	region	of	boiling	and	its	connected	jump	in	density	is	smaller.	Andrews's	big

discovery	was	that	at	a	sufficiently	high	temperature,	the	jump	in	density	disappears	and	the	fluid	goes	from	high

pressure	to	low	without	a	phase	transition.	This	disappearance	of	the	first-order	phase	transition	occurs	at	what	is

called	a	critical	point.	The	disappearance	itself	is	called	a	continuous	phase	transition.

1.2.4	The	First	Mean	Field	Theory

In	his	thesis	of	1873,	Johannes	van	der	Waals	put	together	an	approximate	theory	of	the	behavior	of	liquids	using

arguments	based	in	ideas	of	the	existence	of	molecules.	The	very	existence	of	molecules	was	an	idea	then

current,	but	certainly	not	proven.	Van	der	Waals	started	from	the	known	relation	between	the	pressure	and	the

volume	of	a	perfect	gas,	that	is,	one	that	has	no	interactions	between	the	molecules.	Expressed	in	modern	form,

the	relation	is	(3)

Figure	4.2 	Cartoon	PVT	diagram	for	water.	Each	curve	describes	how	the	pressure	depends	upon	volume

for	a	fixed	temperature.	Note	the	figures	for	critical	temperature	and	pressure	on	this	diagram.	They	apply

to	water.	The	corresponding	figures	for	carbon	dioxide	are	31.1°	C	and	73	atmospheres	=	7.2

megapascals.	These	values	are	more	easily	accessible	to	experiments	than	the	ones	for	water.

Here,	p	is	the	pressure,	V	is	the	volume	of	the	container,	N	is	the	number	of	molecules	within	it,	and	T	is	the

temperature	expressed	in	energy	units. 	This	equation	of	state	relates	the	pressure,	temperature,	and	density	of	a

gas	in	the	dilute-gas	region	in	which	we	may	presume	that	interactions	among	the	atoms	are	quite	unimportant.	It

says	that	the	pressure	is	proportional	to	the	temperature,	T,	and	to	the	density	of	particles,	N/V.	This	result	is

inferred	by	ascribing	an	average	kinetic	energy	to	each	molecule	proportional	to	T	and	then	calculating	the

transfer	of	momentum	per	unit	area	to	the	walls.	The	pressure	is	this	transfer	per	unit	time.	Of	course,	Eq.	(3)	does

not	allow	for	any	phase	transitions.
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Two	corrections	to	this	law	were	introduced	by	van	der	Waals	to	estimate	how	the	interactions	among	the

molecules	would	affect	the	properties	of	the	fluid.

First,	he	argued	that	the	molecules	could	not	approach	each	other	too	closely	because	of	an	inferred	short-ranged

repulsive	interaction	among	the	molecules.	This	effect	should	reduce	the	volume	available	to	the	molecules	by	an

amount	proportional	to	the	number	of	molecules	in	the	system.	For	this	reason,	he	replaced	V	in	Eq.	(3)	by	the

available	volume,	V	–	Nb,	where	b	would	be	the	excluded	volume	around	each	molecule	of	the	gas.

The	second	effect	is	more	subtle.	The	pressure,	p,	is	a	force	per	unit	area	produced	by	the	molecules	hitting	the

walls	of	the	container.	However,	van	der	Waals	inferred	that	there	was	an	attractive	interaction	pulling	each

molecule	toward	its	neighbors.	This	attraction	is	the	fundamental	reason	why	a	drop	of	liquid	can	hold	together	and

form	an	almost	spherical	shape.	As	a	molecule	moves	toward	a	wall,	it	is	pulled	back	and	slowed	by	the	molecules

left	behind.	Because	of	this	reduced	speed,	it	imparts	less	momentum	to	the	walls	than	it	would	otherwise.	The

equation	of	state	contains	the	pressure	as	measured	at	the	wall,	p.	This	pressure	is	the	one	produced	inside	the

liquid,	NT/(V	–	Nb),	minus	the	correction	term	coming	from	the	interaction	between	the	molecules	near	the	walls.

That	correction	term	is	proportional	to	the	density	of	molecules	squared.	In	symbols	Van	der	Waals’	corrected

expression	for	the	pressure	is	thus	(4)

Here,	a	and	b	are	parameters	that	are	different	for	different	fluids	and	N/V	is	the	density	of	molecules.

Eq.	(4)	is	the	widely	used	van	der	Waals	equation	of	state	for	a	fluid.	Because	it	takes	into	account	average	forces

among	particles,	we	describe	it	and	similar	equations	as	the	result	of	a	mean	field	theory.	This	equation	of	state

can	be	used	to	calculate	the	particle	density,	ρ	=	N/V,	as	a	function	of	temperature	and	pressure.	It	is	a	cubic

equation	for	ρ	and	thus	has	at	most	three	solutions.

1.2.5	Maxwell's	Improvement

Figure	4.3 	PVT	curves	predicted	by	the	theory	set	up	by	van	der	Waals.	The	fluid	is	mechanically	unstable

whenever	the	pressure	increases	as	the	volume	increases.

The	equation	of	state	proposed	by	van	der	Waals	is	plotted	in	figure	4.3.	Each	curved	line	shows	the	dependence

of	pressure	on	volume.	This	equation	of	state	has	a	major	defect:	it	shows	no	boiling	region.	Worse	yet,	it	contains

regions	in	which,	at	fixed	temperature	and	numbers	of	particles,	the	pressure	increases	as	the	volume	increases.

This	situation	is	unstable.	If	the	fluid	finds	itself	in	a	region	with	this	kind	of	behavior,	the	forces	within	it	will	cause	it

to	separate	into	two	regions,	one	at	a	high	density	the	other	at	a	lower	one.	In	fact,	exactly	this	kind	of	separation

does	happen	in	the	boiling	process	in	which	a	lower-density	vapor	is	in	contact	with	a	high-density	liquid.

The	instability	just	described	is	termed	a	mechanical	instability.	It	can	be	triggered	by	a	fluctuation	in	which	a	piece

of	fluid	acquires	a	density	slightly	different	from	that	of	the	surrounding	fluid	elements.	J.	C.	Maxwell	(1874;	1875)	in

1874	and	1875	recognized	this	instability	and	also	the	somewhat	bigger	region	of	thermodynamic	instability	against

larger	fluctuations.	Maxwell	identified	this	bigger	region	of	instability	with	boiling	and	drew	a	phase	diagram	like	that

in	figure	4.2.	Note	that	this	figure	has	a	completely	flat	portion	of	the	constant	temperature	lines	to	represent	the

PDF Compressor Free Version 



Theories of Matter: Infinities and Renormalization

Page 7 of 33

predicted	boiling	of	Maxwell's	theory.	We	shall	hear	more	of	this	Maxwell	construction	in	section	4.

Maxwell's	result	gives	a	qualitative	picture	of	the	jump	in	density	between	the	two	phases	over	a	quite	wide	range

of	temperatures.	For	the	purposes	of	this	essay,	however,	the	most	important	region	is	the	one	near	the	critical

point	in	which	the	jump	is	small.	According	to	the	theory,	as	the	jump	in	density,	ρ	=	N/V,	goes	to	zero,	it	shows	a

behavior	(5)

where	T 	is	the	critical	temperature	and	β	has	the	value	one	half.	Andrews's	data	does	fit	a	form	like	this,	however

with	a	value	of	the	exponent,	β,	much	closer	to	one	third	than	one	half.	Later	on,	this	discrepancy	will	become

quite	important.

Despite	the	known	discrepancy	between	mean	field	theory	and	experiment	in	the	region	of	the	critical	point,	few

scientists	focused	upon	this	issue	in	the	years	in	which	mean	field	theory	was	first	being	developed.	There	was	no

theory	or	model	that	yielded	Eq.	(5)	with	any	power	different	from	one	half,	so	there	was	no	focus	for	anyone's

discontent.	Thomas	Kuhn	(1962)	has	argued	that	an	old	point	of	view	will	continue	on	despite	evidence	to	the

contrary	if	there	is	no	replacement	theory.

Following	soon	after	van	der	Waals,	many	other	scientists	developed	mean	field	theories,	applying	them	to	many

different	kinds	of	phase	transitions.	All	these	theories	have	an	essential	similarity.	They	focus	upon	some	property

of	the	many-particle	system	that	breaks	some	sort	of	global	symmetry .	In	mean	field	calculations,	the	ordering	in

one	part	of	the	system	induces	ordering	in	neighboring	regions	until,	after	some	time,	ordering	is	spread	through

the	entire	system.	Thus	mean	field	theory	calculations	are	always	descriptive	of	symmetry	breaking	and	the

induced	correlations	that	carry	the	symmetry	breaking	through	the	material.	These	calculations	are	then	most

relevant	and	immediately	useful	for	the	description	of	the	jumps	that	occur	in	first-order	phase	transitions.

1.3	Fluctuations

In	equilibrium,	the	material	has	a	behavior	that,	in	a	gross	examination,	looks	time-independent.	Hence,	many	of	the

phenomena	involved	may	be	described	by	using	time-averages	of	various	quantities.	This	averaging	is	the	basis	of

mean-field-theory	techniques.	However,	a	more	detailed	look	shows	fluctuations,	that	is,	time	dependence,	in

everything.	These	fluctuations	will	call	for	additional	calculational	techniques	beyond	mean	field	theory,	which	will

be	realized	with	the	renormalization	group	methods	described	in	section	6.	Here,	I	describe	two	important

examples	of	fluctuations	that	arise	near	phase	transitions.

1.3.1	Fluctuations	I:	Boiling

In	the	process	of	ordering,	typically	a	material	will	display	large	amounts	of	disorder.	For	example,	as	the	pressure

is	reduced	at	the	liquid–gas	coexistence	line,	a	liquid	turns	into	a	vapor	by	an	often-violent	process	of	boiling.	The

boiling	produces	bubbles	of	low-density	vapor	in	the	midst	of	the	higher-density	liquid.	Thus	the	fluid,	which	is	quite

homogeneous	away	from	its	phase	transition,	shows	a	rapidly	fluctuating	density	in	its	boiling	region.	As	every

cook	knows,	one	can	reduce	the	violence	of	the	fluctuations	by	making	the	boiling	less	rapid.	Nonetheless,	it

remains	true	that	the	fluid	shows	an	instability	in	the	direction	of	fluctuations	in	its	region	of	boiling	in	the	phase

diagram.

1.3.2	Fluctuations	II:	Critical	Opalescence

A	process,	not	entirely	dissimilar	to	boiling,	occurs	in	the	equilibrium	fluid	near	its	critical	point.	Observers	have

long	noticed	that,	as	we	move	close	to	the	liquid–gas	critical	point,	the	fluid,	hitherto	clear	and	transparent,	turns

milky.	This	phenomenon,	called	critical	opalescence,	was	studied	by	Marian	Smoluchowski	(1908)	and	Albert

Einstein	(1910;	Pais	1983,	p.	100).	Both	recognized	that	critical	opalescence	was	caused	by	the	scattering	of	light

from	fluctuations	in	the	fluid's	density.	They	pointed	out	that	the	total	amount	of	light	scattering	was	proportional	to

the	compressibility,	the	derivative	of	the	density	with	respect	to	pressure. 	They	also	noted	that	the	large	amount

of	scattering	near	the	critical	point	was	indicative	of	anomalously	large	fluctuations	in	that	region	of	parameters.	In

this	way,	they	provided	a	substantial	explanation	of	critical	opalescence.

1.4	Ornstein	and	Zernike
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Leonard	Ornstein	and	Frederik	Zernike	(Ornstein	and	Zernike	1914)	subsequently	derived	a	more	detailed	theory

of	critical	opalescence.	In	modern	terms,	one	would	say	that	the	scattering	is	produced	by	small	regions,	droplets,

of	materials	of	the	two	different	phases	in	the	near-critical	fluid.	The	regions	would	become	bigger	as	the	critical

point	was	approached,	with	the	correlations	extending	over	a	spatial	distance	called	the	correlation	or	coherence

length,	ξ.	Ornstein	and	Zernike	saw	this	length	diverge	on	the	line	of	coexistence	between	the	two	phases	of

liquid–gas	phase	transition	as	the	critical	point	was	approached	in	the	form	(6)

with	T	—	T 	being	the	temperature	deviation	from	criticality	Thus,	the	correlation	length	does	go	to	infinity	as	the

critical	point	is	approached.	As	we	shall	see	below	in	section	2.2,	this	result	is	crucially	important	to	the	overall

understanding	of	the	critical	point.

1.5	Outline	of	Essay

The	next	section	defines	the	Ising	model,	a	simple	and	basic	model	for	phase	transitions.	It	then	uses	that	model	to

describe	the	extended	singularity	theorem,	which	describes	the	relationship	between	phase	transitions,

mathematical	singularities	in	thermodynamic	functions,	and	correlated	fluctuations.	Section	3	then	defines	mean

field	theories	as	one	way	of	approaching	the	theory	of	phase	transitions.	The	next	section	describes	the	1937

Landau	theory	as	the	pinnacle	of	mean	field	theory	descriptions.	But	Landau's	work	also	starts	the	replacement	of

mean	field	theory	by	fluctuation-dominated	approaches.	In	that	same	year,	a	conference	in	Amsterdam	exhibited

the	confusion	caused	by	the	conflict	between	mean	field	theory	and	the	extended	singularity	theorem.	The	long

series	of	studies	that	indicated	a	need	for	supplementing	mean	field	theory	is	described	in	section	5.	Section	6

describes	the	development	of	a	new	phenomenology	to	understand	fluctuations	in	phase	transitions.	Kenneth

Wilson	transformed	that	phenomenology	into	a	theory	by	adding	ideas	described	in	section	7.	The	concepts	that

grew	out	of	that	revolution	are	discussed	in	the	final	section.

2.	The	Ising	Model

2.1	Definition

Figure	4.4 	Lattice	for	two-dimensional	Ising	model.	The	spins	are	in	the	circles.	The	couplings,	K,	are	the

lines.	A	particular	site	is	labeled	with	an	“r.”	Its	nearest	neighbors	are	shown	with	an	“s.”

The	Ising	model	is	a	conceptually	simple	representation	of	a	system	that	can	potentially	show	ferromagnetic

behavior.	Its	name	comes	from	the	physicist	Ernst	Ising	(1925),	who	studied	it 	in	conjunction	with	his	adviser

Wilhelm	Lenz	(Brush	1967).	Real	ferromagnets	involve	atomic	spins	placed	upon	a	lattice.	The	elucidation	of	their

properties	requires	a	difficult	study	via	the	band	theory	of	solids.	The	Ising	model	is	a	shortcut	that	catches	the

main	qualitative	features	of	the	ferromagnet.	It	puts	a	spin	variable	upon	each	site,	labeled	by	r,	of	a	simple	lattice.

(See	figure	4.4.)	Each	spin	variable,	σ ,	takes	on	values	plus	or	minus	one	to	represent	the	possible	directions	that

might	be	taken	by	a	particular	component	of	a	real	spin	upon	a	real	atom.

The	sum	over	configurations	is	a	sum	over	all	these	possible	values.	The	Hamiltonian	for	the	system	is	the	simplest

representation	of	the	fact	that	neighboring	spins	interact	with	a	dimensionless	coupling	strength,	K,	and	a
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dimensionless	coupling	to	an	external	magnetic	field,	h.	The	Hamiltonian	is	given	by	(7)

where	the	first	sum	is	over	all	pairs	of	nearest	neighboring	sites,	and	the	second	is	over	all	sites.	The	actual

coupling	between	neighboring	spins,	with	dimensions	of	an	energy,	is	often	called	J.	Then	K	=	−J/T.	In	turn,	h	is

proportional	to	the	magnetic	moment	of	the	given	spin	times	the	applied	magnetic	field,	all	divided	by	the

temperature.	Since	lower	values	of	the	energy	have	a	larger	statistical	likelihood,	the	two	terms	is	Eq.	(7)	reflect

respectively	a	tendency	of	spins	to	line	up	with	each	other	and	also	a	tendency	for	them	to	line	up	with	an	external

magnetic	field.

2.2	The	Extended	Singularity	Theorem

Particle	spin	is	certainly	a	quantum	mechanical	concept.	There	is	no	simple	correspondence	between	this	concept

and	anything	in	classical	mechanics.	Nonetheless,	the	concept	of	spin	fits	smoothly	and	easily	into	the	Boltzmann-

Gibbs	formulation	of	statistical	mechanics.	When	spins	are	present,	the	statistical	sum	in	Eq.	(2)	includes	a

quantum	summation	over	each	spin-direction.	In	the	Ising	case,	when	the	only	variable	is	σ,	standing	for	the	z-

component	of	the	spin,	that	summation	operation	is	simply	a	sum	over	the	two	possible	values	plus	one	and	minus

one	of	each	spin	at	each	lattice	site.

For	the	Ising	model,	the	integral	over	configurations	in	Eq.	(2)	is	replaced	by	a	sum	over	the	possible	spin	values,

thus	making	the	result	have	particularly	simple	mathematical	properties.	Take	the	logarithm	of	that	equation	and

find	(8)

On	the	right-hand	side	of	this	equation	one	finds	a	simple	sum	of	exponentials.	This	is	a	sum	of	positive	terms,	and

it	gives	a	result	that	is	a	smooth	function	of	the	parameters	in	each	exponential,	specifically	the	dimensionless

spin-coupling,	K,	and	the	dimensionless	magnetic	field	h.	A	logarithm	of	a	smooth	function	is	itself	a	smooth

function.	Therefore,	it	follows	directly	that	the	free	energy,	F,	is	a	smooth	function	of	h	and	K.

The	reader	will	notice	that	this	smoothness	seems	to	contradict	our	definition	of	a	phase	transition,	the	statement

that	a	phase	transition	is	a	singularity,	that	is,	failure	of	smoothness,	in	some	thermodynamic	quantity.

This	seeming	contradiction	is	the	key	to	understanding	phase	transitions.	No	sum	of	a	finite	number	of	smooth

terms	can	be	singular.	However,	for	large	systems,	the	number	of	terms	is	the	sum	grows	quite	rapidly	with	the	size

of	the	system.	When	the	system	is	infinite,	the	number	of	terms	is	infinite.	Then	singularities	can	arise.	Thus,	all

singularities,	and	hence	all	phase	transitions,	are	consequences	of	the	influence	of	some	kind	of	infinity.	Among

the	likely	possibilities	are	infinite	numbers	of	particles,	infinite	volumes,	or	—more	rarely—	infinitely	strong

interactions.	Real	condensed	matter	systems	often	have	large	numbers	of	particles.	A	cubic	centimeter	of	air

contains	perhaps	10 	particles.	When	the	numbers	are	this	large,	the	systems	most	often	behave	almost	as	if	they

had	an	infinity	of	particles.

20

PDF Compressor Free Version 



Theories of Matter: Infinities and Renormalization

Page 10 of 33

Figure	4.5 	Cartoon	view	of	a	singularity	in	a	phase	transition.	The	magnetic	susceptibility,	the	derivative	of

the	magnetization	with	respect	to	the	magnetic	field,	is	plotted	against	temperature	for	different	values	of

N.	The	thick	solid	curve	is	shows	the	susceptibility	in	an	infinite	system.	The	dashed	curves	apply	to

systems	with	finite	numbers	of	particles,	with	the	higher	line	being	the	larger	number	of	particles.	The

compressibility	of	the	liquid–gas	phase	transition	also	shows	this	behavior.

I	am	going	to	give	a	name	to	the	idea	that	phase	transitions	only	occur	when	the	condensed	matter	system	exhibits

the	effect	of	some	singularity	extended	over	the	entire	spatial	extent	of	the	system.	Usually	the	infinity	arises

because	some	effect	is	propagated	over	the	entire	condensed	system,	that	is,	over	a	potentially	unbounded

distance.	I	am	going	to	call	this	result	the	“extended	singularity	theorem,”	despite	the	fact	that	the	argument	is

rather	too	vague	to	be	a	real	theorem.	It	is	instead	a	slightly	imprecise	mathematical	property	of	real	phase

transitions.

This	theorem	is	only	partially	informative.	It	tells	us	to	look	for	a	source	of	the	singularity,	but	not	exactly	what	we

should	seek.	In	the	important	and	usual	case	in	which	the	phase	transition	is	produced	by	the	infinite	size	of	the

system,	the	theorem	tells	us	that	any	theory	of	the	phase	transition	should	look	to	things	that	happen	in	the	far

reaches	of	the	system.	What	things?	How	big	are	they?	How	should	one	look	for	them?	Will	they	dominate	the

behavior	near	the	phase	transition	or	be	tiny?	The	theorem	is	uninformative	on	all	these	points.

Sometimes	it	is	very	hard	to	see	the	result	of	the	theorem.	In	an	Ising	or	liquid–gas	phase	transition	there	is	a

singularity	in	the	regions	just	touching	the	coexisting	phases	(Adreev	1964;	Fisher	1978).	This	singularity	is	very

weak.	One	must	use	indirect	methods	to	observe	or	analyze	it.	Conversely,	near	critical	points,	singularities	are

very	easy	to	observe	and	measure.	For	example,	in	a	ferromagnet,	the	derivative	of	the	magnetization	with	respect

to	the	applied	magnetic	field	is	infinite	at	the	critical	point.	(See	figure	4.5.)

Figure	4.6 	Phase	diagram	for	ferromagnet	and	Ising	model.	The	jump	in	magnetization	occurs	at	zero

magnetic	field.	In	this	representation,	the	jump	region	has	been	reduced	to	a	line	running	from	zero

temperature	up	to	the	critical	point.

By	looking	at	simulations	of	finite-sized	Ising	systems	one	can	see	how	the	infinite	size	of	the	system	enters	the

susceptibility.	Figure	4.5	is	a	set	of	plots	of	susceptibility	versus	temperature	in	an	Ising	system	with	a	vanishingly

small	positive	magnetic	field.	The	different	plots	show	what	happens	as	the	number	of	particles	increases	toward

infinity.	As	you	can	see,	the	finite	N	curves	are	smooth,	but	the	infinite-N	curve	goes	to	infinity.	This	infinity	is	the

singularity.	It	does	not	exist	for	any	finite	value	of	N.	However,	as	N	gets	larger,	the	finite-N	result	approaches	the

infinite-N	curve.	When	we	look	at	a	natural	system,	we	tend	to	see	phase	transitions	that	look	very	sharp	indeed,

but	are	actually	slightly	rounded.	However,	a	conceptual	understanding	of	phase	transitions	requires	that	we

consider	the	limiting,	infinite-N,	case.

Now	we	can	see	the	importance	of	the	Ornstein-Zernike	infinity	in	the	correlation	length.	This	last	infinity

accompanies	and	causes	the	infinity	in	the	susceptibility,	and	both	of	these	then	require	an	infinite	system	for	their

realization.

Figure	4.6	is	the	phase	diagram	of	the	Ising	model.	The	x	axis	is	the	magnetic	field;	the	y	axis	is	the	temperature.

This	phase	diagram	applies	when	the	lattice	is	infinite	in	two	or	more	dimensions.	There	is	no	phase	transition	for

lower	dimensionality.

3.	More	Is	the	Same
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This	section	describes	mean	field	theory,	which	forms	the	basis	of	much	of	modern	many-particle	physics	and	field

theory.	So	far,	we	said	that	an	infinite	statistical	system	sometimes	has	a	phase	transition,	involving	a

discontinuous	jump	in	a	quantity	called	the	order	parameter.	But	we	have	given	no	indication	of	how	big	the	jump

might	be,	nor	of	how	the	system	might	produce	it.	Mean	field	theory	provides	a	partial	and	approximate	answer	to

that	question.

We	begin	with	the	statistical	mechanics	of	one	spin	in	a	magnetic	field.	Then,	we	extend	this	one-spin	discussion	to

describe	how	many	spins	work	together	to	produce	ferromagnetism.

3.1	One	Spin

A	single	spin	in	a	magnetic	field	can	be	described	by	a	simplification	of	the	Ising	Hamiltonian	of	Eq.	(7),	−H/T	=	hσ.

As	before,	σ	is	a	component	of	the	spin	in	the	direction	of	the	magnetic	field.	This	quantum	variable	takes	on	two

values	±1,	so	that	probability	distribution	of	Eq.	(1)	gives	the	average	value	of	the	spin	as	(9)

(In	general,	we	write	the	statistical	average	of	any	quantity,	q,	as	〈	q	〉.)

3.2	Many	Spins;	Mean	Fields

The	very	simple	result,	Eq.	(9),	appears	again	when	one	follows	Pierre	Curie	(1895)	and	Pierre	Weiss	(1907)	in	their

development	of	a	mean	field	theory	of	ferromagnetism.	Translated	to	the	Ising	case,	their	theory	would	ask	us	to

concentrate	our	attention	upon	one	Ising	variable,	say	the	one	at	r.	We	would	then	notice	that	this	one	spin	would

see	a	field	with	the	value	(10)

where	h(r)	is	the	dimensionless	magnetic	field	at	r	and	the	sum	covers	all	the	spins	with	positions,	s,	sitting	at

nearest	neighbor	sites	to	r.	To	get	the	mean	field	result,	replace	the	actual	values	of	all	the	other	spins,	but	not	the

one	at	r,	by	their	average	values	and	find,	by	the	same	calculation	that	gave	Eq.	(9),	a	result	in	which	the	average

is	once	more	(11a)

but	now	the	actual	field	is	replaced	by	an	effective	field	(11b)

3.3	Mean	Field	Results

Given	this	calculation	of	basic	equations	for	the	local	magnetization,	〈	σ 	〉,	we	can	go	on	to	find	many	different

aspects	of	the	behavior	of	this	mean	field	magnet.	We	notice	that	when	h	is	independent	of	position,	the	equation

for	〈	σ	〉	has	a	critical	point,	that	is,	an	ambiguity	in	its	solution,	at	zero	magnetic	field	and	Kz	=	1.	When	we	expand

the	equations	around	that	critical	point,	we	can	find	that	the	magnetization	obeys	a	cubic	equation	like	that	of	the

van	der	Waals	theory	(or	equally	the	Landau	theory	as	described	below	in	section	4.1.	Thus,	there	is	a	full	and

complete	correspondence	between	the	van	der	Waals	theory	of	the	liquid–gas	transition	and	the	ferromagnetic

mean	field	theory	near	its	critical	point,	as	one	can	see	by	comparing	figure	4.2	with	figure	4.6.

A	brief	calculation	shows	that	in	mean	field	theory	the	magnetic	susceptibility,	the	derivative	of	the	magnetization

with	respect	to	magnetic	field,	diverges	as	1/|T	−	T |	near	the	critical	point.	The	analogy	just	mentioned	between

the	liquid−gas	system	and	the	magnetic	phase	transition	makes	this	magnetic	susceptibility	the	direct	analog	of	the

compressibility.	Please	recall	that	the	compressibility	has	an	infinity	that	was	used	by	Einstein	to	explain	critical

opalescence.	(See	section	1.3.2).

On	the	other	hand,	Ornstein	and	Zernike	calculated	the	fluid	analog	of	the	more	disaggregated	quantity	(12)

r
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called	the	spin	correlation	function.	A	sum	over	all	lattice	sites,	s,	of	this	correlation	function	will	give	the

susceptibility.	Then	g	can	be	evaluated	from	the	equations	of	mean	field	theory	((Kadanoff	2000),	p.	232)	as	(13)

in	the	simplest	case:	three	dimensions,	h	=	0,	t	small	but	greater	than	zero,	and	separation	distance	large

compared	to	the	lattice	spacing,	a.	In	Eq.	(13),	ξ	is	the	correlation	length	that	describes	the	range	of	influence	of	a

change	in	magnetic	field.	Its	value,	given	by	Eq.	(6),	shows	that	the	correlation	length	diverges	as	criticality	is

approached.	This	behavior	is	an	expected	consequence	of	the	extended	singularity	theorem,	which	asks	for

infinite	ranges	of	influence	at	phase	transitions.

We	previously	argued	that	the	extended	singularity	theorem	called	for	fluctuations	extending	over	large	distances.

Indeed	that	call	is	precisely	answered	by	Eq.	(13)	and	Eq.	(6).	A	theorem	of	statistical	mechanics	relates	the

correlation	function	to	spin	fluctuations	via	(14)

The	right-hand	side	of	this	expression	relates	g	to	the	deviations	of	the	spins	at	r	and	s	from	their	averages	values.

According	to	Eq.	(13),	these	fluctuations	have	correlations	that	persist	over	distances	comparable	to	the	length,	ξ,

which	can	then	go	to	infinity	as	criticality	is	approached.

Note	the	scaling	of	the	spin	correlation	function.	For	relatively	small	values	of	the	distance,	the	correlation	function

in	Eq.	(13)	has	a	form	in	which	g	varies	as	one	divided	by	the	distance.	It	is	conventional	to	describe	this

correlation	function,	varying	as	|r	−	s| ,	by	saying	that	there	are	two	local	quantities	contributing	to	the

correlation	and	then	saying	that	each	scales	as	distance	to	the	power	x.	Therefore,	in	this	case,	the	index	going

with	the	order	parameter	is	x	=	1/2.

3.4	Representing	Critical	Behavior	by	Power	Laws

The	reader	will,	no	doubt,	have	noticed	the	appearance	of	“power	laws”	in	the	description	of	behavior	near	critical

points.	In	these	laws,	some	critical	property	is	written	as	a	power	of	a	quantity	that	might	become	very	large	or

very	small,	as	for	example,	magnetization	=	constant	×	t .	So	far,	we	have	seen	laws	like	this	in	the	behavior	of

the	order	parameter	(Eq.	(5)),	the	correlation	length	(Eq.	(6)),	the	magnetic	susceptibility	(figure	4.5),	and	the

correlation	function	(Eq.	(13)).	Why	does	this	power	function	appear	repeatedly?

All	of	this	singular	behavior	is	rooted	in	the	fact	that	phase	transitions	produce	a	variation	over	a	tremendous	range

of	length	scales.	For	example,	the	basic	interactions	driving	most	phase	transitions	occur	on	a	length	scale

described	by	the	distance	between	atoms	or	molecules,	that	is	some	fraction	of	a	nanometer	(10 	meters).	On	the

other	hand,	we	observe	and	work	with	materials	on	a	characteristic	length	scale	of	centimeters	(10 	meters).	The

crucial	issue	in	phase	transitions	is	how	the	material	interpolates	phenomena	over	this	tremendous	length	scale.

The	answer	is	roughly	speaking	that	all	the	physical	quantities	mentioned	follow	the	changes	in	the	length	scale.

As	we	shall	see	in	section	7.2,	in	renormalization	calculations,	the	changes	of	the	length	scale	in	turn	follow	from

multiplicative	laws.	To	get	to	a	tremendous	change	in	length	scale,	ℓ,	one	puts	many	small	steps	ℓ ,ℓ ,ℓ ,	…	into	the

renormalization	calculation	and	the	big	change	is	produced	by	the	multiplication	of	these	factors,

This	kind	of	behavior	is	explicitly	built	into	renormalization	calculations.

Scale	transformation	is	a	symmetry	operation.	It	describes	an	underlying	symmetry	of	nature	in	which	every	scale

—kilometer,	centimeter,	nanometer—is	equally	good	for	describing	nature's	basic	laws.	Whenever	a	physical

phenomenon	reflects	a	symmetry	operation,	observed	physical	quantities	must	transform	under	symmetry

operations	as	mathematical	representations	of	that	symmetry.	That	is	why	we	use	scalars,	vectors,	and	tensors	to

describe	quantities	that	obey,	say,	the	usual	rotational	symmetry.	The	same	thing	works	for	scale	transformations.

Here,	power	laws	reflect	the	symmetries	built	into	multiplication	operations.	The	physical	quantities	behave	as

powers,	ℓ ,	where	x	can	be	rational	or	irrational,	positive	or	negative,	or	indeed	zero.	In	the	last	case,	the	limiting

behavior	is	that	of	a	logarithm	instead	of	a	power,	as	is	actually	obtained	in	the	heat	capacity	of	the	Onsager

solution	(Onsager	1944)	of	the	two-dimensional	Ising	model.
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The	wide	range	of	length	scales	also	applies	in	particle	physics	where	the	basic	scales	for	interactions	may	be

vastly	different	from	the	scale	at	which	observations	are	performed.	Thus,	in	particle	physics	it	is	also	true	that

renormalization	and	scaling	have	to	interpolate	behaviors	over	very	large	length	scales.

Whenever	one	has	a	power	law,	say	〈	σ	〉	=	(−t) ,	one	has	a	power,	here	β.	This	power	is	called	a	“critical

exponent”	or	a	“critical	index.”	During	the	many	years	in	which	critical	behavior	has	been	a	subject	of	scientific

study,	many	human-years	of	scientific	effort	have	been	devoted	to	the	accurate	determination	of	these	indices.

Sometimes	scientists	complained	that	this	effort	was	misplaced.	After	all,	there	is	little	insight	to	be	obtained	from

the	statement	that	β	(the	index	that	describes	the	jump	in	the	liquid−gas	phase	transition)	has	the	value	0.31

versus	0.35	or	0.125	or	0.5.	But	these	various	values	can	be	obtained	from	theories	that	give	a	direct	calculation	of

critical	quantities	or	related	them	one	to	another.	The	calculations	or	relations	come	from	ideas	with	considerable

intellectual	content.	Finding	the	index-values	then	gave	an	opportunity	to	check	the	theory	and	see	whether	the

underlying	ideas	were	sound.	Thus,	the	small	industry	of	evaluating	critical	indices	supports	the	basic	effort

devoted	to	understanding	critical	phenomena.

4.	The	Year	1937:	A	Revolution	Begins

4.1	Landau's	Generalization

Lev	Landau	followed	van	der	Waals,	Pierre	Curie,	and	Ehrenfest	in	noticing	a	deep	connection	among	different

phase	transition	problems	(Daugherty	2007).	Landau	translated	this	observation	into	a	mathematical	theory	in	a

novel	and	interesting	way.	Starting	from	the	recognition	that,	in	the	neighborhood	of	a	critical	point,	each	phase

transition	was	a	manifestation	of	a	broken	symmetry,	he	used	the	order	parameter	to	describe	the	nature	and	the

extent	of	symmetry	breaking	(Landau	1937).

Landau	generalized	the	work	of	others	by	writing	the	free	energy	as	an	integral	over	all	space	of	an	appropriate

function	of	the	order	parameter.	The	dependence	upon	r	indicates	that	the	order	parameter	is	considered	to	be	a

function	of	position	within	the	system.	In	the	simplest	case,	described	above,	the	phase	transition	is	one	in	which

the	order	parameter,	say	the	magnetization,	changes	sign. 	In	that	case,	the	appropriate	free	energy	takes	the

form	(15)

where	A,B,C,…	are	parameters	that	describe	the	particular	material	and	Ψ(r)	is	the	order	parameter	at	spatial

position	r.	In	recognition	of	the	delicacy	of	the	critical	point,	each	term	goes	to	zero	more	rapidly	than	Ψ(r) 	as

criticality	is	approached.

The	next	step	is	to	use	the	well-known	rule	of	thermodynamics	that	the	free	energy	is	minimized	by	the	achieved

value	of	every	possible	macroscopic	thermodynamic	variable	within	the	system.	Landau	took	the	magnetization

density	at	each	point	to	be	a	thermodynamic	variable	that	could	be	used	to	minimize	the	free	energy.	Using	the

calculus	of	variations	one	then	gets	an	equation	for	the	order	parameter:	(16)

One	would	get	a	result	of	precisely	this	form	by	applying	the	mean	field	theory	magnetization	equation	near	the

critical	point.	The	B-term	is	identified	by	this	comparison	as	being	proportional	to	the	temperature	deviation	from

criticality,	B	=	−At/2.

In	some	sense,	of	course,	Landau's	critical	point	theory	is	nothing	new.	All	his	results	are	contained	within	the

earlier	theories	of	the	individual	phase	transitions.	However,	in	another	sense	his	work	was	a	very	big	step	forward.

By	using	a	single	formulation	that	could	encompass	all	critical	phenomena	with	a	given	symmetry	type,	he	pointed

out	the	close	similarity	among	different	phase	transition	problems.	And	indeed	in	the	modern	classification	of	phase

transition	problems	(Kadanoff	et	al.	1967),	the	two	main	elements	of	the	classification	scheme	are	the	symmetry	of

the	order	parameter	and	the	dimension	of	the	space.	Landau	got	the	first	one	right	but	not,	at	least	in	this

variational	formulation,	the	second	classifying	feature.	On	the	other	hand,	Landau's	inclusion	of	the	space

gradients	that	then	brought	together	the	theory's	space	dependence	and	its	thermodynamic	behavior	also	seems,

from	a	present-day	perspective,	to	be	right	on.

β
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4.2	Summary	of	Mean	Field	Theories

As	already	mentioned,	Landau's	1937	result	provides	a	kind	of	mean	field	theory	that	agrees	in	all	essential	ways

with	the	results	of	the	main	previous	workers.	The	only	difference	is	that	Landau	produced	a	specialized	theory

intended	to	apply	mostly	to	the	region	near	the	critical	point.	From	the	point	of	view	of	the	discussion	that	will	follow

the	main	points	of	his	theory	are:

•	Universality.	The	Landau	theory	gives	an	equation	for	the	order	parameter	as	a	function	of	the

thermodynamic	parameters	(e.g.,	t	and	h)	that	is	universal:	it	only	depends	upon	the	kind	of	symmetry	reflected

in	the	ordering.

•	Symmetry.	A	first-order	phase	transition	is	often,	but	not	always,	a	reflection	of	a	change	in	the	basic

symmetry	of	the	condensed	system.

•	Interactions.	This	symmetry	change	is	usually	caused	by	local	interactions	among	the	basic	constituents	of

the	system.

•	Scaling.	The	results	depend	upon	simple	ratios	of	the	thermodynamic	parameters	raised	to	powers.	For

example,	in	the	ferromagnetic	transition	all	physical	quantities	depend	upon	the	ratio	t /h .	In	subsequent

theories,	the	restriction	to	simple	powers	will	disappear.

•	Order	parameter	jump.	At	the	first-order	phase	transition,	there	is	a	discontinuous	jump	in	the	order	parameter.

As	the	critical	point	is	approached,	the	jump	goes	to	zero	with	critical	index	β	=	1/2	as	in	Eq.	(5).

•	Correlation	length.	The	correlation	length	goes	to	infinity	at	criticality	as	in	Eq.	(6)	with	an	index	ν	=	1/2.

As	we	shall	see,	for	many	purposes,	the	mean	field	theories	have	been	replaced	by	a	renormalization	group

theory	of	phase	transitions.	The	qualitative	properties	of	mean	field	theory,	like	universality	and	scaling,	have	been

retained.	On	the	other	hand,	all	the	quantitative	properties	of	the	theory,	for	example,	the	values	of	the	critical

indices,	have	been	replaced.

4.3	Away	from	Corresponding	States—Toward	Universality

Landau's	calculation	represented	the	high-water	mark	of	the	class	of	theories	described	as	“mean	field	theories.”

He	showed	that	all	of	them	could	be	covered	by	the	same	basic	calculational	method.	They	differed	in	the

symmetries	of	the	order	parameter,	and	different	symmetries	could	give	different	outcomes.	However,	within	one

kind	of	symmetry	the	result	was	always	the	same.	This	uniform	outcome	was	very	pleasing	for	many	students	of

the	subject,	particularly	so	for	the	physicists	involved.	We	physicists	especially	like	mathematically	based

generalizations	and	Landau	had	developed	an	elegant	generalization,	which	simplified	a	complex	subject.

However,	Landau's	uniformity	was	different	from	the	theoretical	idea	of	uniformity	that	had	come	before	him.	Earlier

work	had	been	based	upon	the	idea	that	different	fluids	have	an	almost	identical	relation	expressing	the

dependence	of	their	pressure	upon	temperature	and	density.	This	idea	is	called	the	“principle	of	corresponding

states.”

This	principle	of	corresponding	states	had	broad	support	among	the	scientists	working	on	phase	transitions.

Starting	with	van	der	Waals,	continuing	with	the	work	of	Einstein	(Pais	1983,	p.	57),	George	Uhlenbeck,	and	E.	A.

Guggenheim	(1945),	work	on	phase	transitions	was	inspired	by	the	aim	and	hope	that	the	phase	diagrams	of	all

fluids	would	be	essentially	alike.	However,	Landau's	work	marked	a	new	beginning.	His	method	would	apply	only

near	a	critical	point	and	his	version	of	corresponding	states	could	be	expected	to	apply	only	in	this	region.	So

Landau	deepened	the	theory	but	implicitly	also	narrowed	its	domain	of	application	to	a	relatively	small	region	of	the

phase	diagram.	This	was	the	start	of	a	new	point	of	view,	which	we	shall	see	develop	in	the	rest	of	this	essay.	The

new	point	of	view	would	come	with	a	new	vocabulary	so	that	instead	of	corresponding	states	people	would	begin

to	use	the	word	“universality”	(Kadanoff	1990).

4.4	Statistical	Confusion:	A	Meeting	in	the	Netherlands

The	extended	singularity	theorem	(see	section	2)	presents	both	an	opportunity	and	a	challenge	for	understanding

phase	transitions.	The	theorem	is	self-evident	in	the	case	of	the	Ising	model	with	its	simple	sums	and	exponentials.

3 2
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It	is	less	obviously	true	for	the	statistical	mechanics	of	the	liquid–gas	phase	transition	since,	in	this	case,	the

calculation	of	the	free	energy	includes	integrals	and	also	unbounded	potentials.	However,	the	theorem	remains

true	for	that	transition.	Thus,	the	theorem	would	then	demand	an	infinite	system	for	a	sharp	liquid–gas	phase

transition.	On	the	other	hand,	the	van	der	Waals	mean	field	argument	would,	for	example,	give	a	sharp	phase

transition	in	small	systems.	This	contradiction	might	serve	as	a	confusing	element	in	the	development	of	a	theory	of

phase	transitions.

The	contradiction	was	as	old	as	the	first	definitions	of	statistical	mechanics	and	phase	transitions,	but	was

apparently	not	discussed	for	many	years.	It	might	well,	however,	have	come	up	at	a	1937	meeting	held	in

Amsterdam	to	celebrate	the	centenary	of	van	der	Waals's	birth.	Hendrik	Kramers,	George	Uhlenbeck,	and	Peter

Debye	were	all	present	at	that	occasion.	According	to	Uhlenbeck	(1978),	at	that	meeting	Kramers	pointed	out	that

the	sharp	singularity	of	a	phase	transition	could	only	occur	in	a	system	with	some	infinity	built	in	and,	for	that,	that

an	infinite	system	is	required.	Then	the	van	der	Waals	theory's	prediction	of	a	phase	transition	in	a	finite	system

could	be	viewed	as	a	grave	failure	of	mean	field	theory	and	maybe	even	of	statistical	mechanics.	E.	G.	D.	Cohen

described	material	by	Uhlenbeck	(Cohen	n.d.):	“Apparently	the	audience	at	this	van	der	Waals	memorial	meeting

in	1937,	could	not	agree	on	the	above	question,	whether	the	partition	function	could	or	could	not	explain	a	sharp

phase	transition.	So	the	chairman	of	the	session,	Kramers,	put	it	to	a	vote.”	The	proposition	was	“Can	statistical

mechanics	describe	the	liquid	state?”	The	meeting	is	said	to	have	split	50–50,	with	Debye	(!)	voting	no!

Clearly	half	the	people	at	that	meeting	were	wrong.	Seventy	plus	years	later	one	can	see	the	right	answer,	in	close

analogy	to	our	understanding	of	irreversibility.	Infinite	size	is	required	for	a	sharp	phase	transition,	but	a	large

system	can	very	well	approximate	the	behavior	of	the	infinite	system.	Finite	size	slightly	rounds	off	and	modifies	the

sharp	corners	shown	in	the	plot	of	figure	4.2.	Conventional	statistical	mechanics,	following	the	path	begun	by

Andrews,	van	der	Waals,	and	Maxwell,	can	describe	quite	well	what	happens	in	the	liquid	region,	especially	if	one

stays	away	from	the	critical	region	and	from	boiling.	In	fact,	there	are	theories,	including	one	by	John	Weeks,	David

Chandler,	and	Hans	Anderson	(1917),	that	do	a	good	job	of	describing	the	liquid	region	of	the	fluid.

However,	the	extended	singularity	theorem	does	have	its	effects.	There	are	indeed	singularities	near	the	first-order

transition	(Andreev	1964;	Fisher	1967).	These	singularities	are	very	weak	in	the	Ising	and	liquid–gas	transition,	but

will	be	stronger	when	an	unbroken	symmetry	remains	after	the	symmetry	breaking	of	the	first-order	transition.	(We

see	such	a	residual	symmetry	in	the	Heisenberg	model	of	ferromagnetism.)	Also,	there	are	quite	strong	singularities

in	the	neighborhood	of	the	critical	point,	not	correctly	described	by	mean	field	theory.	All	these	singularities	are

consequences	of	fluctuations,	which	are	not	included	in	the	mean	field	approach.

However,	the	Amsterdam	meeting	was	quite	right,	in	my	view,	to	be	disquieted	by	the	applicability	of	statistical

mechanics.	But	they	focused	upon	the	wrong	part	of	the	phase	diagram.	The	liquid	region	is	described	correctly	by

statistical	mechanics.	But	this	theory	does	not	work	well	in	the	two-phase,	“boiling”	region	of	figure	4.2.	Here	the

fluctuations	entirely	dominate	and	the	system	sloshes	between	the	two	phases.	The	behavior	of	the	interface	that

separates	the	phases	is	determined	by	delicate	effects	of	dynamics	and	previous	history	and	by	hydrodynamic

effects	including	gravity,	surface	tension,	and	the	behavior	of	droplets.	Hence,	the	direct	application	of	statistical

mechanics	is	fraught	with	difficulty	precisely	in	the	midst	of	the	phase	transition.	Thus,	the	extended	singularity

theorem	suggests	that	a	new	theory	is	required	to	treat	all	the	fluctuations	appearing	near	singularities.

5.	Beyond	(or	Beside)	Mean	Field	Theory

Weaknesses	of	mean	field	theory	began	to	become	apparent	to	the	scientific	community	immediately	after

Landau's	statement	of	the	theory	in	its	generalized	form.	This	section	will	describe	the	process	of	displacement	of

mean	field	theory,	at	least	for	behavior	near	the	critical	point,	which	we	might	say	began	in	1937	and	culminated	in

Kenneth	Wilson's	enunciation	of	a	replacement	theory	in	1971	(Wilson	1971).

Landau's	theory	provided	a	standard	and	a	model	for	theories	of	general	phenomena	in	condensed	matter	physics.

Looking	at	Landau's	result	one	might	conclude	that	a	theory	should	be	as	general	and	elegant	as	the	phenomena	it

explained.	The	mean	field	theories	that	arose	before	(and	after)	Landau's	work	were	partial	and	incomplete,	in	that

each	referred	to	a	particular	type	of	system.	That	was	certainly	necessary	in	that	the	details	of	the	phase	diagrams

were	different	for	different	kinds	of	systems,	but	somewhat	similar	for	different	materials	of	the	same	general	kind.

Landau's	magisterial	work	swept	all	these	difficulties	under	the	rug	and	for	that	reason	could	not	apply	to	the	whole
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phase	diagram	of	any	given	substance.	Thus,	if	Landau	were	to	be	correct	he	would	most	likely	be	so	in	the	region

near	criticality.	Certainly	his	theory	is	based	upon	an	order	parameter	expansion	that	only	is	plausible	in	the	critical

region.	However,	precisely	in	this	region,	as	we	shall	outline	below,	both	theoretical	and	experimental	facts

contradicted	his	theory.

5.1	Experimental	Facts

The	ghosts	of	Andrews	and	van	der	Waals	might	have	whispered	to	Landau	that	a	theory	that	predicts	β	=	1/2	near

criticality	cannot	be	correct.	In	addition,	a	much	larger	body	of	early	work	on	fluids	had	pointed	to	this	conclusion.

These	early	data,	developed	and	published	by	J.	E.	Verschaffelt	(1900)	and	summarized	by	Levelt-Sengers	(1976),

touched	almost	every	aspect	of	the	critical	behavior	of	fluids.	Verschaffelt	particularly	stresses	the	incompatibility

of	the	data	with	mean	field	theory.

Figure	4.7 	Cartoon	sketch	of	heat	capacity	in	the	neighborhood	of	critical	temperature	as	predicted	by

mean	field	theory.	The	heat	capacity	is	higher	below	T 	because	there	is	an	additional	temperature

dependence	in	the	free	energy	in	this	region	produced	by	a	term	proportional	to	the	square	of	the	order

parameter.

These	same	experimental	facts	appear	once	more	in	the	1945	work	of	E.	A.	Guggenheim	(1945),	who	compared

data	for	a	wide	variety	of	fluids.	He	says,	“The	principle	of	corresponding	states	may	safely	be	regarded	as	the

most	useful	by-product	of	van	der	Waals’	equation	of	state.	While	this	[van	der	Waals]	equation	of	state	is

recognized	to	be	of	little	or	no	value,	the	principle	of	corresponding	states	as	correctly	applied	is	extremely	useful

and	remarkably	accurate.”	He	examined	data	for	seven	fluids	on	the	line	of	the	liquid−gas	phase	transition	and	fit

the	data	to	a	power	law	with	β	=	1/3,	rather	than	the	mean	field	value	β	=	1/2.	The	latter	value	clearly	does	not

work;	the	former	fits	reasonably	well.	Thus	“corresponding	states”	receives	support	in	this	region,	but	not	mean

field	theory	per	se.

But	neither	Guggenheim	nor	Heike	Kamerlingh	Onnes	(Levelt-Segers	1976)	before	him	was	ready	to	receive

information	suggesting	that	behavior	in	the	critical	region	was	special,	so	that	the	former	rejected	mean	field	theory

while	the	latter	accepted	it	with	reservations	as	to	its	quantitative	accuracy.

Later,	near-critical	data	on	heat	capacity,	the	derivative	of	average	energy	with	respect	to	temperature,	became

available.	Mean	field	theory	predicts	a	discontinuity	in	the	constant	volume	heat	capacity	as	in	figure	4.7.	L.	F.

Kellers	(1960)	looked	at	the	normal	fluid	to	superfluid	transition	in	helium-4	(see	figure	4.8.)	The	data	on	this	phase

transition	seemed	to	support	the	view	that	the	heat	capacity	diverges	weakly,	perhaps	as	a	logarithm	of	\T	−	T \,

as	criticality	is	approached.	Similar	heat	capacity	curves	were	observed	by	Alexander	Voronel’	(Bagatskii,

Voronel’,	and	Gusak	1963;	Voronel’	et	al.	1964)	in	the	liquid–gas	transition	of	classical	gases	and	in	further	work	in

helium	(Moldover	and	Little	1965).

5.2	Theoretical	Facts
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Figure	4.8 	Heat	capacity	as	measured.	This	picture,	the	work	of	Moldover	and	Little	(1965),	shows

measured	heat	capacities	for	the	normal–superfluid	transition	of	helium-4,	labeled	as	T ,	and	the	liquid–

vapor	transition	of	helium-3	and	helium-4.	Note	that	all	three	heat	capacities	seem	to	spike	at	the	critical

point,	in	contrast	to	the	prediction	of	mean	field	theory.

As	we	have	seen,	experimental	evidence	suggested	that	mean	field	theory	was	incorrect	in	the	critical	region.	A

further	strong	argument	in	this	direction	came	from	Lars	Onsager's	exact	solution	(1944)	of	the	two-dimensional

Ising	model,	followed	by	C.	N.	Yang's	calculation	(1952)	of	the	zero-field	magnetization	for	that	model.	Onsager's

result	for	the	heat	capacity	diverged	as	the	logarithm	of	T	−	T 	as	did	the	experimental	observations,	as	shown,	for

example,	in	figure	4.8,	but	did	not	resemble	the	discontinuity	of	mean	field	theory.

Yang's	results,	for	which	β	=	1/8,	also	disagreed	with	mean	field	theory,	which	has	β	=	1/2.	The	Onsager	solution

implies	a	correlation	length	with	ν	=	1,	which	is	not	the	mean	field	value	ν	=	1/2;	see	Eq.	(6).

The	most	systematic	theoretical	discrediting	of	mean	field	theory	came	from	the	series	expansion	work	of	the	King's

College	(London)	school,	under	the	leadership	of	Cyril	Domb,	Martin	Sykes,	and—after	a	time—Michael	Fisher

(Domb	1996;	Niss	2005).	Recall	that	the	Ising	model	is	a	simplified	model	that	can	be	used	to	describe	magnetic

transitions.	It	is	described	by	a	strength	of	the	coupling	between	neighboring	spins	proportional	to	a	coupling

constant	J.	The	statistical	mechanics	of	the	model	is	defined	by	the	ratio	of	coupling	to	temperature,	specifically	K	=

−J/T.	One	can	get	considerable	information	about	the	behavior	of	these	models	by	doing	expansions	of	quantities

like	the	magnetization	and	the	heat	capacity	in	power	series	in	K,	for	high	temperatures,	and	e 	for	low

temperatures.	The	group	at	King's	developed	and	used	methods	for	doing	such	expansions	and	then	analyzing

them	to	obtain	approximate	values	of	critical	indices	like	β	and	ν.	The	resulting	index-values	in	two	dimensions

agreed	very	well	with	values	derived	from	the	Onsager	solution.	In	three	dimensions,	models	on	different	lattices

gave	index	values	roughly	agreeing	with	experiment	on	liquids	and	magnetic	materials,	but	differing	substantially

from	predictions	of	mean	field	theory.	This	work	provided	a	powerful	argument	indicating	that	mean	field	theory	was

wrong,	at	least	near	the	critical	point.	It	also	played	a	very	important	role	in	focusing	attention	upon	that	region.

Another	reason	for	doubting	mean	field	theory,	ironically	enough,	came	from	Landau	himself.	In	1941,	Andrei

Kolmogorov	developed	a	theory	of	turbulence	based	upon	concepts	similar	to	the	ones	used	in	mean	field	theory,

in	particular	the	idea	of	a	typical	velocity	scale	for	velocity	differences	over	a	distance	r	(Kolmogorov	1941).	These

differences	would,	in	his	theory,	have	a	characteristic	size	that	would	be	a	power	of	r.	Landau	criticized

Kolmogorov's	theory	saying	that	it	did	not	take	into	account	fluctuations	(Frisch	1995),	whereupon	Kolmogorov

modified	the	theory	to	make	it	substantially	less	similar	to	mean	field	theory	(1962).

5.3	Spatial	Structures

The	spatial	structure	of	mean	field	theory	does	not	agree	with	the	theorem	that	phase	transitions	can	only	occur	in

infinite	systems.	Mean	field	theory	is	based	on	the	alignment	of	order	parameter	values	at	neighboring	sites,	so	that

particles	will	order	if	neighboring	particles	are	ordered	also.	Any	collection	of	coupled	spins	can	have	a	mean	field

theory	phase	transition.	Thus,	two	spins	and	a	bond	are	quite	sufficient	to	produce	a	phase	transition	in	a	mean

field	argument	like	that	in	section	3.2.	On	the	other	hand,	the	extended	singularity	theorem	insists	that	the

occurrence	of	a	phase	transition	requires	some	sort	of	infinity,	most	often	the	existence	of	an	infinite	number	of

interacting	parts	within	the	system.
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As	we	shall	see,	what	is	wrong	with	mean	field	theory	is	that	in	the	critical	region	the	effect	of	the	average	behavior

of	the	order	parameter	can	be	completely	swamped	by	fluctuations	in	this	quantity.	In	1959	and	1960,	A.	P.

Levanyuk	and	Vitaly	Ginzburg	described	a	criterion	that	one	could	use	to	determine	whether	the	behavior	near	a

phase	transition	was	dominated	by	average	values	or	by	fluctuations	(Levanyuk	1959;	Ginzburg	1960).	For

example,	when	applied	to	critical	behavior	of	the	type	seen	in	the	simplest	version	of	the	Ising	model,	this	criterion

indicates	that	fluctuations	dominate	in	the	critical	region	whenever	the	dimension	is	less	than	or	equal	to	four.

Hence,	mean	field	theory	is	wrong(47)	for	all	the	usual	critical	phenomena	in	systems	with	dimension	smaller	than

or	equal	to	four. 	Conversely,	this	criterion	suggests	that	mean	field	theory	gives	the	leading	behavior	above	four

dimensions.

6.	New	Foci;	New	Ideas

6.1	Bureau	of	Standards	Conference

So	far,	the	field	of	phase	transitions	had	lived	up	perfectly	to	Thomas	Kuhn's	(1962)	view	of	the	conservatism	of

science.	Before	World	War	II,	the	only	theory	of	phase	transitions	was	mean	field	theory.	No	theory	or	model

yielded	Eq.	(5)	with	any	value	of	β	different	from	one	half.	There	was	no	focus	for	anyone's	discontent.	For	this

reason,	the	mean-field-theory	point	of	view	continued	on,	despite	evidence	to	the	contrary,	until	a	set	of	events

occurred	that	would	move	the	field	in	a	new	direction.	One	crucial	event	was	the	conference	on	critical

phenomena	held	at	the	US	National	Bureau	of	Standards	in	1965	(NBS	1965).	The	late	Melville	Green	was	the

moving	spirit	behind	this	meeting.	The	point	of	this	conference	was	that	behavior	near	the	critical	point	formed	a

separate	body	of	science	that	might	be	studied	on	its	own	merits,	independent	of	the	rest	of	the	phase	diagram.	In

the	years	just	before	the	conference,	enough	work	(Domb	and	Miedema	1964;	Fisher	1967;	Heller	1967)	had	been

done	so	that	the	conference	could	serve	as	an	inauguration	of	a	new	field.	We	have	mentioned	the	experimental

studies	of	Kellers	and	of	the	Voronel’	group.	At	roughly	the	same	time	important	theoretical	work	was	done	by

Alexander	Patashinskii	and	Valery	Pokrovsky	(Patashinskii	and	Pokrovsky	1964),	Benjamin	Widom	(1964;	1965a

and	b)	and	myself	(1966),	which	would	form	a	basis	for	a	new	synthesis.	The	experimental	and	theoretical	situation

just	after	the	meeting	was	summarized	in	reviews	(Fisher	1967;	Heller	1967;	Kadanoff	et	al.	1967).	This	section

begins	by	reporting	on	those	new	ideas	and	then	describes	their	culmination	in	the	work	of	Kenneth	G.	Wilson

(1971).

6.2	Correlation	Function	Calculations

For	many	years	the	Landau	group	had	been	using	field	theory	to	describe	the	critical	point.	Two	young

theoreticians,	Patashinskii	and	Pokrovsky,	focused	their	attention	upon	the	correlated	fluctuations	of	order

parameters	at	many	different	points	in	space.	Their	result	was	simple	but	powerful.	Consider	the	result	of

calculating	the	average	of	the	product	of	m	local	order	parameter	operators	at	m	different	positions,	r ,	in	a

system	at	the	critical	point.	(All	differences	between	positions	of	the	operators	should	be	large	in	comparison	to	the

distance	between	neighboring	sites	or	the	range	of	forces.)	Compare	this	average	with	the	same	correlation

function	calculated	at	the	positions	ℓ	×	r .	All	that	has	been	done	is	to	change	the	length-scale	on	which	the

correlations	have	been	defined.	Patashinskii	and	Pokrovsky	then	argued	that	this	change	in	scale	was	an

invariance	of	the	system	so	that	the	two	correlation	functions	will	have	precisely	the	same	structure	(Patashinskii

and	Pokrovsky	1964),	and	differ	by	a	factor	ℓ .	A	similar	rule,	with	a	different	index	holds,	for	other	kinds	of

fluctuating	quantities	near	the	critical	point	(Patashinskii	and	Pokrovsky	1978).	These	authors	succeeded	in	getting

the	right	general	structure	of	the	correlations.	In	building	upon	the	early	work	of	Widom,	these	authors	succeeded

in	constructing	most	of	the	elements	of	the	two-index	scaling	theory	of	critical	phenomena.	Patashinskii	and

Pokrovsky's	work	pointed	the	way	toward	future	field	theoretic	calculations	of	correlation	behavior.

In	parallel,	I	calculated	(1966)	the	long-distance	form	of	the	spin	correlation	function	for	the	two-dimensional	Ising

model	by	making	use	of	the	Onsager	solution.	This	was	the	part	of	a	long	series	of	calculations	that	would	give

insight	into	the	structure	of	that	model	(McCoy	and	Wu	1973).	Those	insights	would	be	quite	crucial	in	establishing

the	fundamental	theory	of	behavior	at	the	critical	point.

6.3	Widom	Scaling
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Benjamin	Widom	(1964;	1965a	and	b;	see	figure	4.9)	developed	a	phenomenological	theory	of	the

thermodynamics	near	critical	points.	(He	studied	the	liquid–gas	transition,	but	here	his	results	will	be	stated	in	the

language	of	the	magnetic	transition,	in	which	the	temperature	deviation	from	criticality	is	t	and	the	symmetry	of	the

ordering	is	broken	by	a	magnetic	field,	h.)	If	t	is	zero,	the	average	order	parameter,	〈	σ	〉,	was	experimentally	seen

to	be	proportional	to	h 	where	δ	is	a	critical	index	known	to	be	close	to	4.4	in	three	dimensions	(Widom	and	Rice

1955)	and	15	in	two	dimensions	(Kadanoff	et	al.	1967).	As	discussed	above,	if	h	=	0	and	t	〈	0,	then	〈	σ	〉	is

proportional	to	±(−t) .	He	then	said	that,	near	the	critical	point,	no	one	of	these	three	quantities	has	a	natural	size,

but	instead	each	one	should	be	measured	against	the	size	of	the	others.	This	led	him	to	suggest	(1965)	a	general

formula	for	the	magnetization	near	the	critical	point	that	could	fit	both	limiting	forms,	specifically	(17)

where	g	is	a	function	that	would	have	to	be	determined	experimentally.

In	this	way	Widom	got	very	concrete	and	precise	results	from	his	initial	requirement	that	each	small	quantity,	〈	σ	〉,

h,t,	and	so	on	be	measured	against	another	small	quantity.	He	was	able	to	predict	the	index-value	to	describe	how

every	thermodynamic	quantity	would	go	to	zero	or	infinity	at	criticality.	All	these	critical	indices	would	then	be

determined	from	just	the	two	indices,	β	and	δ.	(See	Sengers	and	Shanks	(2009)	for	a	comparison	of	the	results	of

this	theory	with	experiment.)

Click	to	view	larger

Figure	4.9 	Benjamin	Widom,	left,	and	Michael	Fisher,	right.	Widom	is	a	Chemistry	Professor	at	Cornell.

Fisher	has	been	at	King's	College	(London),	Cornell,	and	the	University	of	Maryland.

These	results	were	published	in	a	paper	in	the	Journal	of	Chemical	Physics	(1965).	In	an	adjacent	paper,	Widom

also	got	a	scaling	relation	(1965)	for	the	surface	tension,	the	free	energy	of	the	boundary	between	liquid	and

vapor,	by	relating	it	to	the	coherence	length.	To	get	this,	think	of	an	interface	covered	by	many	structures

produced	by	the	critical	behavior.	One	might	expect	the	characteristic	size	and	spacing	of	these	structures	to	be	a

correlation	length	and	that	each	such	structure	would	bring	in	an	extra	free	energy	of	order	T.	Therefore	one

expects	that	the	entire	interface	would	produce	an	extra	free	energy	per	unit	area	of	order	of	T	times	the	number

of	structures	that	could	be	placed	to	fill	a	unit	area,	ξ .	In	view	of	Eq.	(6),	which	ascribes	a	critical	index	ν	to	ξ,	we

would	have	a	surface	tension	that	varies	as	t .	This	result	derived	by	Widom	must	have	pleased	him	very	much,

since	it	shed	light	on	a	difficulty	that	went	back	to	van	der	Waals.	The	theory	of	the	latter	gave	a	critical	index	for

the	surface	tension	of	1.5,	while	van	der	Waals's	and	later	experiments	gave	results	in	the	range	1.22	to	1.27.

Widom's	new	theory	offered	a	hope	that	this	old	discrepancy	between	theory	and	experiment	could	soon	be

resolved.

An	estimation	essentially	similar	to	the	one	Widom	used	for	the	surface	tension	indicates	that	the	singular	term	in

the	bulk	free	energy	has	an	expected	behavior	like	t .	This	result	follows	from	the	idea	that	the	free	energy	in	a

three-dimensional	system	would	have	its	singular	part	determined	by	excitations	with	an	energy	of	order	T.	These

excitations	would	have	a	size	equal	to	the	correlation	length	and	a	density	equal	to	the	inverse	cube	of	the

correlation	length.	Thus,	the	surface	tension	and	the	free	energy	density	provide	a	bridge	between	an

understanding	of	the	correlation	length	and	an	understanding	of	thermodynamic	properties.	This	bridge	is	not	like

anything	contained	in	the	mean	field	theories.	In	fact	these	relations,	termed	hyper-scaling	relations,	are	the	most

characteristic	feature	of	the	renormalization	theory	that	will	soon	arrive	on	the	scene.

6.4	Less	Is	the	Same:	Block	Transforms	and	Scaling
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Widom	supplied	much	of	the	answer	to	questions	about	the	thermodynamics	of	the	critical	point.	I	then	supplied	a

part	of	the	strategy	for	deriving	the	answer	(1966).I	will	now	describe	the	method	in	a	bit	of	detail,	since	the

calculation	provides	some	insight	into	the	structure	of	the	solution.

Imagine	calculating	the	free	energy	of	an	Ising	model	near	its	critical	temperature	based	upon	the	interactions

incorporated	in	Ising's	Hamiltonian	function	for	the	problem.	The	result	will	depend	upon	the	number	of	lattice	sites,

the	temperature	deviation	from	criticality	and	the	dimensionless	magnetic	field.	Next	imagine	redoing	the

calculation	using	a	new	set	of	variables	constructed	by	splitting	the	system	into	cells	containing	several	spins	and

then	using	new	spin	variables,	each	intended	to	summarize	the	situation	in	a	block	containing	several	old	spin

variables.	(See	figure	4.10.)	To	make	that	happen	one	can,	for	example,	pick	the	new	variables	to	have	the	same

direction	as	the	sum	of	the	old	spin	variables	in	the	block	and	the	same	magnitude	as	each	of	the	old	variables.

The	change	could	then	be	represented	by	saying	that	the	distance	between	nearest	neighboring	lattice	sites	would

change	from	its	old	value,	a,	to	a	new	and	larger	value,	a′.	(See	figure	4.10,	in	which	the	lattice	constant	has	grown

by	a	factor	ℓ	=	3.)	In	symbols,	the	change	is	given	by	(18a)

One	can	then	do	an	approximate	calculation	and	set	up	a	new	“effective”	free	energy	calculation	that	will	give	the

same	answer	as	the	old	calculation	based	upon	an	approximate	“effective”	Hamiltonian	making	use	of	the	new

variables.	Near	the	critical	point,	one	could	argue	on	the	basis	of	universality 	that	the	new	Hamiltonian	could	be

written	to	have	the	same	structure	as	the	old	one.	However,	near	criticality,	the	new	parameters	in	the	effective

Hamiltonian,	the	number	of	lattice	sites,	the	temperature	deviation	from	criticality,	and	the	dimensionless	magnetic

field	all	are	proportional	to	the	corresponding	old	parameters.	This	change	can	be	represented	by	writing	(18b)

(18c)

(18d)

In	the	first	of	these	statements,	Eq.	(18b),	N	is	the	number	of	lattice	sites	and	d	is	the	dimension	of	the	lattice.	The

equation	simply	describes	how	the	number	of	sites	depends	upon	the	spacing	between	lattice	sites.

Figure	4.10 	Making	blocks.	In	this	illustration	a	two-dimensional	Ising	model	containing	81	spins	is	broken

into	blocks,	each	containing	9	spins.	Each	one	of	those	blocks	is	assigned	a	new	spin	with	a	direction	set

by	the	average	of	the	old	ones.	We	imagine	the	model	is	reanalyzed	in	terms	of	the	new	spin	variables.

The	other	two	equations	are	far,	far	less	simple.	Eq.	(18c)	says	that	the	new	situation	has	a	symmetry	breaking	field

of	the	same	sign	as	the	previous	one.	That	would	be	a	reflection	of	the	fact	that	both	situations	would	have	the

same	kind	of	ordering.	The	coefficient,	(ℓ) ,	might	be	derived	after	some	sort	of	statistical	mechanical	analysis	of

the	situation.	It	is,	as	it	stands,	just	a	number	defined	by	the	result	of	that	calculation	and	one	that	might	depend

upon	the	exact	way	in	which	we	chose	to	define	the	new	spin	variable.
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The	equation	for	the	new	value	of	the	new	deviation	from	criticality,	t	=	K 	−	K,	could	be	described	in	similar	terms.

It	is	reasonable	to	assume	that	if	the	original	system	is	at	its	critical	point,	so	is	the	new	description	obtained	after

the	block	transformation.	Further	it	is	reasonable	to	argue	that	the	transformation	should	engender	no	singularities,

thus	requiring	that	a	new	temperature-deviation	from	criticality	would	have	a	linear	dependence	upon	the	old

deviation.	So	the	remaining	point	is	to	calculate	the	coefficient	in	the	linear	relation	and	express	it	in	the	special

manner	given	in	Eq.	(18d).

7.	The	Wilson	Revolution

7.1	Physical	Space;	Fourier	Space

Before	entering	into	Wilson's	construction	of	the	renormalization	group	theory,	I	should	touch	upon	a	point	of

technique.

The	proportionalities	in	Eq.	(18d)	and	Eq.	(18c)	are	representations	of	scaling,	and	the	coefficients	in	the	linear

relations	define	the	scaling	relations	among	the	variables.	Note	that	here	scaling	is	viewed	as	a	change	in	the

effective	values	of	the	thermodynamic	parameter	produced	by	a	change	in	the	length	scale	at	which	the	system	is

analyzed.	The	length	scale	must	be	irrelevant	to	the	determination	of	the	eventual	answer	and	must	drop	out	of	the

final	result	for	the	free	energy.	It	is	this	dropping	out	that	gives	the	empirical	relations	proposed	by	Widom.	These

scaling	relations	then	give	a	theory	with	all	the	empirical	content	of	Widom's	work	(1965a),	but	backed	by	the

outlines	of	a	conceptual	and	calculational	scheme.

This	theoretical	work	of	Kadanoff	(1966);	Patashinskii	and	Pokrovsky	(1964);	and	Widom	(1965a)	was	well-

received.	The	review	paper	of	(Kadanoff	et	al.	1967)	was	particularly	aimed	at	seeing	whether	the	new

phenomenology	agreed	with	the	experimental	data.	It	reviewed	most	of	the	recent	experiments	but	missed	large

numbers	of	the	older	ones	that	are	included	in	Domb	(1966)	and	Levelt–Sengers	(1976).	All	of	this	activity

validated	the	consideration	of	the	critical	region	as	an	appropriate	subject	of	study	and	led	to	a	spate	of

experimental	and	numerical	work,	but	hardly	any	further	theoretical	accomplishments	until	the	work	of	Wilson

(1971).

There	are	two	traditional	ways	of	setting	up	a	Hamiltonian	or	free	energy	that	will	then	provide	a	microscopic

description	of	the	system.	One	way	is	in	coordinate	space,	the	real	XYZ	space	in	which	you	and	I	live.	This	setup	is

the	one	we	used	for	the	Ising	model,	the	Landau	theory,	and	for	the	description	of	the	previous	subsection.	It	is

relatively	easy	to	visualize	and	the	most	effective	method	for	problems	in	low	dimensions,	specifically	for	phase

transitions	in	two	dimensions.

The	other	method	employs	Fourier	transforms.	It	represents	every	variable	in	terms	of	its	Fourier	transform.	For

example,	the	order	parameter	field	of	the	Landau	theory	has	a	transform	(19)

The	integral	covers	a	space	of	dimensionality	d.	Using	ψ(k)	as	our	basic	statistical	variable	the	Landau	free	energy

may	be	written	as	(20)

This	form	in	Eq.	(20)	is	used	to	reach	beyond	mean	field	theory	and	take	into	account	possible	fluctuations	in	the

local	variables	that	describe	the	system.	To	do	this,	one	uses	F/T	as	a	kind	of	a	kind	of	Hamiltonian	for	phase

transition	problems.	In	this	use,	the	k-space	is	divided	into	small	pieces	and	ψ(k)	is	taken	to	be	an	integration

variable	in	each	piece.	In	this	context	the	expression	in	Eq.	(20)	is	called	the	Landau-Ginzburg-Wilson	free	energy.

The	k-shell	integration	just	described	is	easily	performed	if	the	free	energy	includes	only	linear	and	quadratic	terms

in	the	variable,	ψ(k).	The	fourth-order	term	provides	a	problem,	one	that	can	be	attacked	by	using	the

c
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renormalization	method.	The	term	involving	k 	ensures	that	the	contribution	to	the	integral	for	the	highest	values	of

k	will	be	small	and	relatively	easily	controlled.	So,	one	successively	integrates	over	shells	in	k-space,	starting	from

the	highest	values	of	|k|,	and	working	downward.	As	each	integral	is	done,	one	stops	and	regroups	terms	to	bring

everything	back	close	to	the	form	of	the	original	Landau-Ginzburg-Wilson	free	energy.	As	one	does	this,	the

coefficients	multiplying	the	various	terms	change.

The	k-space	method	is	particularly	appropriate	for	higher	dimensions,	going	down	to	roughly	three	dimensions.	It	is

the	usual	method	of	choice	in	particle	physics.	In	statistical	physics,	Wilson	and	Fisher	(1972)	have	done	a	very

convincing	calculation	in	which	they	analyze	the	behavior	near	four	dimensions	by	assuming	that	the	fourth-order

term	is	quite	small.	(See	the	discussion	of	e-expansion	in	section	7.3.1	below.)

Both	real-space	and	k-space	methods	have	added	considerably	to	our	understanding	of	phase	transitions.	I	use

the	former	to	describe	the	concept	of	renormalization,	since	I	find	it	more	natural	to	think	about	phenomena	in	real

space	rather	than	Fourier	space.	In	particle	physics,	however,	our	basic	conceptualization	is	based	upon,	naturally

enough,	particles.	These	are	best	followed	in	k-space,	since	the	k	labels	the	momentum	of	particles.	So	the	two

different	formulations	are	complementary,	with	the	best	applications	to	problems	in	different	dimensionalities	and

indeed	to	different	fields	of	science.

The	extended	singularity	theorem,	of	course,	applies	equally	in	both	the	real-space	and	the	Fourier-space

formulations.	In	real-space,	in	order	to	have	the	potential	for	generating	singularities,	and	thereby	phase

transitions,	the	system	must	be	infinite	in	two	or	more	dimensions.	In	Fourier-space,	the	corresponding	statement	is

that	two	or	more	components	of	the	k-vector	must	extend	to	infinity.	The	remaining	requirement	in	either

formulation	is	that	the	renormalization	must	lead	to	a	nontrivial	fixed	point,	one	with	infinitely	large	values	of	some

of	the	couplings.

7.2	Wilson's	Contribution

Around	1970,	these	concepts	were	extended	and	combined	with	previous	ideas	from	particle	physics	(Gell-Mann

and	Low	1954;	Stueckelberg	and	Peterman	1953)	to	produce	a	complete	and	beautiful	theory	of	critical	point

behavior,	the	renormalization	group	theory	of	Kenneth	G.	Wilson	1971.	(See	figure	4.11.)	The	basic	idea	of

reducing	the	number	of	degrees	of	freedom,	described	in	Kadanoff	1966,	was	extended	and	completed.

Wilson,	in	essence,	converted	a	phenomenology	into	a	calculational	method	by	introducing	ideas	not	present	in

the	earlier	phenomenological	treatment	(Kadanoff	1966):

Figure	4.11 	Kenneth	G.	Wilson	at	California	Tech	where	he	did	a	Ph.D.	thesis	under	Murray	Gell-Mann,

a	major	contributor	to	early	work	on	renormalization	in	particle	physics.	This	was	followed	by	a	Junior

Fellowship	at	Harvard,	a	year's	stay	at	CERN,	and	then	an	academic	appointment	at	Cornell.	The

renormalization	group	work	was	done	while	Wilson	was	at	Cornell.

•	Instead	of	using	a	few	numbers,	for	example,	t,h,	to	define	the	parameters	multiplying	a	few	coupling	terms,	he

extended	the	list	of	possible	couplings	to	include	all	the	kinds	of	terms	that	might	be	found	in	the	Hamiltonian	of

the	system.	Thereby	it	became	automatically	true	that	the	renormalization	would	maintain	the	different	coupling

terms,	but	only	change	the	size	of	the	parameters	which	multiplied	them.
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•	Wilson	considers	indefinitely	repeated	transformations,	as	in	the	earlier	particle	physics	work.	Each

transformation	increases	the	size	of	the	length	scale.	In	concept,	then,	the	transformation	would	eventually

reach	out	for	information	about	the	parts	of	the	system	that	are	infinitely	far	away.	In	this	way,	the	infinite	spatial

extent	of	the	system	became	part	of	the	calculation.	The	idea	that	behaviors	at	the	far	reaches	of	the	system

would	determine	the	thermodynamic	singularities	were	thence	included	in	the	calculation.

•	Furthermore,	Wilson	added	the	new	idea	that	a	phase	transition	would	occur	when	the	transformations

brought	the	coupling	to	a	fixed	point.	That	is,	after	repeated	transformations,	the	couplings	all	would	settle	down

to	a	behavior	in	which	further	renormalization	transformation	would	leave	them	unchanged.

•	Finally,	at	the	fixed	point,	the	correlation	length	would	be	required	to	be	unchanged	by	renormalization

transformations.	The	transformation	multiplies	the	length	scale	by	a	factor	that	depends	upon	the	details	of	the

transformation.	Wilson	noted	that	there	are	two	ways	that	the	correlation	length	might	be	unchanged.	For

transformations	related	to	a	continuous	transition,	the	correlation	length	is	infinite,	thence	reflecting	the	infinite-

range	correlation.	For	transformations	related	to	first-order	transitions,	the	correlation	length	is	zero,	reflecting

the	local	interactions	driving	the	transition.

A	very	important	corollary	to	the	use	of	repeated	transforms	is	the	idea	of	running	coupling	constants.	As	the

length	scale	changes,	so	do	the	values	of	the	different	parameters	describing	the	system.	In	the	earlier	field

theoretical	work	(Gell-Mann	and	Low	1954;	Stueckelberg	and	Peterman	1953),	the	important	parameters	were	the

charge,	masses,	and	couplings	of	the	“elementary”	particles	described	by	the	theory.	The	parameters	to	be	varied

were	specified	at	the	beginning	and	were,	in	no	sense,	the	outcome	of	the	renormalization	calculation.	The	change

in	length	scale	then	changed	these	prespecified	parameters	from	the	“bare”	values	appearing	in	the	basic

Hamiltonian	to	renormalized	values	that	might	be	observed	by	experiments	examining	a	larger	scale.

The	use	of	renormalized	or	“effective”	couplings	was	current	not	only	in	particle	theory	but	also	in	the

quasiparticle	theories	that	are	pervasive	in	condensed	matter	physics	(Anderson	1997).	In	these	theories	one

deals	with	particles	that	interact	strongly	with	one	another.	Nonetheless,	one	treats	them	using	the	same

Hamiltonian	formalism	that	one	would	use	for	noninteracting	particles.	The	only	difference	from	free	particles	is	that

the	Hamiltonian	is	allowed	to	have	a	position	and	momentum	dependence	that	reflects	the	changes	produced	by

the	interactions.	In	this	work,	the	quantities	to	be	renormalized	are	prespecified.	In	contrast,	Wilson's

renormalization	calculation	determines	what	is	to	be	renormalized	as	a	part	of	the	calculation.

7.3	Building	upon	the	Revolution

This	renormalization	theory	provided	a	basis	for	the	development	of	new	methods	that	could	be	used	for	building

an	understanding	of	critical	phenomena	and	additional	subjects	as	diverse	as	particle	physics,	the	development	of

chaos,	the	behavior	of	computer	programs,	as	well	as	dynamical	behavior	in	condensed	matter	physics.	It

provided	a	framework	into	which	one	could	fit	a	variety	of	different	theories	and	physical	problems.	There	was	a

tremendous	flowering	of	new	work	following	upon	Wilson's.

7.3.1	The	ε-expansion

But	first	the	renormalization	method	had	to	gain	acceptance.	The	most	substantial	step	in	that	direction	came	from

the	ε-expansion	of	Wilson	and	Fisher	(1972).	Here	ε	means	dimension	minus	four.	This	calculational	method

focuses	upon	the	dependence	of	physical	quantities	upon	dimension.	It	uses	renormalization	transforms	near	four

dimensions,	where	mean	field	theory	is	almost,	but	not	quite,	correct. 	The	idea	of	using	the	dimension	of	the

system	as	a	continuously	variable	parameter	seems	a	bit	strange	at	first	sight.	However,	in	the	momentum-space

representation	of	statistical	ensembles,	each	term	in	a	perturbation	expansion	can	be	evaluated	for	all	integer

values	of	the	dimension	and	then	the	analysis	can	be	continued	to	all	values	of	the	dimension,	including	noninteger

values.

When	applied	near	four	dimensions	this	method	allows	an	almost	exact	analysis	of	the	fixed	point	behavior.	Near

the	fixed	point,	the	nontrivial	terms	in	the	free	energy,	like	the	term	proportional	to	C	in	Eq.	(20),	go	to	zero	as	the

dimension	approaches	four.	Because	of	this	simplification,	the	method	gives	quite	accurate	results	for	critical

behavior	near	four	dimensions.	Further,	it	provides	a	series	expansion	that	gives	useful	answers	for	many	different

models	in	three	dimensions.	The	close	correspondence	of	theory	and	experiment	helped	to	convince	people	that
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both	the	variable-dimension	method	and	the	renormalization	method	were	valid.	The	way	had	been	opened	for	an

explosion	of	new	calculations	and	new	understandings.

7.4	Different	Kinds	of	Fixed	Points

Wilson's	theory	gives	three	different	kinds	of	fixed	point	corresponding	to	three	qualitatively	different	points	in

phase	diagrams.	For	the	weak	coupling	fixed	point,	couplings	can	go	to	zero	and	the	correlation	length	goes	to

zero.	The	symmetry	represented	by	the	order	parameter	will	remain	unbroken.	This	kind	of	fixed	point	describes	all

areas	of	the	phase	diagram	that	do	not	touch	a	phase	transition.	For	the	strong	coupling	fixed	point,	some

couplings	will	go	to	infinity	and	the	correlation	length	goes	to	zero.	Here	the	basic	symmetry	represented	by	the

order	parameter	gets	broken	by	at	least	one	nonzero	coupling	that	violates	that	symmetry.	This	kind	of	fixed	point

describes	all	areas	of	the	phase	diagram	that	touch	a	first-order	phase	transition.	For	the	critical	fixed	point

couplings	remain	finite,	the	symmetry	remains	unbroken,	and	a	correlation	length	goes	to	infinity.

Critical	fixed	points	may	be	classified	by	their	dimension	and	by	the	symmetry	of	their	order	parameter.	The

combination	of	the	Landau	theory	and	the	ε-expansion	gave	the	first	steps	in	that	direction.	The	later	calculations

of	critical	behavior	were	then	fit	into	this	scheme.

8.	New	Concepts

8.1	Different	Scalings:	Relevant,	Irrelevant,	Marginal

Since	the	Wilsonian	point	of	view	generated	the	renormalization	of	many	different	couplings,	it	became	important	to

keep	track	of	the	different	ways	in	which	the	couplings	in	the	free	energy	would	change	as	the	length	scale

changes.	This	work	starts	with	an	eigenvalue	analysis.	One	takes	linear	combinations	of	couplings	and	arranges

the	combinations	so	that,	after	a	renormalization,	every	combination	reproduces	itself	except	for	a	multiplicative

factor.	In	other	words,	this	approach	makes	every	linear	combination	of	couplings	obey	an	equation	like	the	ones

in	Eq.	(18),	so	that	the	combination,	s,	obeys	(21)

The	different	combinations	are	then	classified	according	to	the	values	of	the	index,	y ,	which	may	be	complex.

There	are	three	possibilities	(Domb,	Green,	and	Lebowitz	2001;	see	F.	Wegner,	Vol.	6,	p.	8):

•	Relevant,	real	part	of	y 	greater	than	zero.	These	are	the	couplings	like	t	and	h	that	grow	larger	as	the	length

scale	is	increased.	Each	of	these	will,	as	they	grow,	push	one	away	from	the	critical	point.	In	order	to	reach	the

critical	point,	one	must	adjust	the	initial	Hamiltonian	so	that	these	quantities	are	zero.

•	Irrelevant,	real	part	of	y 	less	than	zero.	These	couplings	will	get	smaller	and	smaller	as	the	length	scale	is

increased	so	that,	as	one	reaches	the	largest	length	scales,	they	will	have	effectively	disappeared

•	Marginal,	real	part	of	y 	equal	to	zero.

The	last	case	is	rare.	Let	us	put	it	aside	for	a	moment	and	argue	as	if	only	the	first	two	existed.

8.2	Universality	Classes

To	study	critical	phenomena	based	upon	renormalization	transformations,	one	sets	all	the	relevant	combinations	of

couplings	to	zero	and	then	does	a	sufficient	number	of	successive	renormalizations	so	that	all	the	irrelevant

combinations	have	effectively	disappeared.	We	thus	end	up	with	a	unique	fixed	point	independent	of	the	value	of

all	of	the	irrelevant	couplings.	The	act	of	renormalization	is	a	sort	of	focusing	in	which	many	different	irrelevant

couplings	fade	away	and	we	end	up	at	a	single	fixed	point	representing	a	whole	multidimensional	continuum	of

different	possible	Hamiltonians.	These	Hamiltonians	form	what	is	called	a	universality	class.	Each	Hamiltonian	in	its

class	has	exactly	the	same	critical	point	behavior,	with	not	only	the	same	critical	indices	but	also	the	same	long-

ranged	correlation	functions,	and	the	same	singular	part	of	the	free	energy	function.

The	identity	among	different	problems	is	not	just	a	theoretical	artifact.	The	Ising	model,	single	axis	ferromagnets,

and	the	liquid–gas	phase	transition	all	show	identical	critical	properties	(Lee	and	Yang	1952a	and	b).	The	theory
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makes	these	critical	properties	vary	with	dimension,	and	experiments	bear	out	the	predicted	universality	in	the	two

observable	cases:	d	=	2	and	d	=	3.	As	another	example,	XY	ferromagnets	have	a	two	component	order	parameter,

with	the	same	symmetry	properties	as	superfluids,	with	their	complex	order	parameter.

This	universality-class	idea	has	been	applied	to	many	different	problems	beyond	critical	phenomena. 	Whenever

two	systems	show	an	unexpected	or	deeply	rooted	identity	of	behavior	they	are	said	to	be	in	the	same	universality

class.

There	are,	of	course,	many	different	universality	classes	corresponding	to	different	dimensionalities,	different

symmetries	of	the	order	parameter,	and	to	different	stability	properties	of	the	fixed	points.

Before	leaving	this	subject,	focus	once	more	on	the	possibility	of	a	marginal	behavior.	In	the	marginal	case,	we

have	a	coupling	that	does	not	vary	under	renormalization.	That	kind	of	coupling	can	produce	critical	properties

that	vary	continuously	as	some	parameter	is	varied.	For	example,	a	pair	of	coupled	Ising	models	living	in	the	same

space	show	a	marginal	behavior	of	this	kind	(Kadanoff	and	Wegner	1973).	A	different	marginal	behavior	is	shown

by	the	XY	model	in	two	dimensions	(Hadzibabic	2006;	Kosterlitz	and	Thouless	1973).

8.3	New	Kinds	of	Answers

In	one	sense	the	renormalization	group	is	rather	different	from	anything	that	had	come	before	in	statistical	physics,

and	by	extension	in	other	parts	of	physics	as	well.	Previous	work	in	statistical	physics	had	emphasized	finding	the

properties	of	problems	defined	by	statistical	sums,	each	sum	being	based	upon	a	probability	distribution	defined	by

particular	values	of	coupling	constants	like	K	and	h.	Such	sums	would	be	called	solutions	to	the	problems	in

question.	In	the	renormalization	group	work	the	emphasis	is	on	connecting	problems	by	saying	that	different

problems	could	have	identical	solutions.	The	method	involved	finding	different	values	of	couplings	that	would	then

give	identical	free	energies	and	other	properties.	These	set	of	couplings	would	then	form	a	representation	of	a

universality	class.	All	the	interactions	that	flow	into	a	given	fixed	point	in	the	course	of	an	infinite	number	of

renormalizations	belong	to	the	universality	class	of	that	fixed	point.

A	universality	class	would	give	a	solution,	in	the	old	sense,	if	one	finds	within	the	class	a	set	of	couplings	so	simple

that	the	solution	is	obvious.	This	is	what	happens	when	the	running	couplings	produce	infinitely	weak	interactions,

thereby	producing	a	weak	coupling	fixed	point.	A	strong	coupling	fixed	point	might	also	be	trivial	if	no	important

symmetry	remains	after	the	order	parameter	takes	on	a	nonzero	value.	However,	a	first-order	phase	transition

might	produce	a	nontrivial	situation	with	quite	a	bit	of	remaining	symmetry.	In	that	case,	further	analysis	is

necessary	before	one	can	get	anything	like	a	solution	in	the	old	sense	of	the	word.

Finally,	a	critical	fixed	point	is	not	really	a	“solution”	in	the	old	sense.	It	gives	us	values	of	critical	indices	and

describes	scaling	behavior,	which	can	then	be	used	to	infer	many	of	the	qualitative	properties	of	a	solution.	But

many	of	the	details	of	the	old-sense	solution	may	not	be	available	from	a	knowledge	of	the	fixed	point	alone.

8.4	Flows	and	Flow	Diagrams

As	already	mentioned,	a	renormalization	operation	differs	from	the	calculations	performed	within	the	statistical

mechanics	of	Boltzmann	and	Gibbs.	In	statistical	mechanics	you	start	with	a	statistical	ensemble,	usually	defined

with	a	Hamiltonian,	and	use	that	ensemble	to	calculate	an	average.	In	a	renormalization	operation,	you	start	with	a

statistical	ensemble,	usually	defined	by	a	Hamiltonian,	and	you	calculate	another	ensemble,	often	described	by	a

Hamiltonian	containing	different	couplings.	In	one	case	the	calculation	is,	in	brief,	ensemble	generates	averages;

in	the	other,	the	calculation	is	ensemble	generates	ensemble.	This	is	quite	a	substantial	difference.

The	part	of	mathematics	that	goes	with	standard	statistical	mechanics	is	probability	theory.	One	part	of	the

mathematics	that	goes	with	renormalization	is	called	“dynamical	systems	theory”	and	describes	how	things

change	under	transformations.	The	concepts	of	a	fixed	point	and	of	a	basin	of	attraction	belong	to	dynamical

systems	theory	rather	than	probability	theory.

Dynamical	systems	theory	is	often	used	to	describe	continuous	changes,	as,	for	example,	the	changes	in	a

mechanical	system	as	its	state	changes	in	time.	For	the	purposes	of	this	section,	I	will	speak	as	if	all

renormalization	transformations	were	continuous	changes	produced	by	an	infinitesimal	increase	in	a	basic	length.
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Thus,	the	transformation	will	be	a	→	a	+	dℓ.	Then,	every	coupling	also	undergoes	an	infinitesimal	change	K	→	K	+

dK.	In	particle	physics	this	kind	of	approach	has	the	name	of	the	Callen-Symanzik	equation	(Callan	1970;	Symanzik

1970,	1971).

The	simplest	kinds	of	flow	pictures	look	at	a	single	coupling	constant,	K,	and	how	that	coupling	changes	under

renormalization.	In	the	one-dimensional	Ising	model,	depicted	in	figure	4.12,	each	renormalization	makes	the

coupling	weaker.	Thus	the	coupling	flows	toward	the	weak	coupling	fixed	point	at	K	=	0.	In	contrast,	the	flow	in

figure	4.13	describes	the	two-dimensional	Ising	model.	The	flow	is	zero	at	the	critical	fixed	point.	To	the	left	of	the

critic	fixed	point,	all	couplings	flow	toward	the	weak	coupling	fixed	point	at	K	=	0;	to	the	right,	all	flows	go	toward

the	strong	coupling	point	at	K	=	∞.	This	diagram	describes	a	system	with	a	single	critical	point,	but	a	total	of	three

fixed	points.

Figure	4.12 	Flow	diagram	for	one-dimensional	Ising	model.	Renormalization	weakens	the	coupling	and

pushes	it	toward	a	weak	coupling	fixed	point	at	K	=	0.

Figure	4.13 	Flow	diagram	for	two-dimensional	Ising	models.	There	is	a	criticial	fixed	point	at	K	=	K .	For

initial	couplings	weaker	than	this	value,	renormalizations	weaken	the	coupling	and	push	it	toward	a	weak

coupling	fixed	point	at	K	=	0.	Conversely,	if	the	initial	couplings	are	stronger	than	K ,	renormalizations

produce	a	flow	toward	a	strong	coupling	fixed	point,	describing	a	ferromagnetic	state.

We	have	come	a	long	way	from	the	starting	point	set	by	Boltzmann	and	Gibbs.	Solutions	to	problems	in	statistical

mechanics	have	here	been	described	in	terms	of	renormalization	group	flows,	universality	classes,	and	types	of

fixed	points.	This	new	language	has	become	important	in	statistical	physics	and	has	been	extended	to	applications

well	beyond	the	situations	described	here.	This	language,	derived	from	statistical	mechanics,	has	become	even

more	pervasive	in	particle	physics,	where	coupling	constants	run	everywhere.	A	calculational	method	is	more	than

a	way	of	putting	symbols	on	paper.	It	provides	a	way	of	looking	at,	and	conceptualizing,	nature.

8.5	The	Renormalization	Group	Is	Not	a	Group

Although	the	renormalization	operation	is	usually	described	as	a	part	of	a	group,	block	transformations	actually

produce	a	semigroup.	A	group	is	a	set	of	operations	with	three	characteristics:

•	Two	operations	in	the	group,	taken	in	succession,	produce	another	group	operation.

•	The	group	contains	an	element	called	the	identity,	which	has	the	effect	of	changing	nothing	whatsoever.

•	For	each	operation	in	the	group	there	is,	as	part	of	the	group,	an	inverse	operation,	so	that	when	you

successively	perform	the	operation	and	its	inverse,	that	pair	of	operations	produces	the	identity	element.

A	semigroup	lacks	the	third	characteristic.	Once	you	have	performed	a	group	operation	you	cannot	necessarily

undo	that	operation.

The	reason	that	renormalization	produces	a	semigroup	is	that	a	block	transformation	(see	section	6.4)	loses

information.	After	the	transformation,	the	system	contains	fewer	lattice	sites	and	so	can	hold	less	“information.”

Some	irrelevant	couplings,	which	could	be	seen	before	the	transformation	have	simply	disappeared.	(These

couplings	have	the	index	value	y	=	−∞.	In	addition,	there	are	other	kinds	of	couplings,	called	“redundant,”	that	do

not	affect	the	free	energy	and	so	disappear	without	a	trace	in	the	course	of	a	renormalization.)	Both	kinds	of

coupling	make	renormalization	a	semigroup	operation.

This	characteristic	is	important	because	it	eliminates	the	possibility	of	finding	the	small-scale	Hamiltonian	of	the

system	by	looking	at	large-scale	phenomena.	Before	the	use	of	renormalization	methods	scientists	often	thought

that	a	sufficiently	accurate	and	detailed	study	of	a	system,	albeit	a	study	conducted	on	a	large	length	scale,	could

determine	all	the	basic	laws	governing	the	system,	down	to	the	smallest	scale.	In	practice,	the	disentanglement	of

microscopic	laws	has	always	proved	to	be	hard.	But,	in	principle,	it	was	always	assumed	to	be	possible.	However,
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the	renormalization	group	theory	says	that	information	will	disappear	in	the	process	of	changing	length-scales.

Even	ordinary	irrelevant	operators	have	effects	that	disappear	with	exponential	rapidity	in	the	course	of	a

renormalization	transformation.	These	do	not	produce,	in	principle,	a	disappearance	of	information	but	they	make	it

well-nigh	impossible	to	reconstruct	a	small-scale	Hamiltonian	from	large-scale	data.

8.6	A	Calculational	Method	Defines	Many	Worlds

Wilson,	in	essence,	converted	a	slightly	vague	phenomenological	theory	into	a	well-defined	calculational	method.

So	are	they	all:	classical	mechanics,	quantum	mechanics,	statistical	mechanics,	field	theory,.…,	all	calculational

methods.	But	they	are	also	each	complete	descriptions	of	some	“sub-universe.”	As	such,	they	each	engender

their	own	world	and	their	own	philosophy.	As	you	can	see	from	the	set	of	ideas	outlined	in	this	section,	the

renormalization	group	built	its	own	set	of	philosophical	perspectives,	which	then	displayed	statistical	physics	and

condensed	matter	physics	in	a	new	way.

However,	there	is	an	additional	sense	in	which	the	renormalization	group	defines	its	own	worlds.	Each	fixed	point

has	its	own	basin	of	attraction	defined	by	its	very	large	set	of	irrelevant	couplings.	This	basin	of	attraction	is	the

region	in	the	space	of	possible	Hamiltonians	that	will	eventually	flow	into	our	particular	fixed	point.	Within	this	basin,

the	flow	of	the	scaling	variables	play	a	crucial	role.	When	two	or	more	of	these	variables	interfere,	we	can	see	non-

linear	effects.	Since	we	expect	that	our	listing	of	variables	is	a	complete	list,	we	expect	that	two	variables	acting

together	will	produce	an	effect	that	we	can	describe	as	a	summed	effect	of	the	variables	on	our	previous	list.	In	this

way,	we	get	a	kind	of	multiplication	table	in	which	the	product	of	any	two	variables	is	a	sum	of	the	others	with

specified	coefficients.	Such	a	multiplication	table	is	what	the	mathematicians	call	an	algebra.	This	algebra	defines

what	is	happening	in	the	phase	transition.

The	algebras	that	have	actually	been	studied	are	a	little	deeper	than	the	one	just	described.	They	are	produced

not	just	by	the	couplings,	but	by	the	specifications	of	the	couplings	in	local	regions	of	the	system.	Therefore	the

algebras	combine	the	properties	of	space	with	the	properties	of	the	particular	fixed	point.	They	have	been	most

richly	studied	in	two	dimensions	(Belavin,	Polyakov,	and	Zamolodchikov	1984;	Friedan,	Qiu,	and	Shenker	1984)	in

which	the	spatial	part	common	to	all	these	algebras	is	called	the	Virasoro	algebra	(Virasoro	1970).	This	approach

also	plays	an	important	role	in	string	theory.

Each	fixed	point	has	its	own	unique	algebra	(Kadanoff	1969;	Wilson	1969),	called	a	short	distance	expansion	or	an

operator	product	expansion,	that	describes	the	structure	of	the	local	correlations	determining	the	fixed	point

behavior.

8.7	Extended	Singularities	Revisited

The	renormalization	group	has	an	entirely	different	spatial	structure	from	that	of	mean	field	theory.	The	difference

can	best	be	seen	by	comparing	the	Ising	model	mean	field	theory	of	Section	(3)	with	the	block	spin	formulation	of

Section	(6.4).

In	the	mean	field	formulation,	the	value	of	an	average	magnetization	at	point	r	is	determined,	first	of	all,	by	the

values	of	the	magnetization	at	points	connected	by	bonds	to	the	initial	point.	These	are	then	determined,	in	turn,	by

magnetizations	at	points	connected	to	these	new	points	by	bonds.	This	extension	process	might	continue

indefinitely	or	terminate	after	only	finding	a	finite	number	of	spins.	In	either	case,	the	theory	may	or	may	not	predict

a	phase	transition.	Mean	field	theory	does	not	have	the	right	spatial	structure	for	the	correct	prediction	of	phase

transitions.

In	contrast,	the	blocking	procedure	of	the	renormalization	group	determines	the	couplings	in	a	given	region,	in	the

first	analysis,	by	the	effects	of	couplings	in	a	region	of	size	ℓ	larger.	The	blocking	then	reaches	out	in	geometric

progression	to	regions	each	expanded	by	a	factor	of	ℓ.

Of	course,	the	block	transformation	reaches	out	more	quickly	and	effectively	than	do	the	steps	of	the	mean	field

calculation.	But	that	is	not	the	main	difference.	The	mean	field	theory	can	have	a	pseudo-phase	transition

determined	by	just	a	few	couplings.	On	the	other	hand,	if	the	block	transformation	ever	reaches	out	and	sees	no

more	couplings	in	the	usual	approximation	schemes	(Niemeijer	and	Leeuwen	1973)	that	will	signal	the	system	that

a	weak	coupling	situation	has	been	encountered	and	will	cascade	back	to	produce	a	weak	coupling	phase.	Hence
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the	blocking	approach	has	the	potential	of	using	the	right	fact	about	the	spatial	topology	to	determine	the	possibility

of	a	phase	transition.

By	this	argument	the	extended	singularity	theorem	suggests	that	phase	transitions	are	triggered	by	a	very	elegant

mathematical	juxtaposition	put	before	us	by	Nature.	On	one	hand,	the	phase	transition	is	connected	with	a

symmetry	operation	built	into	the	microscopic	couplings	of	the	system.	For	example,	the	ferromagnetic	based	upon

the	breaking	of	a	symmetry	in	the	possible	direction	of	spins.	On	the	other	hand,	the	phase	transitions	also	make

use	of	the	extended	topology	of	a	system	that	extends	over	an	effectively	infinite	region	of	space.	This	coupling	of

microscopic	with	macroscopic	has	an	unexpected	and	quite	breathtaking	beauty.

Some	of	the	material	in	this	review	was	first	prepared	for	a	talk	I	gave	at	the	Royal	Netherlands	Academy	of	Arts

and	Sciences	in	2006.	Still	more	of	the	material	appeared	in	a	talk	at	the	2009	Seven	Pines	meeting	on	the

Philosophy	of	Physics	under	the	title	“More	Is	the	Same,	Less	Is	the	Same,	Too;	Mean	Field	Theories	and

Renormalization.”	These	talks	have	appeared	on	the	authors’	website	(2009)	since	then.	This	Seven	Pines	meeting

was	generously	sponsored	by	Lee	Gohlike.	The	paper	also	incorporates	material	from	“More	Is	the	Same”

published	in	J.	Stat.	Phys.	in	2009.

This	work	was	supported	in	part	by	the	University	of	Chicago	MRSEC	program	under	NSF	grant	number

DMR0213745.	It	was	completed	during	visits	to	the	Perimeter	Institute,	which	is	supported	by	the	Government	of

Canada	through	Industry	Canada	and	by	the	Province	of	Ontario	through	the	Ministry	of	Research	and	Innovation,

and	by	the	present	NSF	DMR-MRSEC	grant	number	0820054.
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Mazenko,	Hans	van	Leeuwen,	Wendy	Zhang,	Franz	Wegner,	Roy	Glauber,	Yitzhak	Rabin,	Gerard't	Hooft,	Sidney
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Notes:

(1)	The	word	“phase”	is	interesting.	According	to	the	Oxford	Dictionary	of	Word	Histories	(and	the	Oxford	English

Dictionary)	it	entered	English	language	in	the	nineteenth	century	to	describes	the	phases	of	the	moon.	The	Oxford

English	Dictionary	lists	a	very	early	use	in	J.	Willard	Gibbs's	writings	about	thermodynamics	as	the	“phases	of

matter.”	Apparently	Gibbs	then	extended	the	meaning	to	get	“extension	in	phase”	that	then	got	further	extended

into	the	modern	usages	“phase	transition”	and	“phase	space.”

(2)	Particle	physics	does	show	a	very	weak	time	reversal	asymmetry	discovered	by	James	W.	Cronin	and	Val	L.

Fitch,	but	this	asymmetry	is	immaterial	for	all	mundane	phenomena.

(3)	This	function	is	named	after	William	Rowan	Hamilton	who	described	how	to	formulate	classical	mechanics	using

this	Hamiltonian	function.

(4)	The	word	“canonical”	seems	to	be	a	somewhat	old-fashioned	usage	for	something	set	to	a	given	order	or	rule.

The	Oxford	English	Dictionary	traces	it	back	to	Chaucer.

(5)	I	use	energy	units	in	order	to	write	fewer	symbols.	It	is	more	conventional	to	write,	instead	of	T,	kT,	where	k	is

the	Boltzmann	constant.

(6)	In	fact,	the	liquid–gas	case	is	one	of	the	most	subtle	of	the	phase	transitions	since	the	symmetry	between	the

two	phases,	gas	and	liquid,	is	only	an	approximate	one.	In	magnets	and	most	other	cases	the	symmetry	is

essentially	exact,	before	is	it	broken	by	the	phase	transition.

(7)	As	pointed	out	to	me	by	Hans	van	Leeuwen,	the	opalescence	is	very	considerably	enhanced	by	the	difficulty	of

bringing	the	near-critical	system	to	equilibrium.	The	out-of-equilibrium	system	tends	to	have	anomalously	large

droplets	analogous	to	those	produced	by	boiling.	These	droplets	then	produce	the	observed	turbidity.

(8)	Einstein	then	used	the	explanation	of	this	physical	effect	to	provide	one	of	his	several	suggested	ways	of

measuring	Avogadro's	number,	the	number	of	molecules	in	a	mole	of	material.

(9)	Much	of	the	historical	material	in	this	work	is	taken	from	the	excellent	book	on	critical	phenomena	by	Cyril	Domb

(1966).

(10)	Imprecision	can	often	be	used	to	distinguish	between	the	mathematician	and	the	physicist.	The	former	tries	to

be	precise;	the	latter	sometimes	uses	vague	statements	that	can	then	be	extended	to	cover	more	cases.	However,

in	precisely	defined	situations,	for	example	the	situation	defined	by	the	Ising	model,	the	extended	similarity

“theorem”	is	actually	a	theorem	(Isakov	1984).

(11)	Calculations	of	the	effects	of	scale	changes	are	much	more	implicit	in	mean	field	theories	than	in

renormalization	theories.	In	both	cases	we	are	treating	variation	over	a	huge	range	of	scales,	and	power	laws	are

a	likely	way	of	describing	this	huge	range	of	variation.	However,	because	the	mean	field	theories	deal	less	directly

with	scale	transformations	they	do	not	get	the	relation	between	the	renormalization	scalings	of	fluctuations	and	free

PDF Compressor Free Version 



Theories of Matter: Infinities and Renormalization

energy	quite	right.

(12)	The	symmetry	of	the	phase	transition	is	reflected	in	the	nature	of	the	order	parameter,	whether	it	be	a	simple

number	(the	case	discussed	here),	a	complex	number	(superconductivity	and	superfluidity),	a	vector	(magnetism),

or	something	else.

(13)	Onsager's	results	looked	different	from	those	depicted	in	figure	4.8	in	that	they	showed	much	more	symmetry

between	the	high-temperature	region	and	the	low-temperature	region.	This	difference	reflects	the	fact	that	two-

dimensional	critical	phenomena	are	markedly	different	in	detail	from	three-dimensional	critical	phenomena.	Further,

subsequent	work	has	indicated	that	none	of	the	heat	capacity	singularities	shown	in	figure	4.8	are	actually

logarithmic	in	character.	They	are	all	power	law	singularities.

(14)	There	are	exceptions.	Mean	field	theory	works	quite	well	whenever	the	forces	are	sufficiently	long-ranged	so

that	many	different	particles	will	interact	directly	with	any	given	particle.	By	this	criterion	mean	field	theory	works

well	for	the	usual	superconducting	materials	studied	up	through	the	1980s(7,	8),	except	extremely	close	to	the

critical	point.	However,	mean	field	theory	does	not	work	for	the	newer	“high-temperature	superconductors,”	a

class	discovered	in	1986	by	Georg	Bednorz	and	Alexander	Müller(9).

(15)	I	used	Eq.	(18),	but	I	did	NOT	make	an	explicit	argument	based	upon	universality	in	my	paper	in	which	I	first

applied	this	block	transformation.	My	discussion	would	have	been	much	stronger	had	I	the	wisdom	to	do	so.	But

wisdom	often	comes	after	the	fact.

(16)	The	idea	of	variable	dimensionality	is	also	used	in	particle	physics	under	the	name	dimensional	regularization.

One	of	the	earliest	applications	in	particle	physics	was	in	the	work	of't	Hooft	and	Veltman	(1972a	and	b)	proving

that	the	gauge	theory	of	strong	interactions	was	renormalizable.

(17)	I	must	admit	to	a	certain	pride	connected	with	universality.	The	1967	review	paper	(Kadanoff	et	al.)	in	which	I

participated	was	organized	about	universality	classes.	I	borrowed	the	word	“universality”	from	the	conversation	of

Sasha	Polyakov	and	Sasha	Migdal,	who	were	apparently	translating	a	usage	common	in	the	Landau	group.	I	then

imported	this	usage	into	the	English	language	(1990).	Alternatively,	one	might	argue	that	universality	was	a	product

of	many	different	authors,	including	Robert	Griffiths	(1975),	as	well	as	the	entire	King's	College	school	(Domb	1996).
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Abstract	and	Keywords

This	chapter	addresses	the	question	of	whether	phase	transitions	are	to	be	understood	as	genuinely	emergent

phenomena,	discussing	concepts	invoked	in	the	increasing	number	of	publications	on	emergence	and	phase

transitions	and	the	conceptions	of	reduction	and	corresponding	notions	of	emergence.	It	also	considers	recent

attempts	to	provide	well-defined	notions	of	phase	transition	for	finite	systems	and	highlights	the	evolving	nature	of

our	philosophical	understanding	of	phase	transitions,	emergence,	and	reductionism.

Keywords:	phase	transitions,	emergent	phenomena,	finite	systems,	emergence,	reductionism,	philosophical	understanding

Phase	transitions	are	abrupt	changes	in	the	macroscopic	properties	of	a	system.	Examples	of	the	phenomenon	are

familiar:	freezing,	condensation,	magnetization.	Often	these	transitions	are	particularly	dramatic,	as	when	solid

objects	composed	of	the	silvery	metal	gallium	vanish	into	puddles	when	picked	up	(the	temperature	of	the	hand	is

just	enough	to	raise	gallium's	temperature	past	its	melting	point).	Characterized	generally,	one	finds	them	inside

and	outside	of	physics,	in	systems	as	diverse	as	neutron	stars,	DNA	helices,	financial	markets,	and	traffic.	In	the

past	half-century,	the	study	of	phase	transitions	and	critical	phenomena	has	been	a	central	preoccupation	of	the

statistical	physics	community.	In	fact,	it	is	now	a	truly	interdisciplinary	area	of	research.	Phase	transitions	manifest

at	many	different	scales	and	in	all	sorts	of	systems,	so	they	are	of	interest	to	atomic	physicists,	materials

engineers,	astronomers,	biologists,	sociologists,	and	economists.	However,	philosophical	attention	to	the

foundational	issues	involved	has	thus	far	been	limited.

This	is	unfortunate	because	the	theory	of	phase	transitions	is	unusual	in	many	ways	and	offers	a	novel	perspective

that	could	enrich	a	number	of	debates	in	the	philosophy	of	science.	In	particular,	questions	about	reduction,

emergence,	explanation,	and	approximation	all	arise	in	a	particularly	stark	manner	when	considering	this

phenomenon.	Here	we	will	focus	on	these	questions	as	they	relate	to	the	most	studied	type	of	phase	transition,

namely,	transitions	between	different	equilibrium	phases	in	thermodynamics.	These	are	sudden	changes	between

one	stable	thermo-dynamic	state	of	matter	and	another	while	one	smoothly	varies	a	parameter.	A	paradigmatic

example	is	the	change	in	water	from	liquid	to	gas	as	the	temperature	is	raised	or	the	pressure	is	reduced.

In	the	small	philosophical	commentary	on	this	topic,	such	changes	have	provoked	many	surprising	claims.	Many

have	claimed	that	phase	transitions	cannot	be	reduced	to	statistical	mechanics,	that	they	are	truly	emergent

phenomena.	The	argument	for	this	conclusion	hangs	on	one's	understanding	of	the	infinite	idealization	invoked	in

the	statistical	mechanical	treatment	of	phase	transitions.	In	this	chapter	we	will	focus	on	puzzles	associated	with

this	idealization.	Is	infinite	idealization	necessary	for	the	explanation	of	phase	transitions?	If	so,	does	it	show	that

phase	transitions	are,	in	some	sense,	emergent	phenomena?	If	so,	what	precisely	is	that	sense?	Questions	of	this

sort	provide	a	concrete	basis	for	the	exploration	of	philosophical	approaches	to	reduction	and	idealization,	and

they	also	bear	on	the	ongoing	scientific	study	of	these	systems.
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1.	The	Physics	of	Phase	Transitions

Phase	transitions	raise	interesting	questions	about	intertheoretic	relationships	because	they	are	studied	from	three

distinct	theoretical	perspectives.	Thermodynamics	provides	a	macroscopic,	phenomenological	characterization	of

the	phenomenon.	Statistical	mechanics	attempts	to	ground	the	thermodynamic	treatment	by	explaining	how	this

macroscopic	behavior	arises	out	of	the	interaction	of	microscopic	degrees	of	freedom.	This	project	has	led	to	the

employment	of	renormalization	group	theory,	a	tool	first	developed	in	the	context	of	particle	physics	for	studying

the	behavior	of	systems	under	transformations	of	scale.	While	renormalization	group	theory	is	usually	placed

under	the	broad	rubric	of	statistical	mechanics,	the	methods	employed	are	importantly	different	from	the	traditional

tools	of	statistical	mechanics.	Rather	than	a	probability	distribution	over	an	ensemble	of	configurations	of	a	single

system,	the	primary	theoretical	device	of	renormalization	group	theory	is	the	flow	generated	by	the	scaling

transformation	on	a	space	of	Hamiltonians	representing	distinct	physical	systems.	In	this	section	we	describe	how

these	three	approaches	treat	the	phenomenon	of	phase	transitions,	with	special	attention	to	the	employment	of	the

infinite	particle	idealization.

1.1	Thermodynamic	Treatment

The	thermodynamic	treatment	of	phases	and	phase	transitions	began	in	the	nineteenth	century.	Experiments	by

Andrews,	Clausius,	Clapeyron,	and	many	others	provided	data	that	would	lead	to	developed	theories	of	phase

transitions	and	critical	phenomena.	Gradually	it	was	recognized	that	at	certain	values	of	temperature	and	pressure

a	substance	can	exist	in	more	than	one	thermodynamic	phase	(e.g.,	solid,	liquid),	while	at	other	values	there	can

be	a	change	in	phase	but	no	coexistence	of	phases.

For	instance,	as	pressure	is	reduced	or	temperature	is	raised,	liquid	water	transitions	to	its	gaseous	phase.	At	the

boundary	between	these	phases,	both	liquid	and	gaseous	states	can	coexist;	the	thermodynamic	parameters	of

the	system	do	not	pick	out	a	unique	equilibrium	phase.	In	fact,	at	the	triple	point	of	water	(temperature	273.16K	and

pressure	611.73	Pa),	all	three	phases—solid,	liquid,	and	gas—can	coexist.	The	transitions	at	these	phase

boundaries	are	marked	by	a	discontinuity	in	the	density	of	water.	As	the	pressure	is	reduced	at	a	fixed

temperature,	the	equilibrium	state	of	water	switches	abruptly	from	a	high-density	liquid	phase	to	a	low-density

gaseous	phase.	This	is	an	example	of	a	first-order	phase	transition.	As	the	temperature	is	increased	past	the

critical	temperature	of	647	K,	water	enters	a	new	phase.	In	this	regime,	there	are	no	longer	macroscopically	distinct

liquid	and	gas	phases,	but	a	homogenous	supercritical	fluid	that	exhibits	properties	associated	with	both	liquids

and	gasses.	Changing	the	pressure	leads	to	a	continuous	change	in	the	density	of	the	fluid;	there	are	no	phase

boundaries.	This	supercritical	phase	allows	a	transition	from	liquid	to	gas	that	does	not	involve	any	discontinuity	in

thermodynamic	observables:	raise	the	temperature	of	the	liquid	past	the	critical	temperature,	reduce	the	pressure

below	the	critical	pressure	(22	MPa	for	water),	then	cool	the	fluid	back	to	below	the	critical	temperature.	This	path

takes	the	system	from	liquid	to	gas	without	crossing	a	phase	boundary.	The	transition	of	a	system	past	its	critical

point	to	the	supercritical	phase	is	a	continuous	phase	transition.

Mathematically,	phase	transitions	are	represented	by	nonanalyticities	or	singularities	in	a	thermodynamic	potential.

A	singularity	is	a	point	at	which	the	potential	is	not	infinitely	differentiable,	so	at	a	phase	transition	some	derivative

of	the	thermo-dynamic	potential	changes	discontinuously.	A	classification	scheme	due	to	Ehrenfest	provides	the

resources	to	distinguish	between	first-	and	second-order	transitions	in	this	formalism.	A	first-order	phase	transition

involves	a	discontinuity	in	the	first	derivative	of	a	thermodynamic	potential.	In	the	liquid–gas	first-order	transition,

the	volume	of	the	system,	a	first	derivative	of	the	thermodynamic	potential	known	as	the	Gibbs	free	energy,

changes	discontinuously.	For	a	second-order	phase	transition	the	first	derivatives	of	the	potentials	are	continuous,

but	there	is	a	discontinuity	in	a	second	derivative	of	a	thermodynamic	potential.	At	the	liquid–gas	critical	point,	we

see	a	discontinuity	in	the	compressibility	of	the	fluid,	which	is	a	first	derivative	of	volume	and	hence	a	second

derivative	of	the	Gibbs	free	energy.	Ehrenfest's	scheme	extends	naturally	to	allow	for	higher-order	phase

transitions	as	well.	An	n-th	order	transition	would	be	one	whose	n-th	derivative	is	discontinuous.	Contemporary

statistical	mechanics	retains	the	category	of	first-order	phase	transitions	(sometimes	referred	to	as	abrupt

transitions),	but	all	other	types	of	non-analyticities	in	thermodynamic	potentials	are	grouped	together	as	continuous

phase	transitions.

Continuous	phase	transitions	are	often	referred	to	as	order–disorder	transitions.	There	is	usually	some	symmetry	in

the	supercritical	phase	that	is	broken	when	we	cross	below	the	critical	point.	This	broken	symmetry	allows	for	the
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material	to	be	ordered	in	various	ways,	corresponding	to	different	phases.	A	stark	example	of	the	transition

between	order	and	disorder	is	the	transition	in	magnetic	materials,	such	as	iron,	between	paramagnetism	and

ferromagnetism.	At	room	temperature,	a	piece	of	iron	is	permanently	magnetized	when	exposed	to	an	external

magnetic	field.	In	the	presence	of	a	field,	the	minimum	energy	configuration	is	the	one	with	the	largest	possible	net

magnetic	moment	reinforcing	the	field,	so	the	individual	dipoles	within	the	iron	align	to	maximize	the	net	moment.

This	configuration	remains	stable	even	when	the	external	field	is	removed.	Materials	with	this	propensity	for

induced	permanent	magnetization	are	called	ferromagnetic.	If	the	temperature	is	raised	above	1043	K,	the

ferromagnetic	properties	of	iron	vanish.	The	iron	is	now	paramagnetic;	it	can	no	longer	sustain	induced

magnetization	when	the	external	field	is	removed.	In	the	stable	configuration,	there	is	no	correlation	between	the

alignments	of	neighboring	dipoles.	In	the	paramagnetic	phase,	no	direction	is	picked	out	as	special	after	the

magnetic	field	is	switched	off.	The	material	exhibits	spatial	symmetry.	In	the	ferromagnetic	phase,	this	symmetry	is

broken.	The	dipoles	line	up	in	a	particular	spatial	direction	even	after	the	field	is	removed.	The	order	represented

by	this	alignment	does	not	survive	the	transition	past	criticality.

A	simple	way	to	understand	this	transition	between	order	and	disorder	is	in	terms	of	the	minimization	of	the

Helmholtz	free	energy	of	the	system:	(1)

Here	E	is	the	energy	of	the	system,	T	is	the	temperature,	and	S	is	the	entropy.	The	stable	configuration	minimizes

free	energy.	At	low	temperatures,	the	energy	term	dominates,	and	the	low-energy	configuration	with	dipoles

aligned	is	favored.	At	high	temperatures,	the	entropy	term	dominates,	and	we	get	the	high-entropy	configuration

with	uncorrelated	dipole	moments.	The	change	in	magnetic	behavior	is	explicable	as	a	shift	in	the	balance	of

power	in	the	battle	between	the	ordering	tendency	due	to	minimization	of	energy	and	the	disordering	tendency	due

to	maximization	of	entropy.	As	indicated,	the	paramagnetic–ferromagnetic	transition	is	continuous,	not	first	order.

All	first	derivatives	of	the	free	energy	are	continuous,	but	second	derivatives	(such	as	the	magnetic	susceptibility	

,	where	H	is	the	magnetization)	are	not.

The	transition	from	order	to	disorder	is	also	represented,	following	Landau,	as	the	vanishing	of	an	order	parameter.

In	the	case	under	consideration,	this	parameter	is	the	net	magnetization	M	of	the	system.	Below	the	critical	point,

you	have	different	phases	with	distinct	values	of	the	order	parameter.	If	we	simplify	our	model	of	the	magnetic

material	so	that	the	induced	magnetization	of	the	dipoles	is	only	along	one	spatial	axis	(as	in	the	Ising	model),	then

at	each	temperature	below	criticality	the	order	parameter	can	take	two	values,	related	by	a	change	of	sign.	The

magnetization	vanishes	as	we	approach	the	critical	point	and	remains	zero	in	the	supercritical	phase,

corresponding	to	a	disappearance	of	distinct	phases.

The	vanishing	of	the	order	parameter	close	to	the	critical	temperature	T 	is	characterized	by	a	power	law:	(2)

where	t	is	the	reduced	temperature	(T	—	T )/T .	The	exponent	β	characterizes	the	rate	at	which	the	magnetization

falls	off	as	the	critical	temperature	is	approached.	It	is	an	example	of	a	critical	exponent,	one	of	many	that	appear

in	power	laws	close	to	the	critical	point.	The	experimental	and	theoretical	study	of	critical	exponents	has	been

crucial	to	recent	developments	in	the	theory	of	phase	transitions.

1.2	Statistical	Mechanical	Treatment

Statistical	mechanics	is	the	theory	that	applies	probability	theory	to	the	microscopic	degrees	of	freedom	of	a

system	in	order	to	explain	its	macroscopic	behavior.	The	tools	of	statistical	mechanics	have	been	extremely

successful	in	explaining	a	number	of	thermodynamic	phenomena,	but	it	turned	out	to	be	particularly	difficult	to

apply	the	theory	to	the	study	of	phase	transitions.	There	were	two	significant	obstacles	to	the	development	of	a

successful	statistical	mechanical	treatment	of	phase	transitions:	one	experimental	and	one	conceptual.

The	experimental	obstacle	had	to	do	with	the	failure	of	mean	field	theory.	This	was	the	dominant	approach	to	the

statistical	mechanics	of	phase	transitions	up	to	the	middle	of	the	twentieth	century.	The	theory	is	best	explicated

by	considering	the	Ising	model,	which	represents	a	system	as	a	lattice	of	sites,	each	of	which	can	be	in	two

different	states.	The	states	will	be	referred	to	as	spin	up	and	spin	down,	in	analogy	with	magnetic	systems.

However,	Ising	models	have	been	successfully	applied	to	a	number	of	different	systems,	including	the	liquid-gas
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system	near	its	critical	point.	The	Hamiltonian	for	the	Ising	model	involves	a	contribution	by	an	external	term,

corresponding	to	the	external	magnetic	field	for	magnetic	systems,	and	internal	coupling	terms.	The	only	coupling

is	between	neighboring	spins	on	the	lattice.	It	is	energetically	favorable	for	neighboring	spins	to	align	with	one

another	and	with	the	external	field.	This	model	is	supposed	to	represent	the	way	in	which	local	interactions	can

produce	the	kinds	of	long-range	correlations	that	characterize	a	thermodynamic	phase.

In	statistical	mechanics,	all	thermodynamic	functions	are	determined	by	the	canonical	partition	function.	The

coupling	terms	in	the	Hamiltonian	make	the	calculation	of	the	partition	function	for	the	Ising	model	mathematically

difficult.	To	make	this	calculation	tractable,	we	approximate	the	contribution	of	a	particular	lattice	site	to	the	energy

of	the	system	by	supposing	that	all	its	neighbors	have	a	spin	equal	to	the	ensemble	average.	This	approximation

ignores	fluctuations	of	spins	from	their	mean	values.	The	fluctuations	become	less	relevant	as	the	number	of

neighbors	of	a	particular	lattice	site	increases,	so	the	mean	field	approximation	works	better	the	higher	the

dimensionality	of	the	system	under	consideration.	Once	the	partition	function	is	calculated	using	this

approximation,	there	is	an	elegant	method	due	to	Landau	for	determining	the	critical	exponents.	Unfortunately,

Landau's	method	gives	results	that	conflict	with	experiment.	For	instance,	the	mean	field	value	for	the	critical

exponent	β	is	0.5,	but	observation	suggests	the	actual	value	is	about	0.32.	The	approximation	fails	close	to	the

critical	point	of	a	magnetic	system.	In	fact,	this	failure	is	predicted	by	Landau	theory	itself.	The	theory	tells	us	that

as	we	approach	the	critical	point,	the	correlation	length	diverges.	This	is	the	typical	distance	over	which

fluctuations	in	the	microscopic	degrees	of	freedom	are	correlated.	As	this	length	scale	increases,	fluctuations

become	more	relevant,	and	the	mean	field	approximation,	which	ignores	fluctuations,	weakens.	Mean	field	theory

cannot	fully	describe	continuous	phase	transitions	because	of	this	failure	near	criticality	Another	approach	is

needed	for	a	full	statistical	mechanical	treatment	of	the	phenomenon.	As	mentioned,	there	was	also	a	deeper

conceptual	obstacle	to	a	statistical	mechanics	of	phase	transitions.	If	one	adopts	the	definition	of	phase	transitions

employed	by	thermodynamics,	then	phase	transitions	in	statistical	mechanics	do	not	seem	possible.	The

impossibility	claim	can	be	explained	very	easily.	As	mentioned	above,	thermodynamic	functions	are	determined	by

the	partition	function.	For	instance,	the	Helmholtz	free	energy	is	given	by:	(3)

where	k	is	Boltzmann's	constant,	T	is	the	temperature	of	the	system,	and	Z	is	the	canonical	partition	function:	(4)

with	E 	labeling	the	different	possible	mechanical	energies	of	the	system.	Recall	the	definition	of	a	phase	transition

according	to	thermodynamics:

(Def	1)	An	equilibrium	phase	transition	is	a	nonanalyticity	in	the	free	energy.

Depending	on	the	context,	one	might	choose	a	nonanalyticity	in	a	different	thermodynamic	potential;	however,	that

freedom	will	not	affect	matters	here.

As	natural	as	it	is,	Def	1	makes	a	phase	transition	seem	unattainable	in	statistical	mechanics.	The	reason	is	that

each	of	the	exponential	functions	in	(4)	is	analytic,	the	partition	function	is	just	a	sum	of	exponentials,	and	the	free

energy	essentially	is	just	the	logarithm	of	this	sum.	Since	a	sum	of	analytic	functions	is	itself	analytic	and	the

logarithm	of	an	analytic	function	itself	analytic,	the	Helmholtz	free	energy,	expressed	in	terms	of	the	logarithm	of

the	partition	function,	will	also	be	analytic.	Hence,	there	will	be	no	phase	transitions	as	defined	by	Def	1.	Since	the

same	reasoning	can	be	applied	to	any	thermodynamic	function	that	is	an	analytic	function	of	the	canonical

partition	function	modifications	of	Def	1	to	other	thermodynamic	functions	will	not	work	either.	(For	a	rigorous	proof

of	the	above	claims,	see	Griffiths	(1972).)

In	the	standard	lore	of	the	field,	this	problem	was	resolved	when	Onsager	in	1944	demonstrated	for	the	first	time	the

existence	of	a	phase	transition	from	nothing	but	the	partition	function.	He	did	this	rigorously	for	the	two-dimensional

Ising	model	with	no	external	magnetic	field.	How	did	Onsager	manage	the	impossible?	He	worked	in	the

thermodynamic	limit	of	the	system.	This	is	a	limit	where	the	number	of	particles	in	the	system	N	and	the	volume	of

the	system	V	go	to	infinity	while	the	density	ρ	=	N/V	is	held	fixed.	Letting	N	go	to	infinity	is	the	crucial	trick	in	getting

around	the	“impossibility”	claim.	The	claim	depends	on	the	sum	of	exponentials	in	(4)	being	finite.	Any	finite	sum	of

analytic	functions	will	be	analytic.	Once	this	restriction	is	removed,	however,	it	is	possible	to	find	nonanalyticities	in

the	free	energy.	The	apparent	lesson	is	that	statistical	mechanics	can	describe	phase	transitions,	but	only	in

n
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infinite	particle	systems.

It	is	common	to	visualize	what	is	going	on	in	terms	of	the	Yang-Lee	theorem.	The	free	energy	is	a	logarithm	of	the

partition	function,	so	it	will	exhibit	a	singularity	where	the	partition	function	goes	to	zero.	But	the	partition	function	is

a	polynomial	of	finite	degree	with	all	positive	coefficients,	so	it	has	no	real	positive	roots.	Instead	the	roots	are

imaginary	and	the	zeros	of	the	partition	function	must	be	plotted	on	the	complex	plane.	The	Yang-Lee	theorem,	for

a	two-dimensional	Ising	model,	says	that	these	zeros	sit	on	the	unit	sphere	in	the	complex	plane.	As	the	number	of

particles	increases,	the	zeros	become	denser	on	the	unit	sphere	until	at	the	thermodynamic	limit	they	intersect	the

positive	real	axis.	Since	a	real	zero	of	the	partition	function	is	only	possible	in	this	limit,	it	is	only	in	this	limit	that	we

can	have	a	phase	transition	(understood	as	in	Def	1).

An	alternative	definition	of	phase	transitions	is	sometimes	used,	one	proposed	by	Lebowitz	(1999).	A	phase

transition	occurs,	on	this	definition,	just	in	case	the	Gibbs	measure	(a	generalization	of	the	canonical	ensemble)	is

nonunique	for	the	system.	This	corresponds	to	a	coexistence	of	distinct	phases	and	therefore	a	phase	transition.

Using	this	alternative	definition,	however,	will	not	change	philosophical	matters.	The	Gibbs	measure	can	only	be

nonunique	in	the	thermodynamic	limit,	just	as	Def	1	can	only	be	satisfied	in	the	thermodynamic	limit.	That	said,	this

way	of	looking	at	the	issue	perhaps	makes	it	easier	to	see	the	similarities	between	the	foundational	issues	raised	by

phase	transitions	and	those	raised	by	spontaneous	symmetry	breaking.

1.3	Renormalization	Group	Theory

We	mentioned	in	the	previous	section	that	mean	field	theory	fails	near	the	critical	point	for	certain	systems

because	it	neglects	the	importance	of	fluctuations	in	this	regime.	Dealing	with	this	strongly	correlated	regime

required	the	introduction	of	a	new	method	of	analysis,	imported	from	particle	physics.	This	is	the	renormalization

group	method.	While	mean	field	theory	hews	to	tools	and	forms	of	explanation	that	are	orthodox	in	statistical

mechanics,	such	as	determining	aggregate	behavior	by	taking	ensemble	averages,	renormalization	group	theory

introduced	a	somewhat	alien	approach	with	tools	more	akin	to	those	of	dynamical	systems	theory	than	statistical

mechanics.

To	explain	the	method,	we	return	to	our	stalwart	Ising	model.	Suppose	we	coarse-grain	a	2-D	Ising	model	by

replacing	3	×	3	blocks	of	spins	with	a	single	spin	pointing	in	the	same	direction	as	the	majority	in	the	original	block.

This	gives	us	a	new	Ising	system	with	a	longer	distance	between	lattice	sites,	and	possibly	a	different	coupling

strength.	You	could	look	at	this	coarse-graining	procedure	as	a	transformation	in	the	Hamiltonian	describing	the

system.	Since	the	Hamiltonian	is	characterized	by	the	coupling	strength,	we	can	also	describe	the	coarse-graining

as	a	transformation	in	the	coupling	parameter.	Let	K	be	the	coupling	strength	of	the	original	system	and	R	be	the

relevant	transformation.	The	new	coupling	strength	is	K′	=	RK.	This	coarse-graining	procedure	could	be	iterated,

producing	a	sequence	of	coupling	parameters,	each	related	to	the	previous	one	by	the	transformation	R.	The

transformation	defines	a	flow	on	parameter	space.

How	does	this	help	us	ascertain	the	critical	behavior	of	a	system?	If	you	look	at	an	Ising	system	at	its	critical	point,

you	will	see	clusters	of	correlated	spins	of	all	sizes.	This	is	a	manifestation	of	the	diverging	correlation	length.	Now

squint,	blurring	out	the	smaller	clusters.	The	new	blurry	system	that	you	see	will	have	the	same	general	structure

as	the	old	one.	You	will	still	see	clusters	of	all	sizes.	This	sort	of	scale	invariance	is	characteristic	of	critical

behavior.	The	system	has	no	characteristic	length	scale.	Coarse-graining	produces	a	new	system	that	is

statistically	identical	to	the	old	one.	At	this	point,	the	Hamiltonian	of	the	system	remains	the	same	under	indefinite

coarse-graining,	so	it	must	be	a	fixed	point	in	parameter	space	(i.e.,	a	point	K 	such	that	K 	=	RK ).	The	nontrivial

(viz.,	not	K	=	0	or	K	=	∞)	fixed	points	of	the	flow	characterize	the	Hamiltonian	of	the	system	at	the	critical	point,	the

point	at	which	correlation	length	diverges	and	there	is	no	characteristic	scale	for	the	system.	The	critical

exponents	can	be	calculated	by	series	expansions	near	the	critical	point.	Critical	exponents	predicted	by

renormalization	group	methods	agree	with	experiment	much	more	than	the	predictions	of	mean	field	theory.

The	same	approach	can	be	applied	to	systems	with	more	complicated	Hamiltonians	involving	a	number	of	different

parameters.	Some	of	these	parameters	will	be	relevant,	which	means	they	get	bigger	as	the	system	is	rescaled.	If	a

system	has	a	nonzero	value	for	some	relevant	parameter,	then	it	will	not	settle	at	a	nontrivial	fixed	point	upon

rescaling,	since	rescaling	will	amplify	the	relevant	parameter	and	therefore	change	the	couplings	in	the	system.	At

criticality,	then,	the	relevant	parameters	must	be	zero.	An	example	of	a	relevant	parameter	for	the	Ising	system	is
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the	reduced	temperature	t.	If	t	=	0,	the	system	can	flow	to	a	nontrivial	fixed	point.	However,	if	t	is	perturbed	from

zero,	the	system	will	flow	away	from	this	critical	fixed	point	toward	a	trivial	fixed	point.	So	a	continuous	transition

only	takes	place	when	t	=	0,	which	is	at	the	critical	temperature.	Other	parameters	might	turn	out	to	be	irrelevant	at

large	scales.	They	will	get	smaller	and	smaller	with	successive	coarse-grainings,	effectively	disappearing	at

macroscopic	scales.	This	elimination	of	microscopic	degrees	of	freedom	means	that	the	renormalization	group

transformation	can	be	irreversible	(which	would,	strictly	speaking,	make	it	a	semi-group	rather	than	a	group),	and

there	can	be	attractors	in	parameter	space.	These	are	fixed	points	into	which	a	number	of	microscopically	distinct

systems	flow.	This	is	the	basis	of	universality,	the	shared	critical	behavior	of	quite	different	sorts	of	systems.	If	the

systems	share	a	fixed	point	their	critical	exponents	will	be	the	same,	even	if	their	microscopic	Hamiltonians	are

distinct.	The	differences	in	the	Hamiltonians	are	in	irrelevant	degrees	of	freedom	that	do	not	affect	the	macroscopic

critical	behavior	of	the	system.	Systems	that	flow	to	the	same	nontrivial	fixed	point	are	said	to	belong	to	the	same

universality	class.	The	liquid–gas	transition	in	water	is	in	the	same	universality	class	as	the	paramagnetism–

ferromagnetism	transition.	They	have	the	same	critical	exponents,	despite	the	evident	differences	between	the

systems.

The	difference	between	relevant	and	irrelevant	parameters	can	be	conceptualized	geometrically.	In	parameter

space,	if	we	restrict	ourselves	to	the	hypersurface	on	which	all	relevant	parameters	are	zero,	so	that	the

differences	between	systems	on	this	hypersurface	are	purely	due	to	irrelevant	parameters,	then	all	points	on	the

hypersurface	will	flow	to	a	single	fixed	point.	Perturb	the	system	so	that	it	is	even	slightly	off	the	hypersurface,

however,	and	the	flow	will	take	it	to	a	different	fixed	point.

It	is	significant	that	the	fixed	point	only	appears	when	the	system	has	no	characteristic	length	scale.	This	is	why	the

infinite	particle	limit	is	crucial	to	the	renor-malization	group	approach.	If	the	number	of	particles	is	finite,	then	there

will	be	a	characteristic	length	scale	set	by	the	size	of	the	system.	Coarse-graining	beyond	this	length	will	no	longer

give	us	statistically	identical	systems.	The	possibility	of	invari-ance	under	indefinite	coarse-graining	requires	an

infinite	system.	The	requirement	for	the	thermodynamic	limit	in	renormalization	group	theory	can	be	perspicuously

connected	to	the	motivation	for	this	limit	in	the	standard	statistical	mechanical	story.	The	correlation	length	of	a

system	near	its	critical	point	can	be	characterized	in	terms	of	some	second	derivative	of	a	thermodynamic

potential.	For	instance,	in	a	magnetic	system	the	range	of	correlations	between	parts	of	the	system	is	proportional

to	the	susceptibility,	a	second	derivative	of	the	free	energy.	On	the	thermodynamic	treatment,	the	susceptibility

diverges	as	we	approach	the	critical	point,	and	according	to	the	statistical	mechanical	treatment	this	is	impossible

unless	we	are	in	the	thermo-dynamic	limit.	This	means	the	correlation	length	cannot	diverge,	as	is	required	for

renormalization	group	methods	to	work,	unless	the	system	is	infinite.

2.	The	Emergence	of	Phase	Transitions?

All	of	the	above	should	sound	a	little	troubling.	After	all,	the	systems	we	are	interested	in,	the	systems	in	which	we

see	phase	transitions	every	day,	are	not	infinite	systems.	Yet	the	physics	of	phase	transitions	seems	to	make

crucial	appeal	to	the	infinitude	of	the	systems	modeled.	It	appears	that,	according	to	both	statistical	mechanics	and

renormalization	group	theory,	phase	transitions	cannot	occur	in	finite	systems.	Additionally,	the	explanation	of	the

universal	behavior	of	systems	near	their	critical	point	seems	to	require	the	infinite	idealization.	Considerations	of

this	sort	have	led	many	authors	to	say	that	phase	transitions	are	genuinely	emergent	phenomena,	suggesting	that

statistical	mechanics	cannot	provide	a	full	reductive	account	of	phase	transitions	in	finite	systems.	The	eminent

statistical	mechanic	Lebowitz	says	phase	transitions	are	“paradigms	of	emergent	behavior”	(Lebowitz,	1999,	S346)

and	the	philosopher	Liu	says	they	are	“truly	emergent	properties”	(Liu,	1999,	S92).

Needless	to	say,	if	this	claim	is	correct,	phase	transitions	present	a	challenge	to	philosophers	with	a	reductionist

bent.	The	extent	of	this	challenge	depends	on	how	we	interpret	the	claim	of	emergence.	The	concept	of

“emergence”	is	notoriously	slippery,	interpreted	differently	by	different	authors.	We	will	consider	a	number	of

different	arguments	for	phase	transitions	being	emergent,	corresponding	to	varying	conceptions	of	emergence.

What	these	arguments	have	in	common	is	that	they	all	involve	a	rejection	of	what	Andrew	Melnyk	has	called

“reductionism	in	the	core	sense”	(Melnyk,	2003,	83).	This	is	the	intuitive	conception	of	reduction	that	underlies

various	more	precise	philosophical	accounts	of	reduction.	A	theory	T 	reduces	to	a	lower-level	theory	T 	if	all	the

nomic	claims	made	by	T 	can	be	explained	using	only	the	resources	of	T 	and	necessary	truths.
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This	conception	is	deliberately	vague,	allowing	for	various	precisifications	depending	on	one's	theory	of

explanation	and	how	one	delineates	the	explanatory	resources	available	to	a	particular	theory.	One	possible

precisification	is	Ernest	Nagel's	account	of	reduction	(Nagel,	1979),	which	says	that	T 	reduces	T 	if	and	only	if	the

laws	of	the	latter	can	be	deduced	from	the	laws	of	the	former	in	conjunction	with	appropriate	bridge	laws.	In	this

account	the	core	sense	of	reduction	has	been	filled	out	with	a	logical	empiricist	theory	of	explanation	according	to

which	the	explanatory	resources	of	a	theory	are	the	deductive	consequences	of	its	lawlike	statements.	It	is

important	to	recognize	that	reductionists	are	committed	to	this	account	of	reduction	only	insofar	as	endorse	such	a

theory	of	explanation.	The	proper	motivation	for	Nagel's	theory	lies	in	the	extent	to	which	it	successfully	captures

the	core	sense	of	reduction.

In	this	chapter	we	do	not	endorse	any	particular	account	of	reduction.	Instead	we	consider	three	broad	ways	in

which	the	explanatory	connection	between	a	higher-level	theory	and	a	lower-level	theory	may	break	down,	and

examine	the	extent	to	which	these	explanatory	breakdowns	are	manifested	in	the	case	of	phase	transitions.

Whether	we	have	a	genuine	explanatory	failure	in	a	particular	instance	will	depend	on	the	details	of	our	account	of

explanation.	Often,	the	reductionist	may	be	able	to	avoid	a	counterexample	by	simply	reconceiving	what	counts	as

an	adequate	explanation. 	However,	certain	instances	will	be	regarded	as	explanatory	failures	under	a	wide

variety	of	plausible	accounts	of	explanation,	perhaps	even	under	all	plausible	accounts	of	explanation.	The

weaker	the	assumptions	about	explanation	required	for	the	counterexample	to	work,	the	stronger	the	case	for

emergentism.	We	can	arrange	our	examples	of	purported	explanatory	failure	into	a	hierarchy	based	on	the

constraints	placed	on	an	account	of	explanation.

At	the	bottom	of	this	hierarchy	(at	least	for	the	purposes	of	this	chapter)	is	conceptual	novelty.	This	is	the	sort	of

“irreducibility”	involved	when	there	is	some	natural	kind	in	the	higher-level	theory	that	cannot	be	equated	to	a

single	natural	kind	in	the	lower-level	theory.	It	may	be	the	case	that	the	phenomena	that	constitute	the	higher-level

kind	can	be	individually	explained	by	the	lower-level	theory,	but	the	theory	does	not	unite	them	as	a	single	kind.

Conceptual	novelty	involves	a	failure	of	type–type	reduction,	but	need	not	involve	a	failure	of	token–token

reduction.	In	the	case	of	phase	transitions,	it	has	been	suggested	that	although	one	can	provide	a	perfectly

adequate	explanation	of	individual	transitions	using	statistical	mechanics,	the	theory	does	not	distinguish	these

phenomena	as	a	separate	kind.	For	instance,	from	the	perspective	of	statistical	mechanics,	the	transition	from	ice

to	water	in	a	finite	system	as	we	cross	273.16	K	is	not	qualitatively	different	from	the	transition	from	cold	ice	to

slightly	warmer	ice	as	we	cross	260	K,	at	least	if	something	like	the	standard	story	is	correct.	The	only	difference	is

that	the	thermodynamic	potentials	change	a	lot	more	rapidly	in	the	former	situation	than	in	the	latter,	but	they	are

still	analytic,	so	this	is	merely	a	difference	of	degree,	not	a	difference	of	kind.

There	are	two	tacks	one	can	take	in	response	to	this	observation.	The	first	is	that	this	is	a	case	where	statistical

mechanics	corrects	thermodynamics.	Just	as	it	showed	us	that	the	second	law	is	not	in	principle	exceptionless,	it

shows	us	that	rigorous	separation	of	phases,	the	only	phenomenon	worthy	of	the	name	“phase	transition,”	is	only

possible	in	infinite	systems.	This	view	of	the	emergence	of	phase	transitions	is	expressed	by	Kadanoff	when	he

says	that	“in	some	sense	phase	transitions	are	not	exactly	embedded	in	the	finite	world	but,	rather,	are	products	of

the	human	imagination”	(Kadanoff	2009,	778).	Thermodynamics	classifies	a	set	of	empirical	phenomena	as	phase

transitions,	involving	a	qualitatively	distinct	type	of	change	in	the	system.	Statistical	mechanics	reveals	that	these

phenomena	have	been	misclassified.	They	are	not	genuinely	qualitatively	distinct	and	should	not	be	treated	as	a

separate	natural	kind.	This	response	does	not	appear	to	pose	much	of	a	threat	to	reductionism.	It	may	be	true	that

thermodynamics	has	not	been	reduced	to	statistical	mechanics	in	a	strict	Nagelian	sense,	but	this	seems	like	much

too	restrictive	a	conception	of	reduction.	There	are	many	paradigmatic	cases	of	scientific	reduction	where	the

reducing	theory	explains	a	corrected	version	of	the	reduced	theory,	not	the	theory	in	its	original	form.	This

correction	may	often	involve	dissolving	inappropriate	distinctions.	If	this	is	all	there	is	to	the	challenge	of

conceptual	novelty,	it	is	not	much	of	a	challenge.

However,	one	might	want	to	resist	this	eliminativism	and	reject	the	notion	that	thermodynamics	has	misclassified

phenomena.	Perhaps	the	right	thing	to	say	is	that	at	the	thermodynamic	level	of	description	it	is	indeed	appropriate

to	have	a	distinct	kind	corresponding	to	phase	transitions	in	finite	systems.	But	the	appropriateness	of	this	kind	is

invisible	at	the	statistical	mechanical	level	of	description,	since	statistical	mechanics	does	not	have	the	resources

to	construct	such	a	class.	This	is	a	more	substantive	challenge	to	reductionism,	akin	to	cases	of	multiple

realizability.	As	an	analogy,	consider	that	from	the	perspective	of	our	molecular	theory	there	is	no	natural	kind	(or

indeed	finite	disjunction	of	kinds)	corresponding	to	the	category	“can	opener.”	It	seems	implausible	that	we	will	be
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able	to	delineate	the	class	of	can	openers	using	only	the	resources	of	our	microscopic	theory.	Yet	we	do	not	take

this	to	mean	that	our	microscopic	theory	corrects	our	macroscopic	theory,	demonstrating	that	can	openers	do	not

exist	as	a	separate	kind.	Can	openers	do	exist.	They	are	an	appropriate	theoretical	kind	at	a	certain	level	of

description.	Similarly,	the	fact	that	statistical	mechanics	does	not	have	the	resources	to	delineate	the	class	of	finite

particle	phase	transitions	need	not	lead	us	to	conclude	that	this	classification	is	bogus.

How	might	the	reductionist	respond	to	conceptual	novelty	of	this	sort?	One	response	would	be	to	develop	a	sense

of	explanation	that	makes	reduction	compatible	with	multiple	realization.	Even	though	statistical	mechanics	does

not	group	phase	transitions	together	the	way	that	thermodynamics	does,	it	is	still	able	to	fully	explain	what	goes	on

in	individual	instances	of	phase	transition.	Perhaps	the	existence	of	individual	explanations	in	every	case

constitutes	an	adequate	explanation	of	the	nomic	pattern	described	by	thermodynamics.	If	this	is	the	case,	the

core	sense	of	reduction	is	satisfied.	One	does	not	need	to	look	at	phase	transitions	to	notice	that	any	claim	about

the	reduction	of	thermodynamics	to	statistical	mechanics	must	be	based	on	a	conception	of	reduction	that	is

compatible	with	multiple	realizability.	Temperature,	that	most	basic	of	thermodynamic	properties,	is	not	(the	claims

of	numerous	philosophers	notwithstanding)	simply	“mean	molecular	kinetic	energy.”	It	is	a	multiply	realizable

functional	kind.	If	our	notion	of	reduction	precludes	the	existence	of	such	properties,	then	the	project	of	reducing

thermodynamics	cannot	even	get	off	the	ground.

To	us,	this	seems	like	the	correct	response	to	claims	of	emergence	based	on	the	conceptual	novelty	of	phase

transitions.	If	this	is	all	it	takes	for	emergence,	then	practically	every	thermodynamic	property	is	emergent.	Perhaps

the	emergentist	is	willing	to	bite	this	bullet,	but	we	think	it	is	more	plausible	that	the	argument	from	conceptual

novelty	to	emergence	relies	on	a	much	too	restrictive	conception	of	scientific	explanation.	It	is,	however,	worth

noting	another	line	of	response.	It	may	be	the	case	that	a	class	of	finite	particle	phase	transitions	can	be

constructed	within	statistical	mechanics	that	overlaps	somewhat	(but	not	completely)	with	the	ther-modynamic

classification.	This	would	be	a	case	of	statistical	mechanics	correcting	thermodynamics,	but	not	by	eliminating	the

phenomenon	of	phase	transitions	in	finite	systems.	Instead,	statistical	mechanics	would	redefine	phase	transitions

in	a	manner	that	preserves	our	judgments	about	a	number	of	empirical	instances	of	the	phenomenon.	If	such	a

redefinition	could	be	engineered,	phase	transitions	would	not	be	conceptually	novel	to	thermodynamics.	The

prospects	for	this	strategy	are	discussed	in	section	3.1.

Let	us	suppose	our	conception	of	reduction	is	broad	enough	that	mere	conceptual	novelty	does	not	indicate	a

failure	of	reduction.	We	accept	with	equanimity	that	under	certain	conditions	it	might	be	appropriate	to	model

phenomena	using	a	conceptual	vocabulary	distinct	from	that	of	our	reducing	theory.	For	instance,	at	a	sufficiently

coarse-grained	level	of	description	a	certain	set	of	thermody-namic	transformations	is	fruitfully	modeled	as

exhibiting	singular	behavior,	and	appropriately	grouped	together	into	a	separate	natural	kind.	However,	one	might

not	think	that	a	fully	reductive	explanation	has	been	given	unless	one	can	explain	using	the	resources	of	the

reducing	theory	why	this	model	is	so	effective	under	those	conditions.	Why	does	modeling	a	finite	particle	phase

transition	as	nonanalytic	work	so	well	at	the	thermodynamic	level	of	description	if	finite	systems	cannot	exhibit	non-

analyticities	at	the	statistical	mechanical	level	of	description?	If	we	cannot	give	such	an	explanation,	we	have

another	potential	variety	of	emergence:	explanatory	irreducibility.

To	give	an	idea	of	the	kind	of	story	we	are	looking	for,	consider	the	infinite	idealization	involved	in	explaining	the

extensivity	of	certain	thermodynamic	properties.	Many	thermodynamic	properties	are	extensive,	such	as	the

entropy,	internal	energy,	volume,	and	free	energy.	What	this	means	is	that	if	we	divide	a	system	into	macroscopic

parts,	the	values	of	those	properties	behave	in	an	additive	way.	Loosely	put,	if	we	double	the	size	of	the	system

(that	is,	double	internal	energy,	particle	number,	volume),	then	we	double	that	system's	extensive	properties	(e.g.,

the	entropy). 	Intensive	properties,	by	contrast,	do	not	scale	this	way;	for	example,	if	we	double	the	size	of	a

system,	we	do	not	double	the	pressure.	Extensivity	and	intensivity	are	features	usefully	employed	by

phenomenological	thermodynamics.	However,	when	we	look	at	a	system	microscopically,	we	quickly	see	that	no

finite	system	is	ever	strictly	extensive	or	intensive.	Correlations	exist	between	the	particles	in	one	part	of	a	system

and	another	part.	If	we	want	to	reproduce	the	thermody-namic	distinction	exactly,	we	are	stymied:	no	matter	how

large	the	system,	if	it	is	finite,	surface	effects	contribute	to	the	partition	function,	which	will	mean	that	systems’

energies	and	entropies	cannot	be	neatly	halved.	For	instance,	if	we	define	the	entropy	as	a	function	over	the	joint

probability	distributions	involved	(as	with	the	Gibbs	entropy),	we	see	that	the	entropy	is	extensive	only	when	the

two	subsystems	are	probabilistically	independent	of	one	another.	The	only	place	we	can	reproduce	the	sharp

distinction	is	by	going	to	the	thermodynamic	limit.	There	we	can	define	a	variable	f	as	extensive	if	f	goes	to	infinity
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as	we	approach	the	thermodynamic	limit	while	f/V	is	constant	in	the	limit,	where	V	is	the	volume	of	the	system.

Strictly	speaking,	only	in	infinite	systems	are	entropy,	energy,	and	so	on,	truly	extensive.

Does	this	fact	imply	that	there	is	a	great	mystery	about	extensivity,	that	exten-sivity	is	truly	emergent,	that

thermodynamics	does	not	reduce	to	finite	N	statistical	mechanics?	We	suggest	that	on	any	reasonably

uncontentious	way	of	defining	these	terms,	the	answer	is	no.	We	know	exactly	what	is	happening	here.	Just	as	the

second	law	of	thermodynamics	is	no	longer	strict	when	we	go	to	the	microlevel,	neither	is	the	concept	of

extensivity.	The	notion	of	extensivity	is	an	idealization,	but	it	is	one	approximated	well	by	finite	particle	statistical

mechanics.	For	boxes	of	length	l	containing	particles	interacting	via	short-range	forces,	the	surface	effects	scale

as	l 	and	the	volume	as	l .	Surface	effects	become	less	and	less	important	as	the	system	gets	larger.	Beings

restricted	to	macroscopic	physics	would	do	well	to	call	upon	the	extensive/intensive	distinction,	since	in	most

cases	the	impact	of	surface	effects	would	be	well	beyond	the	precision	of	measurements	made	by	such	beings.

Here	we	see	that	extensivity	in	finite	systems	is	conceptually	novel	to	thermodynamics.	It	does	not	exist	in

statistical	mechanics.	However,	leaving	the	story	there	is	unsatisfactory.	We	need	a	further	account,	from	a

statistical	mechanical	perspective,	of	why	this	new	concept	works	so	well	in	thermodynamics.	And	indeed	such	a

story	is	forthcoming.	It	relies	crucially	on	the	fact	that	the	resolution	of	our	measurements	is	limited,	but	this	in	itself

does	not,	or	at	least	should	not,	derail	the	reductionist	project.	As	long	as	we	have	a	story	that	explains	why	beings

with	such	limitations	could	fruitfully	describe	sufficiently	large	systems	as	extensive—a	story	in	terms	of	the

components	of	the	system	and	their	organization,	and	how	relevant	quantities	scale	as	the	system	gets	larger—we

do	not	have	a	genuine	challenge	to	reductionism	in	the	core	sense.

The	question	is	whether	a	similar	sort	of	explanation	is	available	to	account	for	the	efficacy	of	the	infinite

idealization	involved	in	the	statistical	mechanical	analysis	of	phase	transitions.	If	there	is	not,	we	would	have	a

case	for	emergence.	There	would	be	something	about	the	systems	under	consideration	that	could	not	be

accounted	for	reductively,	namely,	the	fact	that	their	behavior	at	a	phase	transition	can,	under	certain	conditions,

be	adequately	modeled	as	the	behavior	of	an	infinite	system.	This	feature	of	finite	systems	is	crucial	to

understanding	their	behavior	at	phase	transitions,	so	if	it	cannot	be	explained	it	would	be	legitimate	to	say	that

phase	transitions	are	emergent.	In	section	3.2	we	examine	the	possibility	of	a	reductive	explanation	of	the	efficacy

of	the	infinite	idealization.

Modeling	the	behavior	of	particular	systems	is	not	the	only	function	of	the	infinite	idealization	in	the	study	of	phase

transitions.	The	idealization	plays	a	central	role	in	the	renormalization	group	explanation	for	universal	behavior	at

the	critical	point.	As	we	have	discussed	above,	universal	behavior	is	accounted	for	by	the	presence	of	stable	fixed

points	in	the	space	of	Hamiltonians,	each	of	which	is	the	terminus	of	a	number	of	different	renormalization	flow

trajectories.	This	sort	of	explanation	raises	special	problems	that	do	not	arise	when	we	consider	the	sort	of	infinite

idealization	involved	in	the	assumption	of	extensivity.	There	we	have	a	property	that,	as	it	turns	out,	can	only	be

approximated	by	finite	systems.	It	is	only	actually	instantiated	in	infinite	systems.	However,	the	property	itself	can

be	characterized	without	recourse	to	the	infinite	idealization.	We	could	in	principle	construct	an	explanation	of	why

a	finite	thermodynamic	system	approximates	extensive	behavior	without	any	appeal	to	the	infinite	idealization.	The

idealization	gives	us	a	model	of	a	genuinely	extensive	system,	but	it	is	not	essential	to	an	understanding	of	why	it

is	useful	to	treat	macroscopic	finite	systems	as	extensive.

It	appears	that	the	situation	is	different	when	we	consider	the	renormalization	group	explanation	of	universality.

There,	the	infinite	idealization	plays	a	different	role.	Talking	about	how	a	particular	large	finite	system	approximates

the	behavior	of	an	infinite	system	will	not	be	helpful,	because	universality	is	not	about	the	behavior	of	individual

systems,	finite	or	infinite.	It	is	a	characteristic	of	classes	of	systems.	The	renormalization	group	method	explains

why	physical	systems	separate	into	distinct	universality	classes,	and	it	explains	this	in	terms	of	certain	structural

features	of	the	space	of	systems,	the	fixed	points	of	the	renormalization	flow.	It	is	the	existence	of	these	features,

and	their	connection	to	the	phenomenon	of	universality,	that	requires	the	infinite	idealization.	We	might	be	able	to

give	an	account	of	why	a	particular	large	finite	system	approaches	very	close	to	a	fixed	point	as	it	is	rescaled,

approximating	the	behavior	of	an	infinite	system,	but	this	will	not	tell	us	why	this	behavior	matters.	In	order	to	see

the	connection	between	approaching	a	fixed	point	and	exhibiting	universal	behavior,	we	need	the	infinite

idealization.	This	argument	is	made	in	Batterman	(2011).	We	address	it	in	section	4.

In	a	case	of	explanatory	irreducibility	the	higher-level	theory	models	a	particular	phenomenon	in	a	conceptually

novel	manner,	and	the	efficacy	of	this	model	cannot	be	explained	by	the	lower-level	theory.	However,	this	does
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not	preclude	the	possibility	that	the	phenomenon	can	be	modeled	within	the	lower-level	theory	in	a	different	way.

There	may	be	aspects	of	the	phenomenon	(such	as,	say,	its	macroscopic	similarity	to	other	phenomena)	that

cannot	be	captured	by	the	descriptive	resources	of	the	theory,	but	the	phenomenon	itself	can	be	described	by	the

theory.	Consider,	for	instance,	the	relationship	between	neuroscience	and	folk	psychology.	It	might	be	argued	that

the	latter	is	explanatorily	irreducible	to	the	former.	Perhaps	there	is	no	viable	neuroscientific	account	of	why	the

reasons	explanations	common	in	folk	psychology	are	successful,	but	a	materialist	about	the	mind	could	maintain

that	this	is	merely	because	the	neuroscientific	theory	operates	at	too	fine	a	scale	to	discern	the	patterns	that

ground	this	sort	of	explanation.	In	every	token	instance	covered	by	the	folk	psychological	explanation,	there	is

nothing	relevant	going	on	that	is	not	captured	by	neuroscience.	It	is	just	that	the	way	neuroscience	describes	what

is	going	on	is	not	conducive	to	the	construction	or	justification	of	reasons	explanations.	The	patterns	that	the

neuroscientific	description	fails	to	see	are	nonetheless	wholly	generated	by	processes	describable	using

neuroscience.

A	substance	dualist,	however,	would	argue	that	there	is	an	even	deeper	failure	of	reduction	going	on	here.	The

phenomena	and	processes	described	by	neuroscience	are	by	themselves	inadequate	to	even	generate	the	kinds

of	patterns	that	characterize	reasons	explanations.	This	is	because	the	lower-level	theory	does	not	have	the

resources	to	describe	a	crucial	element	of	the	ontological	furniture	of	the	situation,	the	mind	or	the	soul.	Here	we

have	more	than	a	mere	case	of	explanatory	irre-ducibility.	We	may	call	cases	like	this,	where	the	lower-level

theory	cannot	even	fully	describe	a	phenomenon	that	can	be	modeled	by	the	higher-level	theory,	examples	of

ontological	irreducibility.

This	is	probably	the	sense	in	which	the	British	emergentists	conceived	of	emergence	(see	McLaughlin	(1992)	for	an

illuminating	analysis	of	this	school	of	thought).	With	reference	to	phase	transitions,	this	view	is	perhaps	most	starkly

expressed	in	Batterman	(2005).	Batterman	argues	that	the	discontinuity	in	the	thermodynamic	potential	at	a	phase

transition	is	not	an	artifact	of	a	particular	mathematical	representation	of	the	physical	phenomenon	but	is	a	feature

of	the	physical	phenomenon	itself.	He	says,	“My	contention	is	that	thermodynamics	is	correct	to	characterize

phase	transitions	as	real	physical	discontinuities	and	it	is	correct	to	represent	them	mathematically	as	singularities”

(ibid.,	234).	If	there	are	genuine	discontinuities	in	physical	systems,	it	seems	we	could	not	represent	them

accurately	using	only	continuous	mathematical	functions.	So,	since	the	statistical	mechanics	of	finite	systems	does

not	give	us	discontinuities,	it	is	incapable	of	fully	describing	this	physical	phenomenon.	We	can	only	approach	an

explanation	of	the	phenomenon	by	working	in	the	infinite	limit.	The	idealization	is	a	manifestation	of	the	inability	of

the	theory	to	fully	describe	the	phenomenon	of	phase	transitions	in	finite	systems.	We	discuss	these	ideas	further

in	section	3.3.

In	the	remainder	of	this	chapter,	we	discuss	the	status	of	these	three	notions	of	emergence—conceptual	novelty,

explanatory	irreducibility,	and	ontological	irreducibility—as	they	apply	to	both	the	standard	statistical	mechanical

notion	of	phase	transitions	and	the	treatment	of	critical	phenomena	by	the	renormaliza-tion	group.	These	topics	are

treated	separately	because,	as	discussed	above,	the	renormalization	group	introduces	new	issues	bearing	on	the

topic	of	emergence	and	reduction	that	go	beyond	issues	involving	infinite	idealization	in	traditional	statistical

mechanics.

3.	The	Infinite	Idealization	in	Statistical	Mechanics

In	the	previous	section,	we	discussed	three	ways	in	which	the	relationship	between	statistical	mechanics	and

thermodynamics	might	be	nonreductive.	There	is	a	hierarchy	to	these	different	senses	of	emergence	set	by	the

varying	strengths	of	the	assumptions	about	explanation	required	in	order	for	them	to	represent	a	genuine	failure	of

the	core	sense	of	reduction.	Conceptual	novelty	is	the	weakest	notion	of	emergence,	explanatory	irreducibility	is

stronger,	and	ontological	irreducibility	is	stronger	still.	In	this	section,	we	discuss	the	case	that	can	be	made	for

phase	transitions	exemplifying	each	of	these	notions	of	emergence.	We	conclude	that	in	the	domain	of	ordinary

statistical	mechanics	(excluding	the	renormalization	group),	the	case	for	phase	transitions	being	either

ontologically	or	explanatorily	irreducible	is	weak.	The	case	for	phase	transitions	being	conceptually	novel	is

stronger,	but	even	here	there	are	questions	that	can	be	raised.

3.1	Conceptual	Novelty
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A	natural	kind	in	a	higher-level	theory	is	conceptually	novel	if	there	is	no	kind	in	any	potential	reducing	theory	that

captures	the	same	set	of	phenomena.	Are	thermodynamic	phase	transitions	conceptually	novel?	That	is,	does	the

kind	‘phase	transition’	have	a	natural	counterpart	kind	in	statistical	mechanics?	If	we	restrict	ourselves	to	finite	N

systems,	it	is	commonly	believed	that	there	is	not	a	kind	in	statistical	mechanics	corresponding	to	phase	transitions

and	that	one	can	only	find	such	a	kind	in	infinite	N	statistical	mechanics.	We	believe,	to	the	contrary,	that	no

theory,	infinite	or	finite,	statistical	mechanical	or	mechanical,	possesses	a	natural	kind	that	perfectly	overlaps

with	the	thermodynamic	natural	kind.	Yet	if	one	relaxes	the	demand	of	perfect	overlap,	then	there	are	kinds—

even	in	finite	N	statistical	mechanics—that	overlap	in	interesting	and	explanatorily	powerful	ways	with

thermodynamic	phase	transitions.	Strictly	speaking,	thermodynamic	phase	transitions	are	conceptually	novel;

more	loosely	speaking,	they	are	not.

To	begin,	one	might	wonder	in	what	sense	“phase	transition”	is	a	kind	even	in	thermodynamics.	After	all,	there	are

ambiguities	in	the	way	we	define	phases.	Is	glass	a	supercooled	liquid	or	a	solid?	It	depends	on	which	criteria	one

uses	and	no	set	seems	obviously	superior.	Be	that	as	it	may,	the	notion	of	a	transition	is	relatively	clear	in

thermodynamics,	and	it	is	defined,	as	above,	as	a	discontinuity	in	one	of	the	thermodynamic	potentials.	Let's	stick

with	this.

Now,	is	the	kind	picked	out	by	Def	1	the	counterpart	of	the	thermodynamic	definition?	Despite	many	claims	that	it

is,	Def	1's	extension	is	clearly	very	different	than	that	given	by	thermodynamics.	To	mention	the	most	glaring

difference—and	on	which,	more	later—there	are	many	systems	that	do	not	have	well-defined	ther-modynamic

limits.	Do	they	not	have	phase	transitions?	One	can	define	words	as	one	likes,	but	the	point	is	that	there	are	many

systems	that	suffer	abrupt	macroscopic	changes,	changes	that	thermodynamics	would	count	as	phase	transitions,

but	which	do	not	have	thermodynamic	limits.	Systems	with	very	long-range	interactions	are	prominent	examples.

But	in	fact	the	conditions	on	the	existence	of	a	thermody-namic	limit	are	numerous	and	stringent,	so	in	some	sense

most	systems	do	not	have	thermodynamic	limits.	A	strong	case	can	be	made	that	Def	1,	as	a	result,	provides	at

best	sufficient	conditions	for	a	phase	transition,	and	not	necessary	conditions.

How	does	finite	N	statistical	mechanics	fare?	The	conventional	wisdom	is	that	finite	N	statistical	mechanics	lacks

the	resources	to	have	counterparts	of	thermodynamics	phase	transitions.	However,	we	believe	that	people	often

assent	to	this	claim	too	quickly.	One	of	the	more	interesting	developments	in	statistical	mechanics	of	late	has	been

challenges	to	ordinary	statistical	mechanics	from	the	realms	of	the	very	large	and	the	very	small.	These	are

regimes	that	test	the	applicability	of	normal	Boltzmann-Gibbs	equilibrium	statistical	mechanics.	The	issues	arise

from	the	success	of	statistical	mechanical	techniques	in	new	areas.	In	cosmology,	statistical	mechanics	is	used	not

only	to	explain	the	inner	workings	of	stars	but	also	to	explain	the	statistical	distribution	of	galaxies,	clusters,	and

more.	In	these	cases,	the	force	of	interest	is	of	course	the	gravitational	force,	one	that	is	not	screened	at	short

distances	like	the	Coulomb	force.	Systems	like	this	do	not	have	a	well-defined	thermodynamic	limit,	often	are	not

approximately	extensive,	suffer	negative	heat	capacities,	and	more	(see	Callender	(2011)	for	discussion).	There

has	also	been	an	extension	of	statistical	mechanical	techniques	to	the	realm	of	the	small.	Sodium	clusters	obey	a

solidlike	to	liquidlike	“phase	transition,”	Bose-Einstein	condensation	occurs,	and	much	more.	These	atomic	clusters

have	been	surprisingly	amenable	to	statistical	mechanical	treatment,	yet	they	too	do	not	satisfy	the	conditions	for

the	application	of	the	thermodynamic	limit.	Physically,	one	way	to	think	about	what	is	happening	here	is	that	in

small	systems	a	much	higher	proportion	of	the	particles	reside	on	the	surface,	so	surface	effects	play	a	substantial

role	in	the	physics.	As	a	result,	these	systems	also	raise	issues	about	extensivity,	negative	specific	heats,	and

much	more.

These	systems	are	relevant	to	our	concerns	here	for	a	very	simple	reason:	they	appear	to	have	phase	transitions,

yet	lack	a	well-defined	thermodynamic	limit,	so	Def	1	seems	inadequate.	Orthogonal	to	our	philosophical	worries

about	reduction,	there	are	also	purely	physical	motivations	for	better	understanding	thermodynamic	phase

transitions	from	the	perspective	of	finite	statistical	mechanics.	Naturally,	some	physicists	appear	motivated	by	both

issues,	the	conceptual	and	the	physical:

Conceptually,	the	necessity	of	the	thermodynamic	limit	is	an	objectionable	feature:	first,	the	number	of	degrees	of

freedom	in	real	systems,	although	possibly	large,	is	finite,	and,	second,	for	systems	with	long-range	interactions,

the	thermodynamic	limit	may	even	be	not	well	defined.	These	observations	indicate	that	the	theoretical	description

of	phase	transitions,	although	very	successful	in	certain	aspects,	may	not	be	completely	satisfactory.	(Kastner

2008,	168)
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As	a	result	of	this	motivation,	there	are	already	several	proposals	for	finite-particle	accounts	of	phase	transitions.

These	are	sometimes	called	smooth	phase	transitions.	The	research	is	ongoing,	but	what	exists	already	provides

evidence	of	the	existence	of	thermodynamic	phase	transitions	in	finite	systems.	There	are	many	different	schemes,

but	we	will	concentrate	on	the	two	most	well	known.

3.1.1	Back-Bending

Figure	5.1 	Back-bending	of	the	caloric	curve.

Inspired	in	part	by	van	der	Waals	theory	and	its	S-shaped	bends,	this	theory	has	been	developed	by	Wales	and

Berry	(1994),	Gross	and	Votyakov	(2000)	and	Chomaz,	Gulminelli,	and	Duflot	(2001).	Unlike	in	the	traditional	theory

of	phase	transitions,	here	the	authors	work	with	the	microcanonical	ensemble,	not	the	canonical	ensemble.	The

general	idea	is	that	the	signatures	of	phase	transitions	of	different	orders	are	read	off	from	the	curvature	of	the

microcanonical	entropy,	S	=	k 	lnΩ(E),	where	Ω(E)	is	the	microcanonical	partition	function.	In	particular,	if	written	in

terms	of	the	associated	caloric	curve,	T(E)	=	1/∂	 	ln[Ω(E)],	we	can	understand	a	first-order	transition	as	a	“back-

bending”	curve,	where	for	a	given	value	of	T(E)	one	can	have	more	than	one	set	of	values	for	E/N	(see	figure	5.1).

For	our	illustrative	purposes,	we	will	use	this	as	our	definition:

(Def	2)	A	first-order	phase	transition	occurs	when	there	is	“back-bending”	in	the	microcanonical	caloric

curve.

Def	2	is	equivalent	to	the	entropy	being	convex	or	the	heat	capacity	being	negative	for	certain	values.	As

expected,	back-bending	can	be	seen	in	finite-N	systems.	So	with	Def	2	we	have	an	alternative	criterion	of	phase

transitions	that	nicely	characterizes	phase	transitions	even	in	systems	that	do	not	have	thermodynamic	limits.	We

hasten	to	add	that	the	theory	is	not	exhausted	by	a	simple	definition.	Rather,	the	hope—	which	has	to	some	extent

been	realized—is	that	it	and	its	generalizations	can	predict	and	explain	both	continuous	phase	transitions	and	also

phase	transitions	in	systems	lacking	a	thermodynamic	limit.

Def	2	is	rather	striking	when	one	realizes	that	it	is	equivalent	to	a	region	of	negative	heat	capacities	appearing.	The

reader	familiar	with	the	van	Hove	theorem	may	be	alarmed,	for	that	theorem	forbids	back-bending	in	the

thermodynamic	limit.	Since	our	concerns	are	about	the	finite	case,	this	in	itself	is	not	troubling.	But	if	one	hopes	that

this	definition	goes	over	to	the	infinite	N	definition	in	the	thermody-namic	limit,	where	ensemble	equivalence	holds

for	many	systems,	this	might	be	a	problem:	the	canonical	ensemble	can	never	have	negative	heat	capacity,

whereas	the	microcanonical	one	can,	and	yet	they	are	equivalent	for	“normal”	short-range	systems	in	the

thermodynamic	limit.	Does	“ensemble	equivalence”	in	the	infinite	limit	squeeze	out	these	negative	heat	capacities?

No,	for	one	must	remember	that	ensemble	equivalence	holds,	where	it	does,	only	when	systems	are	not

undergoing	phase	transitions.	This	is	a	point	originally	made	by	Gibbs	(1902).	And	indeed,	ensemble	inequivalence

can	be	used	as	a	marker	of	phase	transitions.	What	is	happening	is	that	the	microcanonical	ensemble	has

structure	that	the	canonical	ensemble	cannot	see;	the	regions	of	back-bending	(or	convex	entropy,	or	negative

heat	capacity)	are	missed	by	the	canonical	ensemble.	Yet	since	the	canonical	ensemble	is	equivalent	to	the

microcanonical—if	at	all—only	when	no	phase	transition	obtains,	there	is	no	opportunity	for	conflict	with

“equivalence”	results.

This	remark	provides	a	clue	to	the	relation	between	Def	1	and	Def	2	and	a	way	of	thinking	about	the	first	as	a

subspecies	of	the	second.	When	there	is	back-bending	there	is	ensemble	inequivalence.	From	the	perspective	of

the	canonical	ensemble	for	an	infinite	system,	this	is	where	a	nonanalyticity	appears	in	the	thermodynamic	limit.	It

b
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can	“see”	the	phase	transition	in	that	case;	but	when	finite	it	is	blind	to	this	structure.	Def	2	can	then	be	seen	as

more	general,	since	it	triggers	the	nonanalyticity	seen	in	infinite	systems	and	captured	by	Def	1	but	also	applies	to

finite	systems.

Many	more	interesting	facts	have	recently	been	unearthed	about	the	relationships	among	back-bending,

nonconcave	entropies,	negative	heat	capacity,	ensemble	inequivalence,	phase	transitions,	and	nonextensivity	We

refer	the	reader	to	Touchette	and	Ellis	(2005)	for	discussion	and	references.	For	rigorous	connections	between	Def

1	and	Def	2,	see	Touchette	(2006).

3.1.2	Distribution	of	Zeros

This	approach	grows	directly	out	of	the	Yang-Lee	picture.	The	Yang-Lee	theorem	is	about	the	distribution	of	zeros

of	the	grand	canonical	ensemble's	partition	function	in	the	complex	plane.	A	critical	point	is	encountered	when	this

distribution	“pinches”	the	real	axis,	and	this	can	only	occur	when	the	number	of	zeros	is	infinite.	Fisher	and	later

Grossmann	then	provided	an	elaborate	classification	of	phase	transitions	in	terms	of	the	distribution	of	zeros	of	the

canonical	partition	function	in	the	complex	temperature	plane.	Interested	in	Bose-Einstein	condensation,	nuclear

fragmentation	and	other	“phase	transitions”	in	small	systems,	a	group	of	physicists	at	the	University	of	Oldenburg

sought	to	extend	this	approach	to	the	finite	case	(see	Borrmann,	Mülken,	and	Harting	2000).	For	our	purposes,	we

can	define	their	phase	transitions	as:

(Def	3)	A	phase	transition	occurs	when	the	zeros	of	the	canonical	partition	function	align	perpendicularly

to	the	real	temperature	axis	and	the	density	scales	with	the	number	of	particles.

The	distribution	of	zeros	of	a	partition	function	contains	a	lot	of	information.	The	idea	behind	this	approach	is	to

extract	three	parameters	(α,γ,τ )	from	the	partition	function	that	tell	us	about	this	distribution:	τ 	is	a	function	of	the

number	of	zeros	in	the	complex	temperature	plane,	and	it	is	positive	for	finite	systems;	γ	is	the	crossing	angle

between	the	real	axis	and	the	line	of	zeros;	and	α	is	determined	from	the	approximate	density	of	zeros	on	that	line.

What	happens	as	we	approach	a	phase	transition	is	that	the	distribution	of	zeros	in	the	complex	temperature	plane

“line	up”	and	gradually	gets	denser	and	straighter	as	N	increases.

Figure	5.2 	Distribution	of	zeros	in	the	complex	inverse	temperature	(β=	1/kT)	plane.

We	stress	that,	as	with	the	previous	group,	the	physicists	involved	do	not	offer	a	stray	definition	but	rather	a

comprehensive	theory	of	phase	transitions	in	small	systems.	In	particular,	the	Oldenburg	group	can	use	this	theory

to	not	only	predict	whether	there	is	a	phase	transition	but	also	to	identify	the	correct	order	of	the	transition.	Their

classification	excels	when	treating	Bose-Einstein	condensation,	as	it	reproduces	the	space	dimension	and	particle

number	dependence	of	the	transition	order.

Like	the	approach	using	Def	2,	the	present	approach	works	for	both	finite	and	infinite	systems.	For	finite	systems,

τ 	is	always	positive	and	we	look	for	cases	where	α	=	γ:	these	correspond	to	first-order	transitions	in	finite

systems.	More	complicated	relations	between	α	and	γ	correspond	to	higher-order	transitions.	For	infinite	systems,

phase	transitions	of	the	first-order	occur	when	α	=	γ	=	τ 	=	0	and	for	higher-order	when	α	〉	0.	So	the	scheme

includes	the	Def	1	case	as	a	subspecies.	One	can	then	view	Def	3—or	more	accurately,	the	whole	classification

scheme	associated	with	(α,γ,	τ )—as	a	wider,	more	general	definition	of	phase	transitions,	one	including	small

systems,	with	Def	1	as	a	special	case	when	the	thermodynamic	limit	is	legitimate.
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What	is	the	relationship	between	Def	2	and	Def	3?	It	turns	out	that	they	are	almost	equivalent.	Indeed,	if	one

ignores	a	class	of	systems	that	may	turn	out	to	be	unphysical,	they	are	demonstrably	equivalent;	see	Touchette

(2006). 	The	rich	schemes	of	which	these	definitions	form	a	part	may	not	be	equivalent,	but	on	the	question	of

what	counts	as	a	phase	transition	they	will	largely	agree.

As	a	result	of	the	work	on	finite-N	definitions—and	while	duly	recognizing	that	it	is	very	much	ongoing—it	seems	to

us	that	statistical	mechanics	is	hardly	at	a	loss	to	describe	phase	transitions	in	finite	systems.	The	situation	instead

seems	to	us	to	be	more	subtle.	No	definition	in	statistical	mechanics,	infinite	or	finite,	exactly	reproduces	the

extension	picked	out	by	thermodynamics	with	the	kind	“phase	transition.”	What	one	judges	the	best	definition	then

hangs	on	what	extension	one	wants	to	preserve.	If	focusing	on	thermodynamic	systems	possessing

thermodynamic	limits,	then	Def	1	is	fine.	Then	the	kind	“phase	transition”	is	conceptually	emergent	relative	to

finite-N	statistical	mechanics.	But	if	impressed	by	long-range	systems,	small	systems,	nonextensive	systems,	and

“solidlike-to-liquidlike”	mesoscopic	transitions,	then	one	of	the	finite-N	definitions	is	necessary.	Relative	to	these

definitions,	the	kind	“phase	transition”	is	not	conceptually	novel.	If	one	wants	a	comprehensive	definition,	for	finite

and	infinite,	then	the	schemes	described	provide	the	best	bet.	Probably	none	of	the	definitions	provide	necessary

and	sufficient	conditions	for	a	phase	transition	that	overlaps	perfectly	with	thermodynamic	phase	transitions.	That,

however,	is	okay,	for	thermodynamics	itself	does	not	neatly	characterize	all	the	ways	in	which	macrostates	can

change	in	an	“abrupt”	way.

In	any	case,	we	do	not	believe	that	conceptual	novelty	by	itself	poses	a	major	threat	to	reductionism.	After	all	even

a	(too)	strict	Nagelian	notion	of	reduction	can	accommodate	conceptual	novelty	(as	long	as	the	novel	higher-level

kind	is	expressible	as	a	finite	disjunction	of	lower-level	kinds).	Conceptual	novelty	is	only	a	problem	when	you	do

not	have	explanatory	reducibility	of	the	conceptually	novel	kind,	a	question	to	which	we	now	turn.

3.2	Explanatory	Irreducibility

Explanatory	irreducibility	occurs,	we	said,	when	the	explanation	of	a	higher-level	phenomenon	requires	a

conceptual	novelty,	yet	the	reducing	theory	does	not	have	the	resources	to	explain	why	the	conceptual	novelty	is

warranted. 	Where	phase	transitions	are	especially	interesting,	philosophically,	lies	in	the	fact	that,	at	first	glance,

they	seem	to	be	a	real-life	and	prominent	instance	of	explanatory	irreducibility.	To	arrive	at	this	claim,	let	us

suppose	that	the	finite-N	definitions	surveyed	above	are	theoretically	inadequate.	Assume	that	Def	1	is	employed

in	the	best	explanation	of	the	phenomena.	Then	we	have	already	seen	that	no	finite-N	statistical	mechanics	can

suffer	phase	transitions	so	understood.	If	the	“reducing	theory”	is	finite-N	statistical	mechanics,	then	we	potentially

have	a	case	of	explanatory	irreducibility.	But	should	the	reducing	theory	be	restricted	to	finite-N	theory?

One	quick	way	out	of	difficulty	would	be	to	include	the	thermodynamic	limit	as	part	of	the	reducing	theory.

However,	this	would	be	a	cheat.	The	thermodynamic	limit	is,	we	believe,	the	production	of	another

phenomenological	theory,	not	a	piece	of	the	reducing	theory.	The	ontology	of	the	classical	reducing	theory	is

supposed	to	be	finite-N	classical	mechanics.	Such	a	theory	has	surface	effects,	fluctuations,	and	more,	but	the

thermodynamic	limit	squashes	these	out.	More	importantly,	the	ontology	of	the	system	in	the	thermodynamic	limit	is

not	the	classical	mechanics	of	billiard	balls	and	the	like.	A	quick	and	interesting	way	to	see	this	point	is	to	note	that

the	thermodynamic	limit	is	mathematically	equivalent	to	the	continuum	limit	(Compagner	1989).	The	continuum	limit

is	one	wherein	the	size	and	number	of	particles	is	decreased	without	bound	in	a	finite-sized	volume.	When

thermodynamics	emerges	from	this	limit,	it	is	emerging	from	a	theory	describing	continuous	matter,	not	atomistic

matter.	New	light	is	shed	on	all	that	is	regained	in	the	thermodynamic	limit	if	we	see	it	as	regained	in	the	continuum

limit.	For	here	we	do	not	see	properties	emerging	from	an	atomic	microworld	behaving	thermodynamically,	but

rather	properties	emerging	from	a	continuum,	a	realm	well	“above”	the	atomic.	For	this	reason,	with	respect	to	the

reduction	of	thermodynamics	to	statistical	mechanics,	we	do	not	see	proofs	that	thermodynamic	properties	emerge

in	the	thermody-namic	limit	as	cases	whereby	thermodynamic	properties	are	reduced	to	mechanical	properties.

If	this	is	right,	then	we	have	a	potential	case	of	explanatory	irreducibility.	The	best	explanation	of	the	phenomenon

of	phase	transitions	contains	an	idealization	whose	efficacy	cannot	be	explained	from	the	perspective	of	finite-N

theory.	So	are	phase	transitions	actually	explanatorily	irreducible?	The	answer	hangs	on	whether	de-idealization

can	be	achieved	within	finite-N	statistical	mechanics.	We	believe	that	it	can	be.	We	have	already	hinted	at	one

possibility.	If	one	could	show	that	one	or	more	of	the	finite-N	definitions	approximate	in	a	controlled	way	Def	1,	then

we	could	view	Def	1	as	“really”	talking	about	one	of	the	other	definitions.	Indeed,	this	seems	very	much	a	live
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possibility	with	either	Def	2	or	Def	3	above.	However,	suppose	we	believe	that	this	is	not	possible.	Is	there	any

other	way	of	de-idealizing	the	standard	treatment	of	phase	transitions?	We	believe	that	there	is,	and	both

Butterfield	(2011)	and	Kadanoff	(2009)	point	toward	the	right	diagnosis.

Before	getting	to	that,	however,	notice	that	the	actual	practice	of	the	science	more	or	less	guarantees	that	some

finite-N	approximation	must	be	available.	In	recent	years	there	has	been	an	efflorescence	of	computational	models

of	statistical	mechanical	phenomena	(see	Krauth	2006).	Since	we	cannot	simulate	an	infinite	system,	these	models

give	an	inkling	of	how	we	might	approximate	the	divergences	associated	with	critical	behavior	in	a	finite	system.

Consider,	for	instance,	the	Monte	Carlo	implementation	of	the	Ising	model	(see,	for	instance,	Wolff	(1989)).	The

Monte	Carlo	method	involves	picking	some	probabilistic	algorithm	for	propagating	fluctuations	in	the	lattice

configuration	of	an	Ising	system	as	time	evolves.	Each	run	of	the	simulation	is	a	random	walk	through	the	space	of

configurations,	and	we	study	the	statistical	properties	of	ensembles	of	these	walks.

It	might	be	argued	that	the	system	size	in	these	simulations	is	effectively	infinite,	since	the	lattice	is	usually

implemented	with	periodic	boundary	conditions.	However,	this	periodicity	should	be	interpreted	merely	as	a

computational	tool,	not	as	a	simulation	of	infinite	system	size.	The	algorithm	is	supposed	to	study	the	manner	in

which	fluctuations	propagate	through	the	lattice,	but	the	model	will	only	work	if	the	correlation	length	is	less	than

the	periodicity	of	the	system.	If	fluctuations	propagate	over	scales	larger	than	the	periodicity,	we	will	have	a

conflict	between	the	propagation	of	fluctuations	and	the	constraints	set	by	the	periodicity	of	boundary	conditions.

So	the	periodic	boundary	conditions	should	be	interpreted	as	setting	an	effective	system	size.	The	model	is	only

useful	as	long	as	the	correlation	length	remains	below	this	characteristic	length	scale.	Unfortunately,	the	periodic

boundary	conditions	also	mean	that	the	model	is	not	accurate	at	the	critical	point,	only	close	to	it.	As	the

correlation	length	approaches	system	size	in	a	real	system,	surface	effects	become	relevant,	and	the	simulation

neglects	these	effects.

Nonetheless,	the	Monte	Carlo	method	does	allow	us	to	see	how	Ising	systems	approach	critical	behavior	near	the

critical	point.	For	instance,	models	exhibit	the	increase	of	correlation	length	as	the	critical	point	is	approached	and

the	associated	slow-down	of	equilibriation	(due	to	the	increased	length	over	which	fluctuations	propagate).	As	we

construct	larger	and	larger	systems,	the	model	is	precise	closer	and	closer	to	the	critical	point,	and	we	can	see	the

correlation	length	get	larger.	We	can	also	model	the	nonequilibrium	phenomenon	of	avalanches,	where	the	order

parameter	of	the	system	changes	in	a	series	of	sharp	jumps	as	the	external	parameter	in	the	Hamiltonian	is	varied.

As	an	example,	the	magnetization	of	a	magnetic	material	exhibits	avalanches	as	the	external	field	is	tuned.	The

avalanches	are	due	to	the	way	in	which	fluctuations	of	clusters	of	spins	trigger	further	fluctuations.	At	the	critical

point,	we	get	avalanches	of	all	sizes.	Again,	the	approach	to	this	behavior	can	be	studied	by	examining	how	the

distribution	of	avalanches	changes	as	the	system	approaches	the	critical	point.	These	are	just	some	examples	of

how	finite	models	can	be	constructed	to	examine	the	behavior	of	a	system	arbitrarily	close	to	the	critical	point.

These	models	fail	sufficiently	close	to	criticality	because	they	do	not	adequately	deal	with	boundary	effects.

However,	they	do	give	an	indication	of	how	the	behavior	of	large	finite	systems	can	be	seen	as	smoothly

approximating	the	behavior	of	infinite	systems.

We	now	turn	to	a	more	explicit	attempt	to	understand	the	idealization.	Butter-field	(2011,	§	3.3	and	§	7)	thinks	the

treatment	of	phase	transitions	does	not	occasion	any	great	mystery.	We	agree	and	reproduce	his	mathematical

analogy	(with	slight	modifications)	to	illustrate	the	point.	Consider	a	sequence	of	real	functions	gN,	where	N	ranges

over	the	natural	numbers.	For	each	value	of	N,	the	function	gN	(x)	is	continuous.	It	is	equal	to	−1	when	x	is	less

than	or	equal	to	−1/N,	increases	linearly	with	slope	N	when	x	is	between	−1/N	and	1/N,	and	then	stays	at	1	when

x	is	greater	than	or	equal	to	1/N.	The	slope	of	the	segment	connecting	the	two	constant	segments	of	the	function

gets	steeper	and	steeper	as	N	increases.

While	every	member	of	this	sequence	of	functions	is	continuous,	the	limit	of	the	sequence	g (x)	is	discontinuous	at

x	=	0.	Now	consider	another	sequence	of	real	functions	of	x,	f .	These	are	two-valued	functions,	defined	as

follows:

Given	these	definitions,	fN(x)	is	the	constant	zero	function	for	all	N.	If	we	just	look	at	the	sequence	of	functions,	we
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would	expect	the	limit	of	the	sequence	fN	as	N	→	∞	to	also	be	constant.	However,	if	we	construct	f 	(x)	from	g 	(x)

using	the	above	definition,	we	will	not	get	a	constant	function.	The	function	will	be	discontinuous;	it	will	take	on	the

value	1	at	x	=	0.	If	one	focuses	only	on	fN	without	paying	attention	to	how	it	is	generated	from	gN,	the	behavior	in

the	limit	will	seem	mysterious	and	inexplicable	given	the	behavior	at	finite	N.

Imagine	that	we	represent	a	physical	property	in	a	model	in	terms	of	fN(x)	taking	on	the	value	1,	where	N	is	a

measure	of	the	size	of	the	physical	system.	This	property	can	only	be	exemplified	in	the	infinite-N	limit,	of	course.

And	if	we	restricted	ourselves	to	considering	fN	when	trying	to	explain	the	property,	we	would	be	at	a	loss.	No

matter	how	big	N	gets,	as	long	as	it	is	finite	there	is	no	notion	of	being	nearer	or	further	away	from	the	property

obtaining.	We	might	conclude	that	the	property	is	emergent	in	the	infinite	limit,	since	we	cannot	“de-idealize”	as	we

did	in	the	case	of	extensivity	and	show	how	a	finite	system	approximates	this	property.	However,	this	is	only

because	we	are	not	paying	attention	to	the	gN(x).	Realizing	the	relationship	between	fN	and	gN	allows	us	to	account

for	the	behavior	of	fN	in	the	infinite	limit	from	a	finite	system	perspective,	since	there	is	a	clear	sense	in	which	the

functions	gN	approach	discontinuity	as	N	approaches	infinity.

We	might	put	the	point	as	follows.	Suppose	we	have	a	theory	of	some	physical	property	that	utilizes	the	predicates

g,	N,	and	x.	Suppose	further	that	we	are	particularly	interested	in	the	rapid	increase	in	gN(x)	around	x	=	0	when	N

is	large.	Rather	than	analyze	gN	(x)	for	particular	finite	values	of	N,	it	might	make	sense	from	a	computational

perspective	to	work	with	the	infinite	idealization	g (x),	where	the	relevant	behavior	is	stark	and	localized	at	x	=	0.

We	may	introduce	a	new	“kind”	represented	by	the	predicate	f	that	picks	out	the	phenomenon	of	interest	in	the

infinite	limit.	This	kind	is	conceptually	novel	to	the	g,	N,	x	framework.	Indeed,	one	can	imagine	a	whole	theory

written	in	terms	off,	without	reference	to	g.	Using	such	a	theory	it	could	be	difficult	to	see	how	f	is	approximated	by

some	function	of	finite-N.	Because	f	is	two-valued,	the	property	it	represents	will	appear	to	just	pop	into	existence

in	the	infinite	limit	without	being	approximated	in	any	way	by	large	finite	systems.	Restricted	to	f	(and	hence	g (x)),

one	would	not	have	the	resources	present	to	explain	how	f	emerges	from	the	shape	of	g	when	N	is	finite.

This	is	precisely	what	happens	in	phase	transitions.	As	Butterfield	shows,	the	example	of	f	and	g	translates	nicely

into	the	treatment	of	phase	transitions.	The	magnetization	in	an	Ising	model	behaves	like	gN(x),	where	N	is	the

number	of	particles	and	x	is	the	applied	field.	For	finite	systems,	the	transition	of	the	system	between	the	two

phases	of	magnetization	occurs	continuously	as	the	applied	field	goes	from	negative	to	positive.	In	the	infinite

case,	the	transition	is	discontinuous.	The	sequence	of	functions	fN	isolate	one	aspect	of	the	behavior	of	the

functions	gN—	whether	or	not	they	are	continuous.	If	we	just	focus	on	this	property,	it	might	seem	like	there	is

entirely	novel	behavior	in	the	infinite	particle	case.	The	shape	of	f (x)	around	x	=	0	is	not	in	any	sense

approximated	or	approached	by	fN	as	N	gets	large.	If	it	is	the	case	that	large	finite	systems	can	be	successfully

modeled	as	infinite	systems,	this	might	seem	to	be	a	sign	of	explanatory	irreducibility.	The	success	of	the	infinite

particle	idealization	cannot	be	explained	because	the	infinite	particle	function	is	not	the	limit	of	the	finite	particle

function	sequence	fN.	The	illusion	of	explanatory	irreducibility	is	dispelled	when	we	realize	that	any	explanation

involving	f 	can	be	rephrased	in	terms	of	g ,	and	the	latter	function	does	not	display	inexplicably	novel	behavior.	It

is	in	fact	the	limit	of	the	finite	particle	functions	gN.	As	N	increases,	gN	approaches	g 	in	a	well-defined	sense.	At	a

sufficiently	large	but	finite	system	size	N ,	the	resolution	of	our	measuring	instruments	will	not	be	fine-grained

enough	to	distinguish	between	gN (x)	and	g (x).	We	have	an	explanation,	much	like	the	one	we	have	for

extensivity,	of	the	efficacy	of	the	infinite	idealization.

Recognizing	that	the	predicate	f	only	picks	out	part	of	the	information	conveyed	by	the	predicate	g	dissolves	the

mystery.	The	new	predicate	is	useful	when	we	are	working	with	the	idealization,	but	it	makes	de-idealization	a	more

involved	process.	To	see	the	connection	between	a	phase	transition	defined	via	Def	1	and	real	finite	systems,	one

must	first	“undo”	the	conceptual	innovation	and	write	the	theory	as	a	limit	of	nascent	functions.	At	that	point	one

can	then	see	that	the	idealization	is	an	innocent	simplification	and	extrapolation	of	what	happens	to	certain

physical	curves	when	N	grows	large.

3.3	Ontological	Irreducibility

Ontological	irreducibility	involves	a	very	strong	failure	of	reduction,	and	if	any	phenomenon	deserves	to	be	called

emergent,	it	is	one	whose	description	is	ontolog-ically	irreducible	to	any	theory	of	its	parts.	Batterman	argues	that

phase	transitions	are	emergent	in	this	sense	(Batterman	2005).	It	is	not	just	that	we	do	not	know	of	an	adequate

statistical	mechanical	account	of	them,	we	cannot	construct	such	an	account.	Phase	transitions,	according	to	this
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view,	are	cases	of	genuine	physical	discontinuities.	The	discontinuity	is	there	in	nature	itself.	The	thermodynamic

representation	of	these	phenomena	as	mathematical	singularities	is	quite	natural	on	this	view.	It	is	hard	to	see	how

else	to	best	represent	them.	However,	canonical	statistical	mechanics	does	not	allow	for	mathematical	singularities

in	thermodynamic	functions	of	finite	systems,	so	it	does	not	have	the	resources	to	adequately	represent	these

physical	discontinuities.	If	the	density	of	a	finite	quantity	of	water	does	as	a	matter	fact	change	discontinuously	at	a

phase	transition,	then	it	seems	that	statistical	mechanics	is	incapable	of	describing	this	phenomenon,	so	the

thermodynamics	of	phase	transitions	is	genuinely	ontologically	irreducible.

Why	think	phase	transitions	are	physically	discontinuous?	Batterman	appeals	to	the	qualitative	distinction	between

the	phases	of	fluids	and	magnets.	Yet	describing	the	distinction	between	the	phases	as	“qualitative”	is	potentially

misleading.	It	is	true	that	the	different	phases	of	certain	systems	appear	macroscopically	distinct	to	us.	A	liquid

certainly	seems	very	different	from	a	gas.	However,	from	a	thermodynamic	perspective	the	difference	is

quantitative.	Phases	are	distinguished	based	on	the	magnitudes	of	certain	thermodynamic	parameters.	The	mere

existence	of	distinct	states	of	the	system	exhibiting	these	different	magnitudes	does	not	suggest	that	there	is	any

discontinuity	in	the	transition	between	the	systems.	This	is	a	point	about	the	mathematical	representation,	but	the

lesson	extends	to	the	physical	phenomenon.	While	it	is	true	that	the	phases	of	a	system	are	macroscopically

distinct,	this	is	not	sufficient	to	establish	that	the	physical	transition	from	one	of	these	phases	to	the	other	as	gross

constraints	are	altered	involves	a	physical	discontinuity.

In	order	to	see	whether	there	really	is	a	discontinuity	that	is	appropriately	modeled	as	a	singularity	we	need	to

understand	the	dynamics	of	the	change	of	phase.	So	we	take	a	closer	look	at	what	happens	at	a	first-order	phase

transition.	Consider	the	standard	representation	of	an	isotherm	on	the	liquid-gas	P-V	diagram	at	a	phase	transition

(figure	5.3).

Figure	5.3 	P-	V	diagram	for	a	liquid-gas	system	at	a	phase	transition.

The	two	black	dots	are	coexistence	points.	At	these	points	the	pressure	on	the	system	is	the	same,	but	the	system

separates	into	two	distinct	phases:	low-volume	liquid	and	high-volume	gas.	The	two	coexistence	points	are

connected	by	a	horizontal	tie-line	or	Maxwell	plateau.	On	this	plateau,	the	system	exists	as	a	two-phase	mixture.	It

is	here	that	the	dynamics	of	interest	takes	place.	However,	the	representation	above	is	too	coarse-grained	to

provide	a	full	description	of	the	behavior	of	the	system	at	transition.	This	representation	certainly	involves	a

mathematical	singularity:	as	the	pressure	is	reduced,	the	volume	of	the	system	changes	discontin-uously.	But	a

closer	look	at	how	the	transition	takes	place	demonstrates	that	this	is	just	an	artifact	of	the	representation,	and	not

an	accurate	picture	of	what	is	going	on	at	the	transition.	The	P-V	diagram	ignores	fluctuations,	but	fluctuations	are

crucial	to	the	transition	between	phases.	The	process	by	which	this	takes	place	is	nucleation.	When	we	increase

the	pressure	of	a	gas	above	the	coexistence	point	it	does	not	instantaneously	switch	to	a	liquid	phase.	It	continues

in	its	gaseous	phase,	but	this	supersaturated	vapor	is	meta-stable.	Thermal	fluctuations	cause	droplets	of	liquid	to

nucleate	within	the	gaseous	phase.	In	this	regime,	the	liquid	phase	is	energetically	favored,	and	this	encourages

the	expansion	of	the	droplet.	However,	surface	effects	at	the	gas–liquid	interface	impede	the	expansion.	When	the

droplet	is	small,	surface	effects	predominate,	preventing	the	liquid	phase	from	spreading,	but	if	there	is	a

fluctuation	large	enough	to	push	the	droplet	over	a	critical	radius,	the	free	energy	advantage	dominates	and	the

liquid	phase	can	spread	through	the	entire	system.	A	full	account	of	the	gas–liquid	transition	will	involve	a

description	of	the	process	of	nucleation,	a	nonequilibrium	phenomenon	that	is	not	represented	on	the	equilibrium

P-V	diagram	in	figure	5.3.
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Perhaps	the	nucleation	of	droplets	from	zero	radius	could	be	seen	as	an	example	of	a	physical	discontinuity.

However,	an	analysis	of	this	process	is	not	beyond	the	reach	of	finite	particle	statistical	mechanics.	We	can	study

the	nucleation	of	a	new	phase	using	the	Ising	model.	As	the	external	field	crosses	zero,	simulations	of	the	model

show	that	initially	local	clusters	of	spins	flip.	Some	of	these	clusters	are	too	small,	so	they	shrink	back	to	zero,	but

once	there	is	a	large	enough	cluster—a	critical	droplet—the	flipping	spreads	across	the	entire	system	and	the	new

phase	takes	over.	All	of	this	is	observable	in	a	simple	finite	particle	Ising	system,	so	the	phenomenon	of	nucleation

can	be	described	by	statistical	mechanics	without	having	to	invoke	the	thermodynamic	limit.	If	it	is	the	case	that

physical	discontinuities	cannot	be	accurately	described	by	statistical	mechanics,	then	we	have	good	reason	for

believing	there	are	no	such	discontinuities	in	the	process	of	phase	transition.

Even	if	we	grant	that	phase	transitions	involve	a	physical	discontinuity	and	can	only	be	accurately	represented	by

a	mathematical	singularity,	the	ontological	irre-ducibility	of	the	phenomenon	does	not	follow.	Very	recently	it	has

been	shown	that	the	microcanonical	entropy,	unlike	the	canonical	free	energy,	can	be	nonanalytic	for	finite

systems.	And	indeed,	a	research	program	has	sprung	up	based	on	this	discovery	that	tries	to	link	singularities	of

the	microcanonical	entropy	to	thermodynamic	phase	transitions	(Franzosi,	Pettini,	and	Spinelli	2000,	Kastner	2008).

That	program	demonstrates	that	nonanalyticities	in	the	entropy	are	associated	with	a	change	in	the	topology	of

configuration	space.	Consider	the	subset	of	configuration	space	M 	that	contains	all	points	for	which	the	potential

energy	per	particle	is	lower	than	v.	As	v	is	varied,	this	subset	changes,	and	at	some	critical	values	of	v	the

topological	properties	of	the	subset	change.	This	topology	change	is	marked	by	a	change	in	the	Euler

characteristic.	For	finite	systems,	there	is	a	nonanalyticity	in	the	entropy	wherever	there	is	a	topology	change.	For

infinite	systems	there	is	a	continuum	of	points	at	which	the	topology	changes,	so	a	straightforward	identification	of

phase	transitions	with	topology	change	is	inappropriate. 	Nevertheless,	it	is	widely	believed	that	there	is	some

connection	between	these	finite	nonanalyticities	and	thermodynamic	phase	transitions.

This	is	a	fledgling	research	program	and	there	are	still	a	number	of	open	questions.	It	is	unclear	what	topological

criteria	will	be	necessary	and	sufficient	to	define	phase	transitions,	if	any	such	criteria	can	be	found.	What	is

important	for	our	purposes	is	that	it	is	clear	that	the	microcanonical	ensemble	does	exhibit	singularities	even	in	the

finite	particle	case	and	that	there	is	a	plausible	research	program	attempting	to	understand	phase	transitions	in

terms	of	these	singularities.	As	such,	it	is	certainly	premature	to	declare	that	phase	transitions	are	ontologically

irreducible	even	if	they	involve	genuine	physical	discontinuities.	Statistical	mechanics	might	well	have	the

resources	to	adequately	represent	these	discontinuities	without	having	to	advert	to	the	thermodynamic	limit.

4.	The	Infinite	Idealization	in	the	Renormalization	Group

We	have	argued	that	there	is	good	reason	to	think	the	use	of	the	infinite	limit	in	the	statistical	mechanical

description	of	phase	transitions	does	not	show	that	the	phenomenon	is	either	ontologically	or	explanatorily

irreducible.	Here	we	examine	whether	similar	claims	can	be	made	about	the	way	the	infinite	idealization	is	used	in

renormalization	group	theory.	While	this	theory	is	usually	included	under	the	broad	rubric	of	statistical	mechanics,

there	are	significant	differences	between	renormalization	group	methods	and	the	methods	characteristic	of

statistical	mechanics.	Statistical	mechanics	allows	us	to	calculate	the	statistical	properties	of	a	system	by

analyzing	an	ensemble	of	similar	systems.	Renormalization	group	methods	enter	when	correlations	within	a	system

extend	over	scales	long	enough	to	make	straightforward	ensemble	methods	impractical	(see	Kadanoff	(2010a)	for

more	on	this	distinction).	The	properties	of	the	system	are	calculated	not	from	a	single	ensemble	but	from	the	way

in	which	the	ensemble	changes	upon	rescaling.	In	statistical	mechanics,	the	infinite	idealization	is	important	for	the

effect	it	has	on	a	single	ensemble	(allowing	nonanalyticities,	for	instance).	In	renormalization	group	theory,	the

infinite	idealization	is	important	because	it	allows	unlimited	rescaling	as	we	move	from	ensemble	to	ensemble.	The

apparent	difference	in	the	use	of	the	idealization	suggests	the	possibility	of	significant	philosophical	distinctions.	It

will	not	do	to	blithely	extend	our	conclusions	about	statistical	mechanics	to	cover	renormalization	group	theory.

We	distinguish	two	different	types	of	explanation	that	utilize	the	renormalization	group	framework.	The	first	is	an

explanation	of	the	critical	behavior	of	particular	systems,	and	the	second	is	the	universal	behavior	of	classes	of

systems.	The	first	type	of	explanation	does	not	raise	any	fundamentally	new	issues	that	we	did	not	already

consider	in	our	discussion	of	the	explanatory	reducibility	of	phase	transitions	in	statistical	mechanics.	The	second

type	of	explanation	does	raise	significant	new	issues,	since	we	move	from	the	examination	of	phenomena	in

particular	systems	to	phenomena	characterizing	classes	of	systems.	Batterman	(2011)	argues	that	the

v
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renormalization	group	explanation	of	universality	is	a	case	of	explanatory	irreducibility.	While	we	might	be	able	to

tell	a	complex	microphysical	story	that	explains	why	a	particular	finite	system	exhibits	certain	critical	behavior	(the

first	type	of	explanation),	we	cannot	account	for	the	fact	that	many	microscopically	distinct	systems	exhibit

identical	critical	behavior	(the	second	type	of	explanation)	without	using	the	infinite	idealization.

We	begin	with	a	brief	discussion	the	first	type	of	explanation:	the	renormalization	group	applied	to	the	critical

behavior	of	individual	systems.	We	know	from	theory	and	experiment	that	there	are	large-scale	correlations	near

the	critical	point	and	that	mean	field	theory	does	not	work	in	these	conditions.	We	need	a	method	that	can	handle

systems	with	long	correlation	lengths,	and	this	is	exactly	the	purpose	that	the	renormalization	group	method

serves.	We	idealize	the	correlation	length	of	the	system	as	infinite	so	that	it	flows	to	a	fixed	point	under	rescaling

and	then	calculate	its	critical	exponent	by	examining	the	behavior	of	the	trajectory	near	the	fixed	point.

This	raises	the	question	of	why	a	system	with	a	large	correlation	length	can	be	successfully	represented	as	a

system	with	an	infinite	correlation	length.	If	we	have	no	explanation	of	the	success	of	this	idealization,	we	have	a

case	of	explanatory	irreducibility.	However,	when	we	are	focusing	on	the	behavior	of	a	particular	system,	any

irreducibility	in	the	renormalization	group	theory	is	inherited	from	orthodox	statistical	mechanics.	The	justification	of

the	infinite	correlation	length	idealization	will	coincide	with	the	justification	for	the	infinite	system	size	idealization.

Why	does	the	renormalization	group	method	need	the	infinite	limit?	Because	it	relies	on	the	divergence	of	the

correlation	length	at	the	critical	point,	which	is	impossible	in	a	finite	system.	Why	does	the	correlation	length

diverge?	Because	it	is	related	to	the	susceptibility,	which	is	a	second	derivative	of	the	free	energy	and	diverges.

Why	does	the	susceptibility	diverge?	Because	there	is	a	nonanalyticity	in	the	free	energy.	Explaining	why	(or

whether)	this	nonanalyticity	exists	takes	us	back	to	the	statistical	mechanical	definition	of	phase	transitions.	If

statistical	mechanics	can	explain	phase	transitions	reductively,	then	the	renormalization	group	does	not	pose	an

additional	philosophical	problem	when	we	focus	on	its	application	to	particular	systems.	It	is	true	that	the	system

must	be	idealized	in	order	to	employ	renormalization	group	theory,	but	that	idealization	can	be	justified	outside

renormalization	group	theory.

The	more	interesting	case	is	the	second	type	of	explanation,	the	explanation	of	universality.	Without	the

renormalization	group	method,	we	might	examine	the	behavior	of	individual	finite	system	and	discover	that	a

number	of	such	systems,	though	microscopically	distinct,	exhibit	strikingly	similar	macroscopic	behavior	near

criticality.	However,	this	would	not	tell	us	why	we	should	expect	this	macroscopic	similarity,	and	so	it	is	not	really	a

satisfactory	explanation	of	universality.	The	renormalization	group	method	givesusagenuine	explanation:	when	the

correlation	length	diverges,	there	is	no	characteristic	length	scale.	If	the	relevant	parameters	for	the	system

vanish,	as	they	do	at	criticality,	the	system	will	flow	to	a	fixed	point	under	repeated	rescaling.	Fixed	points	can

function	as	attractors,	leading	to	similar	critical	behavior	for	a	number	of	different	systems.

If	the	system	size	is	finite,	the	system	will	not	flow	to	a	fixed	point.	We	might	be	able	to	show	that	a	number	of

distinct	large	finite	systems	flow	to	points	in	system	space	that	are	very	close	to	each	other,	but	once	again	all	that

we	have	done	is	revealed	the	universality	of	critical	(or	near-critical)	behavior.	We	have	not	explained	it.	There	is

a	generic	reason	to	expect	distinct	infinite	systems	to	flow	to	stable	fixed	points,	but	without	mentioning	fixed	points

there	does	not	seem	to	be	a	generic	reason	to	expect	distinct	finite	systems	to	flow	to	points	that	are	near	each

other.	So	it	seems	that	fixed	points	play	an	indispensable	role	in	the	explanation	of	universal	behavior.	We	cannot

“de-idealize”	and	remove	reference	to	fixed	points	in	the	explanation,	the	way	we	can	for	nonanalyticities	in

particular	systems.	Think	back	to	Butterfield's	example	described	in	section	3.2.	In	that	example,	the	apparent

explanatory	irreducibility	of	the	behavior	of	f 	was	resisted	by	rephrasing	our	explanations	in	terms	of	g ,	a

function	whose	behavior	in	the	limit	is	not	novel.	In	the	case	of	the	renormalization	group,	it	seems	that	this	move	is

unavailable	to	us.	Fixed	points	are	a	novel	feature	that	only	appear	in	the	infinite	limit.	There	does	not	seem	to	be	a

clear	sense	in	which	the	renormalization	flow	of	finite	systems	can	approximate	a	fixed	point.	A	point	is	either	a

fixed	point	for	the	flow	or	it	is	not;	it	cannot	be	“almost”	a	fixed	point.	And	unlike	Butterfield's	example,	there	does

not	seem	to	be	a	way	of	rephrasing	the	explanation	of	universality	in	terms	that	are	approximated	by	large	finite

systems.

So	there	is	a	strong	prima	facie	case	that	universality	is	explanatorily	irreducible.	However,	we	do	not	believe	that

the	case	stands	up	to	scrutiny.	To	see	how	it	fails,	we	begin	by	showing	that	we	can	explain	why	finite	systems

exhibit	universal	behavior	near	criticality.	However,	this	explanation	does	require	the	full	resources	of	the

renormalization	group	method,	including	fixed	points.	So	it	is	not	an	explanation	of	the	sort	that	we	were

∞ ∞
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contemplating	above,	one	that	does	away	with	reference	to	fixed	points.	We	will	argue	that	this	should	not	actually

trouble	the	reductionist,	but	first	we	present	the	explanation.

Consider	an	Ising	system	extending	over	a	finite	length.	When	the	system	is	rescaled,	the	separation	between	the

nodes	on	the	lattice	increases.	Since	we	are	keeping	the	system	size	fixed,	this	means	the	number	of	nodes	will

decrease.	So	unlike	the	infinite	system	case,	for	a	finite	system	the	number	of	nodes	is	a	parameter	that	is	affected

by	rescaling.	If	the	number	of	nodes	is	N,	we	can	now	think	of	1/N	as	a	relevant	parameter	(as	defined	in	section

1.3).	When	we	restrict	ourselves	to	the	infinite	case,	we	are	considering	a	particular	hypersurface	of	this	new

parameter	space	where	1/N	is	set	to	0.	However,	since	1/N	is	a	relevant	parameter,	perturbing	the	system	off	this

hypersurface	(i.e.,	switching	from	the	infinite	to	a	finite	system)	will	take	the	system	away	from	the	critical	fixed

point.	This	should	be	cause	for	concern.	It	seems	there	is	no	hope	for	an	explanatory	reduction.	If	even	a	slight

perturbation	off	the	1/N	=	0	hypersurface	changes	the	critical	behavior,	how	can	we	think	of	finite	systems	as

approximating	the	behavior	of	infinite	systems?	As	Kadanoff	says,	“if	the	block	transformation	ever	reaches	out

and	sees	no	more	couplings	in	the	usual	approximation	schemes	…	that	will	signal	the	system	that	a	weak	coupling

situation	has	been	encountered	and	will	cascade	back	to	produce	a	weak	coupling	phase	[a	trivial	fixed	point	with

K	=	0]”	(Kadanoff	2010b,	47).

However,	all	is	not	lost.	The	difference	between	the	behavior	of	finite	and	infinite	systems	depends	on	the

correlation	length.	When	the	correlation	length	is	very	small	relative	to	the	system	size,	the	finite	system	behaves

much	like	the	infinite	system.	The	values	of	thermodynamic	observables	will	not	differ	substantially	from	their

values	for	an	infinite	system.	The	behavior	of	the	finite	system	will	only	exhibit	a	qualitative	distinction	when	the

correlation	length	becomes	comparable	to	the	system	size.	This	phenomenon	is	known	as	finite	size	crossover

(see	Cardy	(1996),	ch.	4)	for	a	full	mathematical	treatment).	It	is	a	manifestation	of	the	fact	that	the	behavior	of	the

system	is	sensitive	to	the	large-scale	geometry	of	the	system	only	when	the	correlation	length	is	large	enough	to

be	comparable	to	the	system	size.	The	crossover	is	controlled	by	the	reduced	temperature.	As	long	as	this

parameter	is	above	a	certain	value	(given	by	an	inverse	power	of	the	system	size),	the	correlation	length	will	be

small	enough	that	no	distinction	between	finite	and	infinite	systems	will	be	measurable.	It	is	only	below	the

crossover	temperature	that	finite-size	effects	become	significant	and	the	system	flows	away	from	the	critical	point.

For	a	large	system,	the	crossover	temperature	will	be	very	small,	and	its	difference	from	the	critical	temperature	t	=

0	may	be	within	experimental	error.	So	for	a	sufficiently	large	system,	it	is	plausible	that	the	infinite	size

approximation	will	work	all	the	way	to	criticality.	Renormalization	group	theory	itself	predicts	this.	A	similar	point	is

made	in	Butterfield	(2011).

Crossover	theory	also	provides	tools	for	estimating	the	changes	to	critical	behavior	that	come	from	changing	the

geometry	of	the	system	by	limiting	its	size.	Adding	system	size	as	a	parameter	gives	us	a	new	scaling	function	for

the	susceptibility,	a	description	of	how	the	susceptibility	changes	with	changes	in	relevant	parameters.	As

described	above,	this	scaling	function	gives	a	behavior	for	the	susceptibility	similar	to	the	infinite	limit	as	long	as

the	ratio	of	correlation	length	to	system	size	is	low.	It	also	allows	us	to	predict	the	behavior	of	the	susceptibility

when	this	ratio	becomes	close	to	one.	The	susceptibility	of	a	finite	system	will	not	diverge;	it	will	have	a	smooth

peak.	The	height	of	the	peak	of	susceptibility	scales	as	a	positive	power	of	size	of	the	system.	So	for	a	large

system,	the	susceptibility	will	be	large	but	not	infinite.	In	addition,	the	location	of	the	peak	shifts,	and	this	shift

scales	as	an	inverse	power	of	the	size.	This	means	that	for	a	large	system	the	difference	between	the	critical

temperature	(the	temperature	at	the	critical	fixed	point	of	the	infinite	system)	and	the	temperature	at	which	it	attains

maximum	susceptibility	is	very	small.	So	for	a	macroscopic	system,	crossover	theory	explains	why	it	is	a	good

approximation	to	treat	the	susceptibility	as	diverging	at	the	critical	point.

The	point	of	this	discussion	is	that	we	can	tell	an	explanatory	story	about	the	circumstances	under	which	particular

large	finite	systems	can	be	treated	like	infinite	systems.	If	the	crossover	temperature	is	sufficiently	small,	then

limitations	of	our	measurement	procedures	might	make	it	difficult	or	even	impossible	to	distinguish	that	the	system

does	not	flow	to	the	critical	point.	However,	this	explanatory	story	does	make	reference	to	fixed	points	in	system

space.	So	the	worry	is	that	it	is	not	a	fully	reductive	account.	We	may	have	explained	why	individual	finite	systems

can	be	successfully	idealized	as	flowing	to	the	critical	fixed	point,	but	have	we	accounted	for	the	existence	of	the

critical	fixed	point?	We	are	taking	for	granted	in	our	explanation	the	topological	structure	of	system	space,	a

topological	structure	that	is	to	a	large	extent	determined	by	the	behavior	of	infinite	systems.

This	is	true,	but	does	it	lead	to	explanatory	irreducibility?	Is	it	illicit	to	include	the	topological	structure	of	system
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space	among	the	explanatory	resources	of	our	lower-level	theory?	It	would	be	if	this	structure	involved	an

idealization	whose	efficacy	could	not	be	accounted	for	within	the	lower-level	theory.	Isn't	an	irreducible	infinite

idealization	involved	in	the	postulation	of	a	renormalization	flow	with	fixed	points?	It	is	not.	As	we	have	seen,	the

renormalization	flow	can	be	defined	for	all	systems,	finite	and	infinite	alike,	since	1/N	can	be	introduced	as	a

relevant	parameter.	Fixed	points	will	appear	on	the	hypersurface	where	1/N	=	0.	There	is	no	infinite	idealization

involved	here.	Of	course,	we	are	talking	about	infinite	systems	and	how	they	behave	under	the	renormalization

flow,	but	this	should	not	be	problematic	from	a	reductive	point	of	view.	The	problem	would	arise	if	we	model	finite

systems	as	infinite	systems	without	explanation.	But	at	this	stage,	when	we	are	setting	up	the	space	and

determining	its	topological	characteristics,	we	are	not	modeling	particular	systems.	Insofar	as	finite	systems	are

represented	in	our	description	of	the	space,	they	are	represented	as	finite	systems,	and	infinite	systems	are

represented	as	infinite	systems.

So	the	topological	structure	of	the	space	can	be	described	without	problematic	infinite	idealization.	When	we	try	to

explain	the	universality	of	critical	behavior	in	finite	systems,	we	do	have	to	employ	the	infinite	idealization,	but	as

we	have	seen,	this	idealization	is	not	irreducible	if	we	can	use	the	topological	structure	of	system	space	in	our

reductive	explanation.	We	can	de-idealize	for	particular	systems	and	see	why	they	can	be	treated	as	if	they	flow

to	the	critical	point.	Understanding	the	behavior	of	infinite	systems	is	crucial	to	explaining	the	behavior	of	finite

systems,	since	we	only	get	the	fixed	points	by	examining	the	behavior	of	infinite	systems,	but	this	in	itself	does	not

imply	emergence.	We	agree	with	Batterman	(2011)	that	mathematical	singularities	in	the	renormalization	group

method	are	information	sources,	not	information	sinks.	We	disagree	with	his	contention	that	the	renormalization

group	explanation	requires	the	infinite	idealization	and	is	thus	emergent.	It	requires	consideration	of	the	behavior	of

infinite	systems,	but	it	does	not	require	us	to	idealize	any	finite	system	as	an	infinite	system.	Any	actual	infinite

idealizations	in	a	renormalization	group	explanation	can	be	de-idealized	using	finite-size	crossover	theory.

Locating	fixed	points	does	not	require	an	infinite	idealization,	it	just	requires	that	our	microscopic	theory	can	talk

about	infinite	systems,	and	indeed	it	can.

5.	Conclusion

Phase	transitions	are	an	important	instance	of	putatively	emergent	behavior.	Unlike	many	things	claimed	emergent

by	philosophers	(e.g.,	tables	and	chairs),	the	alleged	emergence	of	phase	transitions	stems	from	both	philosophical

and	scientific	arguments.	Here	we	have	focused	on	the	case	for	emergence	built	from	physics.	We	have	found	that

when	one	clarifies	concepts	and	digs	into	the	details,	with	respect	to	standard	textbook	statistical	mechanics,

phase	transitions	are	best	thought	of	as	conceptually	novel,	but	not	ontologically	or	explanatorily	irreducible.	And	if

one	goes	past	textbook	statistical	mechanics,	then	an	argument	can	be	made	that	they	are	not	even	conceptually

novel.	In	the	case	of	renormalization	group	theory,	consideration	of	infinite	systems	and	their	singular	behavior

provides	a	central	theoretical	tool,	but	this	is	compatible	with	an	explanatory	reduction.	Phase	transitions	may	be

“emergent”	in	some	sense	of	this	protean	term,	but	not	in	a	sense	that	is	incompatible	with	the	reductionist	project

broadly	construed.
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Notes:

(1)	As	an	example,	consider	multiple	realization,	often	presented	as	a	failure	of	reduction.	However,	it	is	only	a

failure	if	we	believe	that	a	lower-level	explanation	of	the	higher-level	law	must	be	unified	(i.e.,	the	explanation	must

be	the	same	for	every	instance	of	the	higher-level	law).	If	we	are	willing	to	allow	for	disunified	explanation,	then	we

may	indeed	have	a	genuine	lower-level	explanation	of	the	higher-level	law,	preserving	the	core	sense	of

reduction.

(2)	Strictly	speaking,	additivity	and	extensivity	are	different	properties;	see	Touchette	(2002).	Since	they	overlap

for	many	real	systems,	they	are	commonly	run	together;	however,	it	is	a	mistake	to	do	so	in	general,	for	some

quantities	scale	with	particle	number	N	(and	hence	are	extensive),	yet	are	not	additive.

(3)	Some	textbooks	even	go	in	the	other	direction,	namely,	defining	the	thermodynamic	limit	as	that	state	wherein

entropy	and	energy	are	extensive.

(4)	For	the	thermodynamic	limit	to	exist,	two	conditions	on	the	potential	in	the	Hamiltonian	must	be	satisfied,	one	on

large	distances,	one	on	small	distances.	These	extensions	can	be	viewed	as	challenges	in	either	length	scale.	In

another	sense,	however,	one	can	view	both	types	of	systems	as	unified	together	as	“small”	systems.	If	we	define	a

system	as	“small”	if	its	spatial	extension	is	less	than	the	range	of	its	dominant	interaction,	then	even	galactic

clusters	are	small.

(5)	A	small	movie	of	this	occurring	for	small	magnetic	clusters	is	available	at	http://smallsystems.isn-

oldenburg.de/movie.gif

(6)	This	chapter	shows	that	yet	another	definition,	one	based	on	a	bimodality	of	the	energy	distribution,	is	almost

equivalent	to	Def	3.	However,	the	bimodality	definition	is	equivalent	to	Def	2,	so	the	demonstration	links	Def	2	and

Def	3.

(7)	There	are	some	potential	connections	between	“explanatory	irreducibility”	and	notions	in	the	literature	on

idealization.	In	particular,	depending	upon	how	one	understands	Galilean	idealization,	it	is	possible	that	a

conceptual	novelty	is	explanatorily	irreducible	just	in	case	it	is	not	a	“harmless”	Galilean	idealization.	Coined	by

McMullin,	a	Galilean	idealization	in	a	scientific	model	is	a	deliberate	distortion	of	the	target	system	that	simplifies,

unifies	or	generally	makes	more	useful	or	applicable	the	model.	Crucially,	a	Galilean	idealization	is	also	one	that

allows	for	controlled	“de-idealization.”	In	other	words,	it	allows	for	adding	realism	to	the	model	(at	the	expense	of

simplicity	or	usefulness,	to	be	sure)	so	that	one	can	see	that	the	distortions	are	justified	by	convenience	and	are

not	ad	hoc.	Idealizations	like	this	are	sometimes	dubbed	“controllable”	idealizations	and	are	widely	viewed	as

harmless.	What	to	make	of	such	non-Galilean	idealizations	is	an	ongoing	project	in	philosophy	of	science.	One

prominent	idea—see,	e.g.,	Cartwright	(1983)	or	Strevens	(2009)—is	that	the	model	may	faithfully	represent	the

significant	causal	relationships	involved	in	the	real	system.	The	departure	from	reality	need	not	then	accompany	a

corresponding	lack	of	faith	in	the	deliverances	of	the	model.	It	is	possible	that	we	could	understand	the	standard

explanation	of	phase	transitions	as	a	distortion	that	nonetheless	successfully	represents	the	causal	relationships	of

the	system.	Perhaps	the	thermodynamic	limit	is	legitimatized	by	the	fact	that	surface	effects	are	not	a	difference-

maker	(in	the	sense	of	Strevens)	in	the	systems	of	interest.	We	will	leave	this	line	of	thought	to	others	to	develop.

(8)	Thanks	to	Jim	Weatherall	for	kick-starting	our	thinking	of	phase	transitions	as	delta	functions	that	can	be

approximated	by	analytic	functions	and	to	Jeremy	Butterfield	for	kindly	letting	us	use	an	advance	copy	of	his	2011

article.

(9)	The	problem	with	identifying	these	singularities	with	phase	transitions	in	thermodynamics	is	that	as	N	grows	the

order	of	the	phase	transition	also	increases,	roughly	as	N/2.	These	transitions	are	far	weaker	than	the	ones

encountered	in	thermodynamics,	and	in	any	case,	unobservable	in	real	noisy	data	unless	N	is	really	small.

(10)	Our	thanks	to	Robert	Batterman	for	pushing	us	on	this	point.
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Abstract	and	Keywords

This	chapter	reviews	effective	field	theory	(EFT)	techniques,	focusing	on	the	intertheoretic	relations	between	low-

energy	effective	theories	and	their	high-energy	counterparts.	It	discusses	how	EFT	can	be	interpreted	and

describes	the	steps	in	the	construction	of	an	EFT	in	the	top-down	and	bottom-up	approaches.	The	chapter	also

analyzes	the	dependence	of	EFT	on	renormalization	schemes,	and	evaluates	the	extent	to	which	the	intertheoretic

relation	between	an	EFT	and	its	high-energy	theory	can	be	described	in	terms	of	emergence.

Keywords:	effective	field	theory,	intertheoretic	relations,	renormalization	scheme,	high-energy	theory,	emergence

1.	Introduction

An	effective	field	theory	(EFT)	of	a	physical	system	is	a	theory	of	the	dynamics	of	the	system	at	energies	small

compared	to	a	given	cutoff.	For	some	systems,	low-energy	states	with	respect	to	this	cutoff	are	effectively

independent	of	(“decoupled	from”)	states	at	high	energies.	Hence	one	may	study	the	low-energy	sector	of	the

theory	without	the	need	for	a	detailed	description	of	the	high-energy	sector.	Systems	that	admit	EFTs	appear	in

both	relativistic	quantum	field	theories	(RQFTs)	and	condensed	matter	physics.	When	an	underlying	high-energy

theory	is	known,	an	effective	theory	may	be	obtained	in	a	“top-down”	approach	by	a	process	in	which	high-

energy	effects	are	systematically	eliminated.	When	an	underlying	high-energy	theory	is	not	known,	it	may	still	be

possible	to	obtain	an	EFT	by	a	“bottom-up”	approach	in	which	symmetry	and	“naturalness”	constraints	are

imposed	on	candidate	Lagrangians.	In	both	cases,	the	intertheoretic	relation	between	the	EFT	and	its	(possibly

hypothetical)	high-energy	theory	is	complicated,	and,	arguably,	cannot	be	described	in	terms	of	traditional

accounts	of	reduction.	This	has	suggested	to	some	authors	that	the	EFT	intertheoretic	relation	(and/or	the

phenomena	associated	with	it)	should	be	described	in	terms	of	a	notion	of	emergence.	Other	authors	have

described	the	process	of	constructing	an	EFT	as	one	in	which	idealizations	are	made	in	order	to	produce	a

computationally	tractable,	yet	inherently	approximate,	theory	that	is	empirically	equivalent	(to	a	given	range	of

accuracy)	to	a	typically	computationally	more	complex,	but	complete,	high-energy	theory.	One	such	claim	is	that,

in	the	context	of	RQFTS,	the	set	of	possible	worlds	associated	with	an	EFT	are	ones	in	which	space	is	discrete	and

finite.

This	essay	reviews	effective	field	theory	techniques,	focusing	on	the	intertheoretic	relation	that	links	an	EFT	with	its

(possibly	hypothetical)	high-energy	theory.	The	goal	is	to	contribute	to	discussions	on	how	EFTs	can	be

interpreted,	and,	in	particular,	to	investigate	the	extent	to	which	a	notion	of	emergence	is	viable	in	such

interpretations.	Section	2	sets	the	stage	by	reviewing	the	general	steps	in	the	construction	of	an	EFT	in	the	top-

down	and	bottom-up	approaches.	Section	3	then	reviews	the	extent	to	which	an	EFT	can	be	said	to	be	empirically

equivalent	to	its	high-energy	theory:	typical	EFTs	are	nonrenormalizable	and	thus	break	down	at	high	energies;

however,	this	has	not	stopped	physicists	from	using	them	to	derive	predictions	for	low-energy	phenomena.	Section

4	indicates	the	extent	to	which	the	explicit	form	of	an	EFT	depends	on	the	type	of	renormalization	scheme	one
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employs	to	handle	divergent	integrals	that	can	arise	when	one	uses	the	EFT	to	calculate	the	values	of	observable

quantities.	It	is	argued	that	the	choice	of	renormalization	scheme	is	irrelevant	for	calculating	such	values.

However,	to	the	extent	that	this	choice	determines	the	explicit	form	of	the	EFT,	arguably,	it	has	nontrivial

consequences	when	it	comes	to	the	question	of	how	the	EFT	can	be	interpreted.	These	consequences	are

investigated	in	section	5.	Finally,	section	6	takes	up	the	task	of	assessing	the	extent	to	which	the	intertheoretic

relation	between	an	EFT	and	its	high-energy	theory	can	be	described	in	terms	of	emergence.

2.	The	Nature	of	EFTs

The	construction	of	an	EFT	follows	one	of	two	general	procedures,	top-down	and	bottom-up,	depending	on	whether

a	high-energy	theory	is	known.	Both	procedures	are	based	on	an	expansion	of	the	effective	action	(which	formally

represents	the	EFT)	in	terms	of	a	(possibly	infinite)	sum	of	local	operators,	constrained	by	symmetry	and

“naturalness”	considerations.	They	differ	on	how	the	effective	action	is	obtained:	the	top-down	approach	obtains	it

by	eliminating	degrees	of	freedom	from	the	action	of	the	high-energy	theory,	whereas	the	bottom-up	approach

constructs	it	from	scratch.

2.1	Top-Down

The	top-down	approach	starts	with	a	known	theory	and	then	systematically	eliminates	degrees	of	freedom

associated	with	energies	above	some	characteristic	energy	scale	E .	The	practical	goal	is	to	obtain	a	low-energy

theory	that	allows	one	to	more	easily	calculate	the	values	of	observable	quantities	associated	with	energies	below

E 	than	in	the	original	theory.	Intuitively,	calculations	in	such	a	low-energy	“effective”	theory	have	fewer

parameters	to	deal	with	(namely,	all	those	parameters	associated	with	high-energy	degrees	of	freedom)	and	thus

are	simpler	than	calculations	in	the	original	theory.	However,	the	construction	of	a	low-energy	effective	theory	that

accomplishes	this	is	not	just	a	matter	of	simply	ignoring	the	high-energy	degrees	of	freedom,	for	they	may	be

intimately	tangled	up	with	the	low-energy	degrees	of	freedom	in	nontrivial	ways.	(As	we	will	see	below,	one	way	to

distinguish	a	“renormalizable”	theory	from	a	“nonrenormalizable”	theory	is	that	in	the	former,	the	high-energy

degrees	of	freedom	are	independent	of	the	low-energy	degrees	of	freedom,	whereas	in	the	latter,	they	are	not.)

One	method	of	disentangling	the	high-energy	and	low-energy	degrees	of	freedom	was	pioneered	by	Wilson	and

others	in	the	1970s.	In	the	following,	I	will	refer	to	it	as	the	Wilsonian	approach	to	EFTs.	It	typically	involves	two

steps:	(I)	The	high-energy	degrees	of	freedom	are	identified	and	integrated	out	of	the	action.	These	high-energy

degrees	of	freedom	are	referred	to	as	the	high	momenta,	or	“heavy,”	fields.	The	result	of	this	integration	is	an

effective	action	that	describes	nonlocal	interactions	between	the	low-energy	degrees	of	freedom	(the	low

momenta,	or	“light,”	fields).	(II)	To	obtain	a	local	effective	action	(i.e.,	one	that	describes	local	interactions	between

low-energy	degrees	of	freedom),	the	effective	action	from	Step	I	is	expanded	in	terms	of	local	operators.	The

following	describes	these	steps	in	slightly	more	technical	detail.

(I)	Given	a	field	theory	described	by	an	action	S	and	possessing	a	characteristic	energy	scale	E,	suppose	we

are	interested	in	the	physics	at	a	lower	scale	E	≪	E .	First	choose	a	cutoff	Λ	at	or	slightly	below	E 	and	divide

the	fields	ϕ	into	high	and	low	momenta	parts	with	respect	to	Λ:	ϕ	=	ϕ 	+	ϕ	 ,	where	ϕ 	have	momenta	k	〉	Λ

and	ϕ 	have	momenta	k	〈	Λ.	Now	integrate	out	the	high	momenta	fields.	In	the	path	integral	formalism,	one

does	the	integral	over	the	ϕ	 .	Schematically	(1)

where	the	Wilsonian	effective	action	is	given	by	 .	The	effective	Lagrangian

density	 	is	thus	given	by	 ,	where	D	is	the	dimension	of	the	spacetime.

(II)	Typically,	the	integration	over	the	heavy	(i.e.,	high	momenta)	fields	will	result	in	a	nonlocal	effective

action	(i.e.,	one	in	which	terms	occur	that	consist	of	operators	and	derivatives	that	are	not	all	evaluated	at	the

same	spacetime	point).	In	practice,	this	is	addressed	by	expanding	the	effective	action	in	a	set	of	local

operators:	(2)

0

0

1

0 0

H L H

L

H

= ∫ Dei [ ]SΛ ϕL ϕHeiS[ , ]ϕL ϕH
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where	the	sum	runs	over	all	local	operators	 	allowed	by	the	symmetries	of	the	initial	theory,	and	the	gi	are

coupling	constants.	Assuming	weak	coupling,	the	expansion	point	S 	may	be	taken	to	be	the	free	action	of

the	initial	theory,	so	that	g 	=	0.

To	see	how	the	effective	action	relates	to	the	initial	high-energy	action,	one	can	perform	a	dimensional	analysis	on

the	operators	that	appear	in	(2).	This	allows	one	to	obtain	information	about	their	behavior	as	the	cutoff	Λ	is

lowered.	This	analysis	involves	three	steps:

(i)	Choose	units	in	which	the	action	is	dimensionless	(ħ=	1,	c	=	1).	In	such	units,	energy	has	dimension	+1

while	length	has	dimension	−1.	The	free	action	can	now	be	used	to	determine	units	for	the	field	operators.

This	then	determines	units	for	the	coupling	constants,	and	subsequently,	for	terms	in	the	expansion	(2).	For

instance,	if	an	operator	 	has	been	determined	to	have	units	E 	(thus	dimension	δ ),	then	its	coupling

constant	g 	has	units	E ,	and	the	magnitude	of	the	ith	term	is	 .

(ii)	To	make	the	cutoff	dependence	of	the	terms	explicit,	one	can	define	dimensionless	coupling	constants	by

.	The	order	of	the	ith	term	in	(2)	is	then	(3)

(iii)	The	terms	in	the	expansion	(2)	can	now	be	classified	into	three	types:

•	Irrelevant:	δ 	〉	D.	This	type	of	term	falls	at	low	energies	as	E	→	0.	Such	terms	are	suppressed	by	powers

of	E	/Λ.

•	Relevant:	δ 	〈	D.	This	type	of	term	grows	at	low	energies	as	E	→	0.

•	Marginal:	δ 	=	D.	This	type	of	term	is	constant	and	equally	important	at	low	and	high	energies	(insofar	as

quantum	effects	can	modify	its	scaling	behavior	toward	either	relevancy	or	irrelevancy).

This	dimensional	analysis	indicates	that,	in	cases	of	physical	relevance,	there	will	only	be	a	finite	number	of

relevant	and	marginal	terms	in	(2). 	In	such	cases,	the	low-energy	EFT	will	only	depend	on	the	underlying	high-

energy	theory	through	a	finite	number	of	parameters.	It	is	typical	in	the	literature	on	EFTs	to	elevate	these

considerations	to	a	principle.	Polchinski	(1993,	6)	articulates	such	a	principle	in	the	following	way:

The	low	energy	physics	depends	on	the	short	distance	theory	only	through	the	relevant	and	marginal

couplings,	and	possibly	through	some	leading	irrelevant	couplings	if	one	measures	small	enough	effects.

Note	that	arbitrarily	many	irrelevant	terms	can	occur	in	(2),	but	they	are	suppressed	at	low	energies	by	powers	of

E/Λ.	Moreover,	the	cutoff	can	be	used	as	a	regulator	for	any	divergences	associated	with	these	terms	in

calculations	of	the	values	of	observable	quantities.	Thus,	“even	though	the	[effective]	Lagrangian	may	contain

arbitrarily	many	terms,	and	so	potentially	arbitrarily	many	coupling	constants,	it	is	nonetheless	predictive	so	long

as	its	predictions	are	only	made	for	low-energy	processes,	for	which	E/Λ	≪	1”	(Burgess	2004,	17).	A	little	more	will

be	said	on	this	matter	in	section	3	below.

Finally,	in	addition	to	symmetry	considerations,	a	further	constraint	is	typically	applied	to	the	expansion	(2)	of	the

effective	action:	one	assumes	that	the	dimensionless	coefficients	λ 	are	of	order	1.	This	is	associated	with	a

hypothesis	of	“naturalness,”	insofar	as	it	rules	out	the	presence	of	very	large	or	very	small	numbers,	relative	to	the

cutoff,	in	the	expansion. 	Intuitively,	a	“natural”	EFT	should	only	involve	quantities	that	are	small,	but	not	too	small,

relative	to	the	cutoff.	An	immediate	consequence	of	this	is	that	mass	terms,	which	have	coefficients	proportional	to

powers	of	the	cutoff,	cannot	appear	in	(2).	Thus	naturalness	is	typically	formulated	in	terms	of	the	following

condition:

EFTs	must	be	natural,	meaning	that	all	possible	masses	must	be	forbidden	by	symmetries.

Note	that	this	does	not	preclude	the	existence	of	massive	objects	(fields,	particles,	etc.)	in	an	EFT	description	of

low-energy	phenomena.	Rather,	it	constrains	such	descriptions	to	those	in	which	mass	terms	are	generated	by

broken	high-energy	symmetries.	Thus,	according	to	the	Standard	Model,	massive	vector	bosons	(the	W	and	Z

bosons)	exist	at	low	energies	(with	respect	to	the	appropriate	cutoff)	due	to	electroweak	symmetry	breaking,	even

though	gauge	invariance	prohibits	massive	terms	in	the	electroweak	action,	and	massive	fermions	exist	similarly

due	to	chiral	symmetry	breaking.
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At	this	point,	the	following	qualifications	should	be	made	concerning	the	above	Wilsonian	approach	to	top-down

EFTs:

(a)	First,	in	Step	(I),	the	identification	of	the	appropriate	heavy	and	light	field	variables	is	not	always	self-

evident.	For	example,	the	weakly	coupled	EFT	for	quantum	chromodynamics	(QCD)	known	as	chiral

perturbation	theory	is	written	in	terms	of	pion	fields	as	opposed	to	quark	and	gluon	fields;	and	Landau's	Fermi

liquid	theory	of	conductors	can	be	written	as	an	EFT	of	weakly	interacting	quasiparticles,	as	opposed	to

strongly	interacting	electrons	(Manohar	1997,	321).

(b)	Second,	in	Step	(I),	the	path	integral	over	the	heavy	fields	is	typically	performed	in	practice	using	a

saddle-point	approximation	(Dobado	et	al.	1997,	4).	This	involves	expanding	the	action	of	the	high-energy

theory	about	a	given	configuration	of	the	heavy	fields	chosen	to	be	a	“saddle	point”	(or	“stationary	point”;

i.e.,	a	global	extremum).	To	second	order	in	this	expansion,	the	integral	over	the	heavy	fields	takes	the	form

of	a	Gaussian	integral,	which	has	a	well-defined	solution.

(c)	Third,	in	Step	(II),	the	dimensional	method	of	justifying	the	finite	dependence	of	an	EFT	on	its	high-energy

theory	is	based	on	using	the	free	theory	to	determine	units,	and	this	assumes	the	high-energy	theory	is

weakly	coupled.	Strong	interactions	may	have	the	effect	of	changing	the	scaling	behavior	of	terms.

(d)	Finally,	the	dimensional	assignments	in	Step	(II)	work	when	using	the	EFT	to	make	simple	“tree-level”

calculations	of	the	values	of	observed	quantities.	However,	for	higher-order	“loop”	corrections	to	such

calculations,	scaling	based	on	dimensional	analysis	may	break	down,	and	one	may	have	to	appeal	to	a

particular	renormalization	scheme	in	order	to	justify	the	explicit	reliance	of	an	EFT	on	a	finite	number	of

parameters	(see	section	4	below).

2.2	Bottom-Up

The	procedure	outlined	above	for	constructing	an	EFT	requires	having	in	one's	possession	the	action	(or

Lagrangian	density)	of	a	high-energy	theory.	In	some	cases	of	interest,	the	fundamental	high-energy	theory	is	not

known,	but	an	EFT	is,	nonetheless,	still	constructible.	One	simply	begins	with	the	operator	expansion	(2)	and

includes	all	terms	consistent	with	the	naturalness	constraint	and	with	the	symmetries	and	interactions	assumed	to

be	relevant	at	the	given	energy	scale.	One	can	then	determine	how	these	terms	scale	when	a	given	cutoff	is

raised	(as	opposed	to	lowered).	Examples	of	such	“bottom-up”	EFTs	include	the	Fermi	theory	of	low-energy	weak

interactions	(as	it	was	originally	constructed);	and,	in	the	view	of	many	physicists,	the	Standard	Model	itself	(see,

e.g.,	Hartmann	2001	for	discussion).	Another	example	is	effective	field	theoretic	formulations	of	general	relativity	in

which	the	Hilbert	action	is	identified	as	the	first	term	of	the	expansion	(2)	(Burgess	2004).

2.3	Example:	Low-Energy	Superfluid	Helium-4	Film

An	example	of	a	top-down	EFT	constructed	via	the	method	of	section	2.1	is	the	low-energy	theory	of	a	superfluid

helium-4	( He)	film.	The	effective	Lagrangian	density	that	describes	this	system	is	formally	identical	to	the

Lagrangian	density	for	(2+1)-dimensional	quantum	electrodynamics	(QED ).	This	is	somewhat	surprising,	given

that	the	underlying	“high-energy”	theory	is	nonrelativistic.	This	example,	in	which	a	relativistic	EFT	might	be	said	to

emerge	from	a	nonrelativistic	high-energy	theory,	will	be	instructive	in	the	discussion	of	the	concept	of	emergence

in	EFTs	in	section	6	below.

At	low	temperatures,	the	liquid	state	of	 He	becomes	a	superfluid	characterized	by	dissipationless	flow	and

quantized	vortices.	The	phase	transition	between	the	normal	liquid	and	superfluid	states	is	encoded	in	an	order

parameter	that	takes	the	form	of	a	macroscopic	wave	function	 	describing	the	coherent	ground

state	of	a	Bose	condensate	with	density	ρ 	and	coherent	phase	θ.	An	appropriate	Lagrangian	density	describes

nonrelativistic	neutral	bosons	(viz.,	 He	atoms)	interacting	via	a	spontaneous	symmetry	breaking	potential	with

coupling	constant	K	(Zee	2003,	175,	257),	(4)

Here	m	is	the	mass	of	a	 He	atom,	and	the	term	involving	the	chemical	potential	μ	enforces	particle	number

conservation.	This	is	a	thoroughly	nonrelativistic	Lagrangian	density	invariant	under	a	global	U(1)	symmetry	and

Galilean	transformations.	We	now	consider	(4)	as	representing	an	underlying	“high-energy”	theory	and	seek	to

construct	a	low-energy	EFT	via	the	top-down	approach	outlined	above.
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To	investigate	the	low-energy	behavior	of	(4),	one	first	needs	to	identify	appropriate	dynamical	variables	by	means

of	which	a	distinction	can	be	made	between	high-	and	low-energy	degrees	of	freedom. 	Since	the	ground	state	φ

is	a	function	only	of	the	phase,	low-energy	excitations	take	the	form	of	phase	fluctuations.	This	suggests	rewriting

the	field	variable	φ	in	terms	of	density	and	phase	variables	 	and	identifying	the	high-energy	degrees

of	freedom	with	the	density	ρ.	The	next	task	is	to	integrate	the	density	field	out	of	(4). 	This	can	be	done	by

expanding	the	variables	as	ρ	=	ρ 	+	δ ,	θ	=	θ 	+	δ ,	where	δρ,δθ	represent	small	fluctuations	in	the	density	and

phase	about	their	stationary	ground	state	values	ρ ,θ .	Substituting	these	into	(4),	one	obtains	the	equivalent	of	(2)

for	the	effective	Lagrangian	density:	 ,	where	the	first	term	reproduces	(4)

without	the	interaction	term,	and	the	second	term	describes	fluctuation	contributions.	The	high-energy	fluctuations

δ 	can	be	eliminated	by	deriving	the	Euler-Lagrange	equations	of	motion	for	the	density	variable	and	solving	for	δ .

After	substitution	back	into	 ,	and	in	two	dimensions,	the	result	is,	(5)

with	δ 	replaced	by	θ	for	the	sake	of	notation.	Ignoring	the	higher-order	terms,	(5)	formally	describes	a	scalar	field

propagating	at	speed	c 	=	2kρ /m.	For	units	in	which	c	=	1,	it	can	be	rewritten	as	(6)

where	η 	is	the	(2+1)-dim	Minkowski	metric.	Equation	(6)	is	manifestly	Lorentz	invariant;	in	fact,	it	is	formally

identical	to	the	Lagrangian	density	for	a	mass-less	scalar	field	propagating	in	(2+1)-dim	Minkowski	spacetime.	To

obtain	QED3,	consider	the	first	term	in	(5).	Insofar	as	this	represents	the	kinetic	energy	density,	one	can	identify	a

superfluid	velocity	variable	by	v 	≡	(1/m)	∂ θ.	The	fact	that	the	macroscopic	wave	function	is	unique	up	to	phase

then	entails	that	the	superflow	in	a	multiply-connected	domain	is	quantized,	(7)

around	a	closed	path	encircling	a	“hole,”	where	q	is	an	integer.	Such	holes	may	be	interpreted	as	vortices—points

where	the	real	and	imaginary	parts	of	φ 	vanish. 	Then	(7)	entails	that	the	superflow	about	a	vortex	is	quantized.

More	important	in	this	context,	(7)	suggests	an	analogy	with	Gauss's	Law	in	which	a	vortex	plays	the	role	of	a

charge	carrier	and	the	superfluid	velocity	plays	the	role	of	the	electric	field.	To	further	cash	out	this	analogy,	note

that	in	two	dimensions,	the	magnetic	field	is	a	scalar,	whereas	the	electric	field	is	a	2-vector.	This	motivates	the

following	identifications:	(8a)

(8b)

in	which	the	magnetic	field	is	identified	with	the	density,	and	the	electric	field	with	the	superfluid	velocity	(here	ε 	is

the	skew	volume	2-form).	Substituting	into	(6),	one	obtains	the	Lagrangian	density	for	sourceless	QED3	(9)

where	F 	=	∂ A ,	−	∂ A ,	with	the	potential	A 	defined	by	E 	=	∂ A 	−	∂ A ,	B	=	∂ 	A 	−	∂ A .	One	may	further	note

that	(7)	entails	that	the	density	for	“elementary”	vortices	(q	=	±1)	is	given	by	 .	This	can	be	identified

as	the	0th	component	of	a	vortex	current	 ,	where	ε 	is	the	skew	volume	3-form. 	This

vortex	current	is	the	dual	of	the	electromagnetic	current,	insofar	as	adding	a	source	term	 	to	(9)	and

extremizing	with	respect	to	Aμ	produces	the	Maxwell	equations	with	a	source.

In	summary,	we	started	with	the	nonrelativistic	Lagrangian	density	(4)	for	a	superfluid	 He	film	and	found	that,	to

lowest	order,	its	EFT	takes	the	form	of	the	relativistic	Lagrangian	density	for	(2+1)-dim	quantum	electrodynamics.

This	was	motivated	by	the	formal	similarity	between	vortex	quantization	(7)	and	Gauss's	Law.	This	similarity	was

exploited	in	terms	of	a	duality	transformation	under	which	vortices	become	the	sources	of	a	gauge	field	formally

identical	to	the	Maxwell	field.	Under	a	literal	interpretation	of	this	dual	representation	(8),	low-energy	excitations	of

a	superfluid	 He	film	take	the	form	of	electric	and	magnetic	fields,	the	former	being	given	by	the	superfluid	velocity,

and	the	latter	being	given	by	the	superfluid	density.	Moreover,	topological	defects	(i.e.,	elementary	vortices)	take

the	form	of	charge-carrying	electrons.

3.	Renormalizability	and	Predictability
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Historically,	the	Wilsonian	approach	to	EFTs	outlined	in	section	2.1	had	its	origin	in	the	development	of

renormalization	group	(RG)	techniques	by	Wilson	and	others	in	the	1970s	(see,	e.g.,	Huggett	and	Weingard	1995;

Cao	and	Schweber	1993).	These	techniques	were	originally	developed	to	study	the	low-energy	behavior	of

condensed	matter	systems	and	were	subsequently	applied	to	the	problem	of	renormalization	in	relativistic	quantum

field	theories;	i.e.,	the	appearance	of	integrals	that	diverge	at	high	energies	when	one	uses	a	quantum	field	theory

to	calculate	the	values	of	observable	quantities.	This	is	related	to	the	issue	of	predictability,	insofar	as	a	theory	that

“blows	up”	at	high	energies	cannot	be	used	to	make	high-energy	predictions.	This	section	considers	the	issues	of

renormalizability	and	predictability	in	the	context	of	EFTs.	In	particular,	given	that	typical	EFTs	are	not

renormalizable,	how	does	this	affect	their	ability	to	make	predictions?

In	the	RG	approach	to	renormalization,	the	intent	is	to	analyze	the	behavior	of	a	theory	at	different	energy	scales

s.	One	thus	uses	a	scale-dependent	momentum	cutoff	Λ	(s)	as	the	basis	for	an	initial	distinction	between	high-	and

low-energy	modes,	and	the	heavy	modes	with	respect	to	an	initial	energy	Λ	are	then	integrated	out	of	the	theory.

The	cutoff	is	now	lowered	to	Λ(s)	=	sΛ	and	the	parameters	of	the	theory	are	then	rescaled	to	formally	restore	the

cutoff	back	to	Λ.	Successive	iterations	of	this	procedure	generate	a	flow	in	the	space	of	parameters	of	the	theory.

Scale-dependent	parameters	can	then	be	classified	as	relevant	(shrinking	in	the	high-energy	limit	as	s→	∞),

irrelevant	(growing	as	s→	∞),	or	marginal	(constant	under	scale	transformation). 	A	theory	is	now	said	to	be

renormalizable	if	it	contains	no	irrelevant	parameters.	Intuitively,	such	a	theory	is	cutoff	independent,	insofar	as	its

parameters	become	independent	of	Λ(s)	in	the	high-energy	limit	s	→	∞.	A	nonrenormalizable	theory,	on	the	other

hand,	is	one	in	which	there	are	(scale-dependent)	irrelevant	parameters.	Such	parameters	cannot	be	ignored	at

high	energies	and	thus	contribute	to	ultraviolet	divergent	integrals.

EFTs	can	be	either	renormalizable	or	nonrenormalizable	in	the	above	sense,	depending	on	whether	they	contain

irrelevant	terms,	although	typically	the	construction	outlined	in	section	2.1	above	produces	an	infinite	number	of

the	latter.	However,	as	eluded	to	in	section	2.1,	the	appearance	of	an	infinite	number	of	irrelevant	terms	in	an	EFT

need	not	signal	a	breakdown	in	predictability.	After	Manohar	(1997,	322),	the	effective	Lagrangian	density

associated	with	(2)	can	be	represented	schematically	by	the	sum:	(10)

where	 	contains	terms	with	dimension	 	contains	terms	with	dimension	D	+	1,	and	soon,	and,	as	in

section	2.1	above,	D	is	the	dimension	of	spacetime	(recall	that	an	operator	with	dimension	δ	is	deemed	irrelevant,

relevant,	or	marginal,	depending	on	whether	δ	is	greater	than,	less	than,	or	equal	to	D,	respectively).	In	this	sum,

each	summand	contains	a	finite	number	of	terms	with	coefficients	that	are	powers	of	the	ratio	(s/Λ).	The	first

summand	consists	of	a	finite	number	of	relevant	and/or	marginal	terms	to	order	zero	in	(s/Λ)	(thus	such	terms	are

scale-independent).	Each	summand	thereafter	contains	a	finite	number	of	irrelevant	terms	to	a	higher	order	in	(s/Λ)

(thus	such	terms	are	scale-dependent).	A	renormalizable	Lagrangian	density	consists	of	only	the	first	summand,

thus	when	it	is	used	to	derive	predictions,	they	will	be	scale-independent.	Nonrenormalizable	Lagrangians	include

irrelevant	terms,	and	predictions	derived	from	them	will	be	scale-dependent.	In	general,	to	compute	the	value	of	an

observable	quantity	to	a	given	order	r	in	(s/Λ),	one	should	retain	terms	up	to	 .

To	consider	how	this	analysis	of	renormalizability	relates	to	predictability,	note	first	that	renormalizability,	as

defined	above,	is	predicated	on	the	property	of	being	scale-independent.	A	renormalizable	theory	is	independent

of	energy	scale,	whereas	a	nonrenormalizable	theory	is	not.	So	in	order	to	articulate	the	relation	between

renormalizability	and	predictability,	one	needs	to	articulate	the	relation	between	scale-independence	and

predictability.	An	extreme	view	might	require	scale-independence	(and	hence	renormalizability)	to	be	a	necessary

condition	for	predictability.	The	argument	might	run	something	like	this:	if	a	theory	is	scale-dependent,	then	using	a

cutoff	to	regulate	divergent	integrals	will	be	of	no	help,	insofar	as	(a)	the	cutoff	must	be	taken	to	infinity	at	the	end

of	the	day;	and	(b)	doing	so	will	cause	scale-dependent	terms	(which	are	well-behaved	at	low-energies	with

respect	to	the	cutoff)	to	blow	up.	One	intuition	underlying	this	argument	is	that	the	cutoff	must,	in	fact,	be	taken	to

infinity	at	the	end	of	the	day;	otherwise,	we	would	not	end	up	with	the	continuum	theory	we	began	with.	This

appears	to	be	the	argument	underlying	Huggett	and	Weingard's	response	to	their	“Problem	Number	two	of

understanding	renormalization,”	namely,	“why	do	actual	physical	theories	depend	on	only	a	finite	number	of

parameters?	A	slogan:	why	is	the	world	renormalisable?”	(Huggett	and	Weingard	1995,	179).	Their	answer	to	this

problem	is	the	following:

purely	relevant	trajectories	terminate	in	the	continuum	limit—call	this	“asymptotic	safety,”.	Any	irrelevant
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dependent	theories	…do	not	terminate	in	this	way	and	are	not	asymptotically	safe.	They	generate

indefinitely	long	trajectories	with	ever	varying	[parameters],	either	periodically	or	ever	growing.	Either	way,

unphysical	singularities	are	likely.	Thus,	while	asymptotically	safe	relevant	theories	are	potentially

physical,	irrelevant	theories	are	not—just	the	result	we	hoped	for	to	answer	the	second	question.	(Huggett

and	Weingard	1995,	183)

If	one	takes	“potentially	physical”	to	mean	“scale-independent,”	then	Huggett	and	Weingard's	claim	that	irrelevant

(i.e.,	nonrenormalizable)	theories	are	not	potentially	physical	is	correct.	However,	if	one	takes	“potentially

physical”	to	mean	“capable	of	producing	finite	predictions,”	then	Huggett	and	Weingard's	claim	does	not	go

through:	nonrenormalizable	theories	are	capable	of	producing	finite	predictions,	with	the	qualification	that	such

predictions	are	scale-dependent.

Manohar	suggests	that	there	is	nothing	wrong	with	such	a	notion	of	predictability,	insofar	as	there	is	no	reason	to

expect	potentially	physical	theories	to	be	scale-independent:

A	non-renormalizable	theory	is	just	as	good	as	a	renormalizable	theory	for	computations,	provided	one	is

satisfied	with	a	finite	accuracy.	…	While	exact	computations	are	nice,	they	are	irrelevant.	Nobody	knows

the	exact	theory	up	to	infinitely	high	energies.	Thus	any	realistic	calculation	is	done	using	an	effective	field

theory.	(Manohar	1997,	322)

Burgess	likewise	suggests	that	the	distinction	between	a	renormalizable	(viz.,	scale-independent)	theory	and	a

nonrenormalizable	(viz.,	scale-dependent)	theory	is	a	matter	of	degree	rather	than	kind:

Because	…	only	a	finite	number	of	terms	in	 	contributes	to	any	fixed	order	in	[s/Λ],	and	these	terms

need	appear	in	only	a	finite	number	of	loops,	it	follows	that	only	a	finite	amount	of	labor	is	required	to

obtain	a	fixed	accuracy	in	observables.	Renormalizable	theories	represent	the	special	case	for	which	it

suffices	to	work	only	to	zeroth	order	in	the	ratio	[s/Λ].	This	can	be	thought	of	as	the	reason	why

renormalizable	theories	play	such	an	important	role	throughout	physics.…	Thus,	although	an	effective

Lagrangian	is	not	renormalizable	in	the	traditional	sense,	it	nevertheless	is	predictive	in	the	same	way	a

renormalizable	theory	is.	(Burgess	2007,	349)

The	suggestion	here	is	that,	to	the	extent	that	scale-dependent	predictions	and	scale-independent	predictions	are

both	calculated	in	the	same	manner	(i.e.,	by	applying	an	appropriate	renormalization	scheme	to	divergent

integrals),	they	are	of	the	same	kind.	Thus,	“nonrenormalizable	theories	are	not	fundamentally	different	from

renormalizable	ones.	They	simply	differ	in	their	sensitivity	to	more	microscopic	scales	which	have	been	integrated

out”	(Burgess	1998,	13).	This	tolerant	view	of	nonrenormalizable	theories,	and	in	particular,	the	predictability	of

EFTs,	has	arguably	become	the	norm	among	physicists.	What	it	implies	about	the	ontology	of	EFTs,	and	in

particular,	the	nature	of	the	Wilsonian	cutoff	Λ,	will	have	to	wait	until	section	5.	Section	4	provides	a	brief	review	of

two	explicit	ways	of	deriving	predictions	using	EFTs.	My	ultimate	claim	in	section	5	will	be	that	the	method	one

chooses	to	derive	predictions	from	an	EFT	(i.e.,	the	renormalization	scheme	one	adopts)	will	influence	the	possible

ways	of	interpreting	it.

4.	On	Renormalization	Schemes	and	Types	of	EFTs

As	Manohar	(1997,	326)	observes,	knowing	the	Lagrangian	density	of	a	quantum	field	theory	is	not	enough	to

calculate	the	values	of	observable	quantities.	To	accomplish	the	latter	(using	perturbative	techniques)	requires

expanding	the	Green's	function	that	represents	a	particular	observable	quantity	in	an	infinite	series	in	which,

typically,	divergent	integrals	appear. 	This	is	the	problem	of	renormalization	in	quantum	field	theory.	Thus,	in

addition	to	knowing	the	Lagrangian	density	of	a	quantum	field	theory,	one	needs	to	specify	a	renormalization

scheme.	This	is	a	method	that	specifies	(1)	a	means	of	regulating	divergent	integrals	and	(2)	a	means	of

subtracting	the	associated	infinities	in	a	systematic	way.	There	are	a	number	of	different	methods	that	accomplish

this,	two	of	which	are	important	in	the	context	of	interpreting	EFTs.	The	first	adopts	momentum	cutoff	regularization

and	a	mass-dependent	method	of	subtraction	and	is	used	(at	least	implicitly)	in	the	Wilsonian	approach	to

constructing	EFTs	(outlined	above	in	section	2).	The	second	adopts	dimensional	regularization	and	a	mass-

dependent	method	of	subtraction	and	is	associated	with	what	Georgi	(1992,	1;	1993,	215)	has	called	“continuum

EFTs.”

Leff
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4.1	Mass-Dependent	Schemes	and	Wilsonian	EFTs

In	a	Wilsonian	EFT,	the	explicit	appearance	of	the	cutoff	L	that	defines	the	border	between	the	low-energy	physics

and	the	high-energy	physics	suggests	employing	it	as	a	means	to	regulate	the	particular	type	of	divergent	integrals

that	appear	in	calculations	of	the	values	of	observable	quantities.	Given	such	a	divergent	integral	of	the	schematic

form	 ,	where	D	is	the	dimension	of	spacetime	and	κ(p)	is	a	particular	function	of	momentum	p,	one

can	insert	the	cutoff	Λ	and	rewrite	the	integral	as	the	sum	of	a	finite	piece	and	an	infinite	piece:	(11)

For	the	types	of	divergent	integrals	under	consideration,	the	infinite	piece	can	be	absorbed	into	a	redefinition	of	the

parameters	of	the	theory	through	the	introduction	of	renormalization	constants.	It	turns	out	that,	in	this	method	of

regularization,	these	constants	are	dependent	on	the	heavy	masses	that	appear	in	the	high-energy	theory;	hence,

the	manner	in	which	they	are	defined	is	referred	to	as	a	mass-dependent	subtraction	scheme.

There	are	two	main	advantages	of	employing	this	type	of	renormalization	scheme	in	the	context	of	EFTs.	First,	it	is

conceptually	consistent	with	the	image	of	an	EFT	as	a	low-energy	approximation	to	a	high-energy	theory	based	on

a	restriction	of	the	latter	to	a	particular	energy	scale.	This	scale	is	explicitly	represented	by	the	cutoff	Λ,	which	thus

plays	a	double	role	in	designating	the	appropriate	energy	scale	and	in	cutting	off	divergent	integrals.	The	second

advantage	of	using	this	renormalization	scheme	is	that	it	guarantees	that	the	Decoupling	Theorem	holds,	given	a

few	other	assumptions.

The	Decoupling	Theorem	is	due	to	Appelquist	and	Carazzone	(1975).	Hartmann	(2001)	describes	it	thusly:

For	two	coupled	systems	with	different	energy	scales	m 	and	m 	(m 	〉	m )	and	described	by	a

renormalizable	theory,	there	is	always	a	renormalization	condition	according	to	which	the	effects	of	the

physics	at	scale	m 	can	be	effectively	included	in	the	theory	with	the	smaller	scale	m 	by	changing	the

parameters	of	the	corresponding	theory.	(Hartmann	2001,	283)

This	theorem	is	a	formal	guarantee	of	the	informal	EFT	“ideology”	of	Polchinski	(1993,	6),	stated	above	in	section

2.1.	Hartmann	(2001,	284)	is	careful	to	note	that	it	requires	that	there	is	an	underlying	high-energy	theory	that	is

renormalizable	and	that	different	mass	scales	exist	in	this	theory.	Moreover,	as	Georgi	(1992,	3)	indicates,	the

renormalization	condition	that	the	theorem	refers	to	is,	in	fact,	a	mass-dependent	subtraction	scheme.

The	above	advantages	of	cutoff	regulated,	mass-dependent	renormalization	schemes	are	balanced	by	the

following	disadvantages:

(1)	A	momentum	cutoff	regularization	method	violates	Poincaré	invariance	of	the	underlying	high-energy

theory,	as	well	as	any	gauge	invariance	it	may	possess.

(2)	Mass-dependent	subtraction	schemes	typically	prevent	the	justification,	based	on	dimensional	analysis,

that	allows	one	to	ignore	the	potentially	infinite	number	of	irrelevant	terms	in	the	effective	action	(2)	from

being	extended	from	tree-level	calculations	to	higher-order	loop	corrections.	The	reason	is	that	in	mass-

dependent	schemes,	the	simple	tree-level	dependence	of	irrelevant	terms	on	orders	of	1/Λ	can	break	down

when	doing	higher-order	loop	corrections.	In	particular,	in	these	higher-order	corrections,	the	dependence	of

irrelevant	terms	on	the	cutoff	may	be	of	order	1	(in	general,	such	terms	have	a	power	law	dependence	on	the

cutoff),	and	thus	such	terms	cannot	be	ignored	(Manohar	1997,	327–328;	Pich	1998,	14).	Note	that	this	does

not	prevent	loop	calculations	from	proceeding	in	mass-dependent	schemes;	rather	it	makes	them	more

difficult.	(Manohar	1997,	329)

4.2	Mass-independent	Schemes	and	Continuum	EFTs

To	address	problem	(2),	many	authors	suggest	adopting	a	mass-independent	renormalization	scheme.	In	this	type

of	scheme,	the	dimensional	parameter	μ	(analogous	to	the	momentum	cutoff	Λ	in	the	cutoff	approach)	only

appears	in	loop	corrections	in	logarithms,	and	not	powers,	thus	the	relevant	integrals	are	small	at	scales	much

smaller	than	the	heavy	fields	(Manohar	1997,	238;	Pich	1998,	15).	This	allows	one	to	effectively	ignore	the
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contributions	of	irrelevant	terms,	not	only	at	tree-level	as	naive	dimensional	analysis	allows	but	also	for	higher-

order	loop	corrections	as	well.

Mass-independent	renormalization	schemes	are	typically	associated	with	the	method	of	regulating	divergent

integrals	known	as	dimensional	regularization.	This	method	takes	advantage	of	the	mathematical	fact	that	the

particular	types	of	divergent	integrals	that	arise	in	quantum	field	theoretic	calculations,	again	represented

schematically	by	 ,	will	converge	for	sufficiently	small	values	of	D.	Formally,	one	lets	D	=	4	−	ε	in	the

integral	(where	ε	is	a	very	small	constant),	and	then	analytically	continues	D	to	4.	This	process	picks	up	poles	in

D-dimensional	momentum	space,	and	these	can	be	absorbed	into	a	redefinition	of	the	parameters	of	the	theory.	In

this	case,	such	redefinitions	are	independent	of	the	masses,	hence	the	term	mass-independent	subtraction

scheme.

In	the	context	of	EFTs,	there	are	two	main	advantages	of	employing	a	mass-independent	renormalization	scheme

based	on	dimensional	regularization.	First,	dimensional	regularization	respects	Poincaré	and	gauge	invariance.

Second,	as	indicated	above,	mass-independent	renormalization	schemes	allow	one	to	truncate	the	effective	action

(2)	to	a	finite	list	of	terms,	not	only	for	tree-level	calculations	but	also	for	higher-order	loop	calculations.	However,	it

turns	out	that	this	simplification	comes	at	the	cost	of	having	terms	that	explicitly	include	the	heavy	fields	appear	in

this	finite	list	(see,	e.g.,	Burgess	2004,	19).	This	has	the	following	consequences:

(1′)	Many	authors	consider	mass-independent	schemes	to	violate	the	“spirit”	of	an	EFT,	to	the	extent	that	the

latter	is	based	on	the	notion	of	a	cutoff,	below	which	the	physics	is	explicitly	described	by	only	the	light	fields

(Burgess	2004,	19;	Burgess	2007,	343;	Polchinski	1993,	5).

(2′)	Perhaps	more	importantly,	the	presence	of	heavy	field	terms	in	an	effective	action	employing	a	mass-

independent	renormalization	scheme	prevents	the	application	of	the	Decoupling	Theorem	(Georgi	1993,	225;

Manohar	1997,	329).	As	mentioned	above	in	section	3.1,	the	latter	holds	only	for	mass-dependent	schemes.

It	turns	out	that	problem	(2′)	can	be	addressed	by	inserting	decoupling	by	hand	into	an	EFT	that	employs	a	mass-

independent	scheme,	but	this	requires	a	slight	reconceptualization	of	the	nature	of	an	EFT.	This	results	in	what

Georgi	(1992,	1;	1993,	215)	refers	to	as	a	“continuum	EFT.”

How	can	an	EFT	be	constructed	without	initial	appeal	to	a	cutoff?	Briefly,	for	top-down	constructions,	the	initial

momentum	splitting	of	the	fields	in	a	Wilsonian	EFT	and	the	integration	over	the	heavy	modes	is	replaced	in	a

continuum	EFT	by	the	following	steps	(after	Georgi	1993,	228;	see	also	Burgess	2004,	19–20;	Burgess	2007,	344):

(I′)	Start	with	a	dimensionally	regularized	theory	with	Lagrangian	density	 	at	a	large	scale	s,

where	 	describes	the	light	fields	and	 	describes	everything	else	(where	x	are	the	heavy	fields

of	mass	M).	Now	evolve	the	theory	to	lower	scales	using	the	renormalization	group:	This	allows	you	to	go

from	scale	s	to	scale	s	−	d 	without	changing	the	content	of	the	theory.

(II′)	When	s	gets	below	M,	the	effective	theory	is	changed	to	a	new	one	without	the	heavy	fields:	

,	where	 	encodes	a	“matching	correction”	that	includes	any	new	nonrenormalizable

interactions	that	may	be	required.	The	matching	correction	is	made	so	that	the	physics	of	the	light	fields	is	the

same	in	the	two	theories	at	the	boundary	s	=	M.	To	explicitly	calculate	 ,	one	expands	it	in	a	complete

set	of	local	operators	in	the	same	manner	that	the	expansion	(2)	for	Wilsonian	EFTs	is	performed:	(12)

Dimensional	analysis	can	now	be	applied	to	determine	the	scaling	behavior	of	the	terms	in	(12),	in	the	same	way	it

is	applied	in	Wilsonian	EFTs.	Again,	in	the	case	of	a	continuum	EFT,	this	analysis	is	valid	not	just	for	tree-level

calculations	but	also	for	higher-order	loop	calculations	as	well.

To	summarize	and	compare,	in	the	construction	of	a	Wilsonian	EFT,	the	heavy	fields	are	first	integrated	out	of	the

underlying	high-energy	theory	and	the	resulting	Wilsonian	effective	action	is	then	expanded	in	a	series	of	local

operator	terms.	The	cutoff	Λ	in	a	Wilsonian	EFT	plays	a	double	role:	first,	through	the	definition	of	the	heavy	and

light	fields,	in	explicitly	demarcating	the	low-energy	physics	from	the	high-energy	physics;	and	second,	in

regulating	divergent	integrals	in	the	calculation	of	observable	quantities.	In	the	construction	of	a	continuum	EFT,

the	heavy	fields	are	initially	left	alone	in	the	underlying	high-energy	theory,	which	is	first	evolved	down	to	the
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appropriate	energy	scale.	The	continuum	EFT	is	then	constructed	by	completely	removing	the	heavy	fields	from

the	high-energy	theory,	as	opposed	to	integrating	them	out;	and	this	removal	is	compensated	for	by	an	appropriate

matching	calculation	(this	latter	is	ultimately	responsible	for	the	appearance	of	heavy	modes	into	the	operator

expansion	(12)).	In	a	continuum	EFT,	the	first	role	of	the	Wilsonian	cutoff	Λ	is	played	by	the	renormalization	scale	s

that	demarcates	the	low-energy	physics	from	the	high-energy	physics.	The	second	role	of	the	Wilsonian	cutoff	is

dropped,	the	procedure	of	dimensional	regularization	taking	its	place.

This	last	observation	suggests	the	motivation	for	Georgi's	phrase	“continuum	EFT.”	In	a	Wilsonian	EFT,	the

regularization	of	divergent	integrals	is	performed	by	restricting	the	range	of	momentum	variables	in	integrals	over

momentum	space.	The	Fourier	transform	equivalent	of	this	procedure	is	a	restriction	of	the	range	of	coordinate

variables	in	integrals	over	coordinate	space.	Hence	regularization	in	a	Wilsonian	EFT	is	analogous	to	placing	a

high-energy	continuum	theory	on	a	discrete	lattice,	and	this	is	the	reason	why	momentum	cutoff	regularization

violates	Poincaré	invariance.	In	contrast,	in	a	“continuum	EFT,”	the	regularization	of	divergent	integrals	is

performed	by	calculating	them	in	a	continuous	spacetime	of	dimension	D	(the	Fourier	transform	equivalent	of	D-

dimensional	momentum	space).	This	is	the	reason	why	dimensional	regularization	does	not	violate	Poincaré

invariance.

5.	Ontological	Implications

Different	renormalization	schemes	ultimately	all	agree	on	the	values	of	physical	quantities.	In	particular,	both	mass-

dependent	and	mass-independent	schemes	will,	at	the	end	of	the	day,	agree	on	all	empirically	measured

quantities. 	Thus	a	Wilsonian	EFT	for	a	given	physical	system	is	empirically	equivalent	to	that	system's	continuum

EFT.	On	the	other	hand,	the	fact	that	these	types	of	EFT	place	different	emphasis	on	the	nature	of	the	cutoff

suggests	they	can	be	interpreted	as	telling	us	different	things	about	the	world.	I	now	consider	some	of	the

implications	this	has	for	debates	over	the	ontological	status	of	EFTs.

5.1	Decoupling	and	Quasi-Autonomous	Domains

Cao	and	Schweber	emphasize	the	role	of	the	Decoupling	Theorem	in	understanding	the	ontological	significance	of

EFTs:

Thus,	with	the	decoupling	theorem	and	the	concept	of	EFT	emerges	a	hierarchical	picture	of	nature	offered

by	QFT	[quantum	field	theory],	one	that	explains	why	the	description	at	any	one	level	is	so	stable	and	is

not	disturbed	by	whatever	happens	at	higher	energies,	and	thus	justifies	the	use	of	such	descriptions.

(Cao	and	Schweber	1993,	64)

In	this	picture,	the	[physical	world]	can	be	considered	as	layered	into	quasi-autonomous	domains,	each

layer	having	its	own	ontology	and	associated	‘fundamental	law’.	(Cao	and	Schweber	1993,	72)

They	further	suggest	that	EFTs	entail	“an	antifoundationalism	in	epistemology	and	an	antireductionism	in

methodology”	(Cao	and	Schweber	1993,	69).	Huggett	and	Weingard	(1995,	187)	interpret	this	as	a	view	that	“holds

that	nature	is	described	by	a	genuinely	never-ending	tower	of	theories,	and	that	the	competing	possibilities	of

unification	and	new	physics	should	be	abandoned.”

Hartmann	(2001,	298)	claims	that	“Cao	and	Schweber's	talk	of	quasi-autonomous	domains	rests	on	the	validity	of

the	decoupling	theorem,”	and	then	rightly	points	out	that	the	latter	is	not	necessarily	valid	in	all	cases	in	which

EFTs	exist.	In	particular,	it	requires	the	existence	of	an	underlying	high-energy	renormalizable	theory	with	different

mass	scales.	This	vitiates	Cao	and	Schweber's	antifoundationalism	and/or	antireductionism,	if	they	are	taken	to

entail	that	there	is	no	underlying	theory.

On	the	other	hand,	Castellani	(2002)	appears	to	endorse	an	aspect	of	the	“quasi-autonomous	domain”

interpretation:	“The	EFT	approach	in	its	extreme	version	provides	a	level	structure	(‘tower’)	of	EFTs,	each	theory

connected	with	the	preceding	one	(going‘up’	in	the	tower)	by	means	of	the	[renormalization	group]	equations	and

the	matching	conditions	at	the	boundary”	(Castellani	2002,	263).

It	appears	that	the	participants	in	this	debate	are	talking	past	each	other,	having	implicitly	adopted	different	notions
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of	an	EFT.	Cao	and	Schweber,	in	particular,	are	sometimes	ambiguous	on	what	concept	of	EFT	they	are	employing.

On	the	one	hand,	in	their	emphasis	on	the	Decoupling	Theorem	and	momentum	cutoff	regularization,	they	appear

to	adopt	a	Wilsonian	notion	of	an	EFT.	For	instance,	in	the	context	of	discussing	the	ontological	significance	of

momentum	cutoff	regularization,	they	observe	that	“the	following	can	be	stated	for	other	regularization	schemes	…

but	not	for	dimensional	regularization,	which	is	more	formalistic	and	irrelevant	to	the	point	discussed	here”	(Cao

and	Schweber	1993,	92	n.	17).	On	the	other	hand,	immediately	before	introducing	the	EFT-inspired	hierarchical

picture	of	nature,	they	describe	an	EFT	in	the	following	terms:	“The	EFT	can	be	obtained	by	deleting	all	heavy

fields	from	the	complete	renormalizable	theory	and	suitably	redefining	the	coupling	constants,	masses,	and	the

scale	of	the	Green's	functions,	using	the	renormalization	group	equations”	(Cao	and	Schweber	1993,	64).

This	appears	to	be	a	description	of	the	construction	of	a	continuum	EFT	as	outlined	in	section	3.2.	Hartmann	(2001)

makes	it	evident	in	his	critique	of	Cao	and	Schweber	that	he	implicitly	has	adopted	the	Wilsonian	notion	of	an	EFT.

Finally,	Castellani	implicitly	adopts	a	continuum	notion	of	an	EFT,	describing	its	construction	as	one	based	on

matching	conditions	(see,	e.g.,	Castellani	2002,	262).

Note	that	the	notion	of	EFT	one	adopts	should	be	important	in	this	debate.	The	Decoupling	Theorem	was	proven	in

the	context	of	Wilsonian	EFTs	of	a	particular	kind;	namely,	those	for	which	there	exists	an	underlying

renormalizable	high-energy	theory	with	different	mass	scales.	Thus,	if	by	“EFT”	Cao	and	Schweber	mean

“Wilsonian	EFT,”	then	Hartmann's	critique	goes	through:	Wilsonian	EFTs	do	not,	by	themselves,	support	an

ontology	of	quasi-autonomous	domains.	On	the	other	hand,	the	Decoupling	Theorem	fails	for	continuum	EFTs,	but,

arguably	this	does	not	prevent	them	from	supporting	a	well-defined	notion	of	quasi-autonomous	domains.	This	is

because	in	continuum	EFTs,	decoupling	is	inserted	“by	hand”	in	the	form	of	matching	calculations.	Thus,	if	by

“EFT”	Cao	and	Schweber	mean	“continuum	EFT,”	then,	arguably,	Hartmann's	critique	does	not	go	through:

continuum	EFTs	are,	by	themselves,	capable	of	supporting	an	ontology	of	quasi-autonomous	domains.	Hence,

provided	by	“EFT,”	Castellani	means	“continuum	EFT,”	her	endorsement	of	such	an	ontology	is	justified.

5.2	Realistic	Interpretations	of	the	Cutoff

In	typical	expositions	of	EFTs,	emphasis	is	placed	on	a	realistic	interpretation	of	the	cutoff.	Many	authors	claim	that

such	a	realistic	interpretation	is	what	separates	the	contemporary	concept	of	an	EFT	from	older	views	of

renormalization	(Hartmann	2001,	282;	Castellani	2002,	261;	Grinbaum	2008,	37).	Under	these	older	views,	a	cutoff,

when	it	occurred	in	accounts	of	QFTs,	only	played	a	role	as	a	regulator	of	integrals	and	was	taken	to	infinity	at	the

end	of	the	day	(if	this	resulted	in	a	finite	theory,	then	the	theory	was	deemed	to	be	renormalizable).	The

contemporary	concept	of	an	EFT,	so	the	story	goes,	is	based	on	viewing	the	cutoff	realistically	in	a	different	role;

namely,	as	a	means	of	demarcating	low-energy	physics	from	high-energy	physics.	By	now	it	should	be	obvious

from	the	discussion	in	section	4	that	this	standard	account	is	only	half	the	story;	it,	perhaps	unfairly,	privileges

Wilsonian	EFTs	and	the	double	role	the	cutoff	plays	in	their	construction,	over	continuum	EFTs.

This	is	not	to	say	that	a	realistic	interpretation	of	the	cutoff	cannot	be	made	in	the	context	of	continuum	EFTs.

Recall	that	in	continuum	EFTs,	the	role	that	the	Wilsonian	cutoff	Λ	plays	in	demarcating	low-energy	physics	from

high-energy	physics	is	played	by	a	scaling	variable	s	(i.e.,	the	renormalization	scale	that	appears	in	the

renormalization	group	equations).	Certainly	this	scaling	variable	can	be	realistically	interpreted,	perhaps	as	a	basis

for	an	ontology	of	quasi-autonomous	domains;	and	it	might	even	be	referred	to	as	a	cutoff,	in	this	context.	The

important	point	is	that,	in	a	continuum	EFT,	this	scaling	variable	does	not	play	the	second	role	that	the	Wilsonian

cutoff	Λ	plays;	namely,	as	a	regulator	of	divergent	integrals.

Thus	to	realistically	interpret	the	cutoff	in	an	EFT	could	mean	one	of	two	things:

(a)	The	Wilsonian	regulator	Λ	should	be	realistically	interpreted.

(b)	The	constant	that	demarcates	low-energy	physics	from	high-energy	physics	(given	by	Λ	in	Wilsonian

EFTs	and	by	a	particular	value	of	s	in	continuum	EFTs)	should	be	realistically	interpreted.

As	the	discussion	at	the	end	of	section	4.2	suggests,	adopting	(a)	might	motivate	an	ontology	in	which	space	is

discrete:	momentum	cutoff	regularization	is	analogous	to	placing	a	continuum	theory	on	a	discrete	lattice.	But	such

an	ontology	is	not	forced	upon	us	by	a	realistic	interpretation	of	the	cutoff.	Simply	put,	(b)	does	not	entail	(a).	One

can	adopt	a	realistic	interpretation	of	the	cutoff	in	a	continuum	EFT	and,	at	the	same	time,	an	ontology	in	which
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spacetime	is	continuous.

This	conclusion	affects	part	of	a	recent	debate	over	interpretations	of	quantum	field	theory	(QFT).	Wallace	(2006)

adopts	an	interpretation	of	QFT	in	which	a	cutoff	is	inserted	and	realistically	interpreted	and	justifies	it	by	appealing

to	features	of	EFTs	(see,	e.g.,	43).	Fraser	(2009)	criticizes	this	“cutoff	variant”	of	QFT	in	the	following	way:	“If	the

cutoffs	are	taken	seriously,	then	they	must	be	interpreted	realistically;	that	is,	space	is	really	discrete	and	of	finite

extent	according	to	the	cutoff	variant	of	QFT”	(Fraser	2009,	552).	Fraser	suggests	this	makes	cutoff	QFT

unsatisfactory:	if	the	cutoff	is	not	taken	seriously,	then	cutoff	QFT	reduces	to	“infinitely	renormalized	QFT,”	which	is

the	standard	textbook	account	in	which	cutoffs,	when	they	appear,	are	taken	to	infinity	in	renormalization

schemes.	An	appeal	to	Haag's	theorem	then	indicates	this	textbook	account	is	inconsistent.	On	the	other	hand,	if

the	cutoff	is	taken	seriously,	then	cutoff	QFTs	avoid	Haag's	theorem	(which,	among	other	things,	requires	Poincaré

invariance);	but	they	entail	space	is	discrete	and	finite,	and	“nobody	defends	the	position	that	QFT	provides

evidence	that	space	is	discrete	and	the	universe	is	finite”	(Fraser	2009,	552).

Once	again,	being	clear	on	the	type	of	EFT	one	adopts	on	which	to	base	the	cutoff	variant	of	QFT	will	make	a

difference	in	this	debate.	If	by	“cutoff	QFT”	one	means	“Wilsonian	EFT,”	then	Fraser's	critique,	arguably,	goes

through.	However,	if	by	“cutoff	QFT”	one	means	“continuum	EFT,”	then	the	above	argument	does	not	go	through:

continuum	EFTs	support	an	ontology	in	which	spacetime	is	continuous. 	Thus,	provided	one	can	demonstrate	that

continuum	EFTs	avoid	Haag's	theorem,	a	cutoff	version	of	QFT	based	on	continuum	EFTs	is	a	viable	alternative	to

the	“formal	variant”	(i.e.,	axiomatic	QFT)	that	Fraser	(2009,	538)	advocates.

5.3	EFTs	and	Approximation

Finally,	two	further	examples	of	how	the	distinction	between	types	of	EFTs	is	important	for	issues	of	interpretation

involve	the	notions	of	idealization	and	approximation.	The	fact	that	Wilsonian	EFTs	support	an	ontology	in	which

space	is	discrete	suggests	to	Fraser	(2009,	564)	that	the	cutoff	variant	of	QFT	is	an	indispensable	idealization:	“[It]

…is	an	idealization	in	the	sense	that	the	possible	worlds	in	which	QFT	is	true	are	presumed	to	be	worlds	in	which

space	is	continuous	and	infinite,”	and	“[t]his	idealization	is	indispensable	insofar	as	it	is	not	possible	to	remove	the

cutoffs	entirely”	(since	this	would	turn	the	cutoff	variant	into	the	infinitely	renormalized	variant).	But,	again,

continuum	EFTs	do	not	idealize	space	as	discrete,	hence	a	version	of	cutoff	QFT	based	on	continuum	EFTs	is	not

an	idealization	of	this	type.

Relatedly,	Castellani	(2002,	260,	263)	suggests	that	EFTs	are	“intrinsically	approximate	and	context-dependent.”

An	EFT,	under	this	view,	is	an	approximation	of	an	underlying	high-energy	theory	and	is	valid	only	within	a

specified	energy	range.	Now,	arguably,	Cao	and	Schweber's	ontology	of	quasi-autonomous	domains	is	intended	in

part	to	address	claims	of	this	type.	Under	Cao	and	Schweber's	view,	an	EFT	describes	a	quasi-autonomous	domain

by	means	of	a	complete	description	of	phenomena	within	a	given	energy	range,	independent	for	the	most	part	of

descriptions	at	higher	or	lower	energies	(Cao	and	Schweber	1993,	64,	are	careful	to	explain	how	high-energy

effects	do	make	themselves	present	in	relevant	and	marginal	terms	of	an	effective	Lagrangian	density).	Thus,	the

discussion	in	section	5.1	entails	that	EFTs	need	not	be	interpreted	as	intrinsically	approximate,	provided	one

adopts	continuum	EFTs	as	the	object	of	one's	interpretation.

6.	EFTs	and	Emergence

In	the	example	in	section	2.3	above,	the	EFT	of	a	superfluid	 He	film	took	the	form	(to	lowest	order)	of	quantum

electrodynamics	in	(2	+	1)	dimensions.	The	duality	transformations	(8)	suggested	that,	at	low	energies,	the	density

of	a	superfluid	 He	film	behaves	like	a	magnetic	field,	its	velocity	behaves	like	an	electric	field,	and	vortices

behave	like	charge-carrying	electrons.	This	example	of	a	relativistic	EFT	of	a	condensed	matter	system,	and	others

like	it,	have	suggested	to	some	physicists	that	novel	phenomena	(fields,	particles,	symmetries,	spacetime,	etc.)

emerge	in	the	low-energy	limit	of	these	systems. 	On	the	other	hand,	in	the	physics	literature,	references	to

emergence	are	typically	not	associated	with	EFTs	of	relativistic	QFTs. 	In	the	philosophy	of	physics	literature,	the

converse	is	true:	philosophers	of	physics	have	considered	notions	of	emergence	related	to	EFTs	of	relativistic

QFTs,	but	have	paid	little	attention	to	emergence	in	EFTs	of	condensed	matter	systems. 	In	this	section	I	take	it	as

a	given	that	the	formal	nature	of	an	EFT	is	identical	in	both	contexts	and	consider	the	extent	to	which	notions	of

emergence	are	applicable,	regardless	of	context.
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Consider,	first,	the	view	from	philosophy	of	physics:	Cao	and	Schweber,	for	instance,	associate	the

antireductionism	of	their	quasi-autonomous	domains	interpretation	of	EFTs	with	a	notion	of	emergence:	“taking	the

decoupling	theorem	and	EFT	seriously	would	entail	considering	the	reductionist	…program	an	illusion,	and	would

lead	to	its	rejection	and	to	a	point	of	view	that	accepts	emergence,	hence	to	a	pluralist	view	of	possible	theoretical

ontologies”	(Cao	and	Schweber	1993,	71).	Likewise,	Castellani	(2002,	263)	suggests	that	the	EFT	approach

“provides	a	level	structure	of	theories	where	the	way	in	which	a	theory	emerges	from	another	…is	in	principle

describable	by	using	RG	[Renormalization	Group]	methods	and	matching	conditions	at	the	boundary.”	On	the	other

hand,	Castellani	argues	that	the	EFT	approach	does	not	imply	antireductionism,	insofar	as	antireductionism	is	to	be

associated	with	the	denial	of	some	type	of	intertheoretic	relation:	“The	EFT	schema,	by	allowing	definite

connections	between	theory	levels,	actually	provides	an	argument	against	the	basic	antireductionist	claim”

(Castellani	2002,	265).	Note	that	while	Cao	and	Schweber	take	emergence	to	be	descriptive	of	ontologies

(properties,	objects,	etc.),	Castellani	suggests	emergence	be	viewed	as	a	relation	between	theories.	In	both	cases,

however,	the	emphasis	is	on	autonomy.	Cao	and	Schweber's	emergent	ontologies	are	restricted	to	quasi-

autonomous	domains,	each	described	by	a	distinct	EFT.	Castellani's	emergent	theories	stand	in	“definite

connections”	with	each	other,	but	assumedly	not	so	definite	as	to	warrant	the	label	of	reduction.

This	section	will	only	be	concerned	with	the	extent	to	which	the	intertheoretic	relation	between	a	top-down	EFT	and

its	high-energy	theory	supports	a	notion	of	emergence;	thus	the	approach	taken	will	be	to	view	emergence	as	a

relation	between	theories.	Batterman	(2002,	115)	has	suggested	that,	under	a	received	view	in	the	philosophical

literature,	such	a	relation	holding	between	an	emergent	theory	T′	and	an	underlying	theory	T	can	mean	any	or	all

of	the	following:

(a)	The	phenomena	of	T′	cannot	be	reduced	to	T.

(b)	The	phenomena	of	T′	cannot	be	predicted	by	T.

(c)	The	phenomena	of	T′	are	causally	independent	of	those	of	T.

(d)	The	phenomena	of	T′	cannot	be	explained	by	T.

The	initial	task	of	this	section	will	be	to	consider	the	extent	to	which	the	intertheoretic	relation	between	an	EFT	and

its	high-energy	theory	supports	these	notions	of	autonomy.

6.1	The	EFT	Inter	theoretic	Relation

Sections	2.1	and	4.2	above	described	the	general	steps	in	the	construction	of	a	Wilsonian	and	a	continuum	EFT,

respectively.	Although	differing	in	their	details,	these	steps	have	the	following	general	form:	(I)	One	first	identifies

and	then	systematically	eliminates	high-energy	degrees	of	freedom;	and	then	(II)	one	expands	the	resulting

effective	Lagrangian	density	(or	effective	action)	in	terms	of	local	operators.	The	intertheoretic	relation	defined	by

this	procedure	has	one	very	important	characteristic	in	the	context	of	a	discussion	of	notions	of	emergence;

namely,	its	relata	are	distinct	theories.

To	see	this,	consider	the	following	consequences	of	Steps	(I)	and	(II):

(1)	First,	the	low-energy	degrees	of	freedom	of	the	EFT	are	typically	formally	distinct	from	the	high-energy

degrees	of	freedom.	This	suggests	they	admit	distinct	ontological	interpretations	(recall,	for	instance,	some	of

the	examples	from	section	2:	pions	versus	quarks,	quasiparticles	versus	electrons,	and	electric	and	magnetic

fields	versus	 He	atoms).

(2)	Second,	the	EFT	Lagrangian	density	typically	is	formally	distinct	from	the	high-energy	Lagrangian	density.

Manohar	makes	(2)	clear	in	the	context	of	the	Fermi	EFT	of	the	weak	force:

It	is	important	to	keep	in	mind	that	the	effective	theory	is	a	different	theory	from	the	full	theory.	The	full

theory	of	the	weak	interactions	is	a	renormalizable	field	theory.	The	effective	field	theory	is	a	non-

renormalizable	field	theory,	and	has	a	different	divergence	structure	from	the	full	theory.	(Manohar	1997,

327)

4

PDF Compressor Free Version 



Effective Field Theories

Page 14 of 21

Figure	6.1 	The	relation	between	the	initial	Lagrangian	and	the	effective	Lagrangian	for	superfluid	helium.

As	another	example	of	(2),	consider	the	EFT	of	a	superfluid	 He	film	described	in	section	2.3.	Above	a	critical

temperature,	the	system	consists	of	a	nonrelativistic	normal	liquid.	As	the	temperature	is	lowered	below	the	critical

value,	a	phase	transition	occurs,	accompanied	by	a	spontaneously	broken	symmetry,	and	the	system	enters	the

superfluid	phase.	If	the	temperature	is	lowered	further,	its	constituents	can	be	described	in	terms	of	a	relativistic

EFT.	Importantly,	both	the	normal	liquid	and	the	superfluid,	as	well	as	the	phase	transition	and	the	spontaneously

broken	symmetry,	are	all	encoded	in	a	single	Lagrangian	density	(4).	All	of	these	states	and	processes	can	thus	be

said	to	be	described	by	a	single	theory.	On	the	other	hand,	the	low-energy	relativistic	system	is	encoded	in	the

effective	Lagrangian	density	(9),	which	is	sufficiently	formally	distinct	from	(4)	to	warrant	viewing	it	as	a	different

theory	(see	figure	6.1,	after	Bain	2008,	313).

Note	that	the	claim	that	an	EFT	and	its	high-energy	theory	are	distinct	theories	is	not	intended	to	be	based	simply

on	the	fact	that	there	is	a	formal	distinction	between	their	respective	Lagrangian	densities.	It	is	not	the	case	that,	in

general,	there	is	a	1–1	correspondence	between	Lagrangian	densities	and	theories.	For	instance,	simply	changing

the	interaction	term	in	a	Lagrangian	density	does	not,	arguably,	change	the	theory	it	is	intended	to	represent

(consider	the	theory	of	Newtonian	particle	dynamics	applied	to	different	interactions).	However,	in	the	case	of	an

EFT	and	its	high-energy	theory,	the	difference	between	the	two	Lagrangian	densities	is	substantial	enough	to

warrant	the	assumption	that	one	is	dealing	with	two	distinct	theories.	In	the	 He	case,	the	contrast	is	between	a

nonrelativistic	Lagrangian	density	and	a	relativistic	Lagrangian	density:	whereas	in	Manohar's	example,	the

contrast	is	between	a	renormalizable	Lagrangian	density	and	a	nonrenormalizable	Lagrangian	density.	Moreover,

as	(1)	indicates,	in	both	cases,	the	dynamical	variables	of	the	EFT	are	distinct	from	those	of	the	high-energy

theory.

With	the	above	proviso	in	mind,	in	the	Lagrangian	formalism,	a	difference	in	the	form	of	the	Lagrangian	density

entails	a	difference	in	the	Euler-Lagrange	equations	of	motion	for	the	relevant	dynamical	variables.	One	might	thus

argue	that	an	EFT	T′	is	derivationally	independent	from	its	associated	high-energy	theory	T,	insofar	as	a

specification	of	the	equations	of	motion	of	T	(together	with	pertinent	initial	and/or	boundary	conditions)	will	fail	to

specify	solutions	to	the	equations	of	motion	of	T′.	More	generally,	the	steps	involved	in	the	construction	of	an	EFT

typically	involve	approximations	and	heuristic	reasoning.	In	the	case	of	Wilsonian	EFTs,	recall	that	the	initial

integral	over	the	heavy	fields	typically	involves	a	saddle-point	approximation	about	the	free	theory,	and	even

before	such	an	approximation	can	be	constructed,	in	both	the	Wilsonian	and	continuum	EFT	cases,	the	task	of

identifying	the	relevant	high-energy	variables	must	be	accomplished.	This	suggests	that,	in	general,	it	will	be

difficult,	if	not	impossible,	to	reformulate	the	steps	involved	in	the	construction	of	an	EFT	(of	either	the	Wilsonian	or

continuum	types)	in	the	form	of	a	derivation.

6.2	Senses	of	Autonomy

Given	that	the	intertheoretic	relation	between	an	EFT	and	its	associated	high-energy	theory	is	characterized	by

derivational	independence,	what	does	this	suggest	about	the	sense	in	which	the	former	is	autonomous	from	the

latter?

(a)	Reductive	Autonomy.	One	might	first	argue	that	the	relation	between	an	EFT	and	its	high-energy	theory

cannot	be	characterized	by	notions	of	reduction	based	on	derivability.	On	the	standard	(Nagelian)	account	of

reduction,	for	instance,	a	necessary	condition	for	a	theory	T′	to	reduce	to	another	T	is	that	T′	be	a	definitional

extension	of	T	(see,	e.g.,	Butterfield	and	Isham	1999,	115).	This	requires	first	that	T	and	T′	admit	formulations

as	deductively	closed	sets	of	sentences	in	a	formal	language	(i.e.,	it	assumes	a	syntactic	conception	of

theories),	and	second	that	an	extension	T 	of	T	can	be	constructed	such	that	the	theorems	of	T′	are	a	subset

of	the	theorems	of	T 	(i.e.,	it	requires	that	T′	is	a	sub-theory	of	T ).	Formally,	T 	is	constructed	by	adding	to	T	a

definition	of	each	of	the	nonlogical	symbols	of	T′.	One	might	now	argue	that	this	cannot	be	done	in	the	case	of

a	high-energy	theory	and	its	EFT.	As	noted	above,	in	the	Lagrangian	formalism,	differences	in	the	Lagrangian

densities	representing	two	theories	entail	differences	in	the	theories'	Euler-Lagrange	equations	of	motion.	If

one	adopts	the	view	that	such	equations	represent	the	theory's	dynamical	laws,	then	the	dynamical	laws	of

an	EFT	and	its	high-energy	theory	are	different,	and	a	difference	in	dynamical	laws	entails	a	difference	in

theorems	derived	from	these	laws.	Thus,	an	EFT	is	not	a	sub-theory	of	its	high-energy	theory;	hence,	one

cannot	say	that	an	EFT	reduces	to	its	high-energy	theory	on	this	view	of	reduction.
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Note	that	the	above	argument	does	not	depend	essentially	on	a	syntactic	conception	of	theories.	For

instance,	under	a	semantic	conception	of	theories,	a	typical	claim	is	that	a	theory	reduces	to	another	just

when	models	of	the	first	can	be	embedded	in	models	of	the	second.	This	will	not	suffice	to	reduce	an	EFT	to	its

high-energy	theory	so	long	as	the	embedding	is	required	to	preserve	dynamical	laws	(and	if	it	is	not,	then	it	is

unclear	whether	the	term	“reduction”	for	such	an	embedding	is	appropriate ).

(b)	Predictive	Autonomy.	Predictive	autonomy	between	an	EFT	and	its	high-	energy	theory	would	seem	to	be

another	consequence	of	derivational	independence.	Given	that	the	relation	between	an	EFT	and	its	high-

energy	theory	T	cannot	be	described	in	terms	of	a	derivation	in	which	T	is	implicated,	the	phenomena	that	the

EFT	describes	cannot	be	derived,	and	hence	predicted,	on	the	basis	of	T.

(c)	Causal	Autonomy.	Whether	derivational	independence	of	an	EFT	from	its	high-energy	theory	entails

causal	independence	will	depend	on	one's	concept	of	causation.	To	demonstrate	the	causal	independence	of

an	EFT	from	its	high-energy	theory,	one	would	have	to	provide	an	account	of	how	the	phenomena	governed

by	the	EFT	are	not	implicated	in	the	causal	mechanisms	associated	with	the	relevant	high-energy

phenomena.	The	example	of	superfluid	 He	films	is	instructive	here.	Under	one	interpretation,	this	EFT

suggests	that	low-energy	“ripples”	of	a	superfluid	 He	film	behave	like	relativistic	electric	and	magnetic	fields.

Insofar	as	ripples	in	a	substrate	are	implicated	in	the	causal	mechanisms	that	govern	the	substrate,	this

suggests	causal	links	between	the	phenomena	of	the	EFT	and	the	high-energy	theory.	On	the	other	hand,	if

one's	view	of	causation	is	such	that	the	existence	of	a	causal	relation	requires	the	existence	of	a	nomic

connection	(embodied	in	a	dynamical	law,	say),	then	one	might	argue	that	to	the	extent	to	which	an	EFT	and

its	high-energy	theory	are	nomically	independent	(in	the	sense,	perhaps,	of	possessing	distinct	dynamical

laws),	they	are	causally	independent,	too.

(d)	Explanatory	Autonomy.	Whether	the	phenomena	described	by	an	EFT	can	be	explained	in	terms	of	the

high-energy	theory	will	obviously	depend	on	the	notion	of	explanation	one	adopts.	Arguably,	explanatory

autonomy	will	obtain	on	any	account	of	explanation	that	requires	the	explanandum	to	be	the	product	of	a

derivation	in	which	the	explanans	is	implicated;	and	to	the	extent	to	which	an	EFT	is	causally	independent	of

its	high-energy	theory	T,	its	phenomena	cannot	be	causally	explained	by	T.

6.3	Emergence	and	Limiting	Relations

Evidently	there	is	room	to	maneuver	in	addressing	the	question	of	whether	the	intertheoretic	relation	between	an

EFT	and	its	high-energy	theory	can	be	described	in	terms	of	a	notion	of	emergence,	at	least	if	such	a	notion	is

related	to	standard	accounts	of	reduction,	prediction,	causation,	and/or	explanation.	On	the	other	hand,	Batterman

(2002)	has	offered	a	nonstandard	account	of	emergence	based	on	the	failure	of	a	limiting	relation	between	two

theories.	This	section	considers	its	applicability	in	the	context	of	an	EFT	and	its	high-energy	theory.

Batterman's	notion	of	emergence	is	associated	with	the	failure	of	what	he	refers	to	as	the	“physicists'	sense”	of

reduction.	Under	this	notion,	a	“coarse”	theory	T 	reduces	to	a	“more	refined”	theory	T 	provided	a	limit	of	the

schematic	form	lim	 T 	=	T 	can	be	shown	to	exist,	where	e	is	a	relevant	parameter. 	The	novelty	of	emergent

properties,	according	to	Batterman,	is	“a	result	of	the	singular	nature	of	the	limiting	relationship	between	the	finer

and	coarser	theories	that	are	relevant	to	the	phenomenon	of	interest”	(2002,	121).	This	singular	nature,	when	it

exists,	is	indicative	of	the	existence	of	a	real	“physical	singularity,”	according	to	Batterman.	Thus:	“The	proposed

account	of	emergent	properties	has	it	that	genuinely	emergent	properties,	as	opposed	to	‘merely’	resultant

properties,	depend	on	the	existence	of	physical	singularities”	(Batterman	2002,	125).

For	Batterman,	then,	there	are	two	necessary	conditions	for	the	existence	of	an	emergent	property	in	the	context

of	a	fundamental	(more	refined)	theory	T	and	a	less	fundamental	(coarse)	theory	T′:

(a)	The	physicists'	notion	of	reduction	must	hold	between	T	and	T′;	i.e.,	there	must	be	a	limiting	relation

between	T	and	T′.

(b)	The	limiting	relation	must	fail	in	the	context	with	which	the	emergent	property	is	identified;	in	particular,

there	must	be	a	physical	singularity	associated	with	the	emergent	property.

As	an	example	of	two	theories	that	satisfy	these	conditions,	Batterman	considers	thermodynamics	(TD)	and

statistical	mechanics	(SM).	With	some	qualification,	it	is	possible	to	define	an	intertheoretic	relation	between	the	TD

and	SM	descriptions	of	a	physical	system	in	terms	of	the	thermodynamic	limit	N,	ν	→	∞	while	N/ν	=	constant,	where

N	and	ν	are	the	number	of	particles	and	volume	of	the	system	(Batterman	2002,	123).	This	limit	fails	for	a
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thermodynamic	system	at	a	critical	point	at	which	it	undergoes	a	phase	transition.	At	such	a	point,	the	correlation

length	associated	with	the	system	(roughly,	the	measure	of	the	correlation	between	spatially	separated	states)

becomes	infinite.	For	Batterman,	this	is	an	example	of	a	physical	singularity,	and	he	is	thus	motivated	to	identify

properties	associated	with	phase	transitions	as	emergent	properties.	(In	the	 He	example	of	section	2.3,	such

properties	would	correspond	to	the	highly	correlated	phenomena	associated	with	superfluidity.)

Importantly,	the	intertheoretic	relation	between	TD	and	SM	in	this	context	can	be	modeled	by	renormalization	group

(RG)	techniques.	The	thermodynamic	limit	generates	an	RG	flow	in	the	parameter	space	of	a	TD	system.	This	is

analogous	to	how	a	scale-dependent	momentum	cutoff	L(s)	generates	an	RG	flow	in	the	parameter	space	of	an

RQFT,	as	described	above	in	section	3.	A	TD	system	at	a	critical	point	is	then	represented	by	a	fixed	point	in	its	RG

flow.	This	is	a	point	at	which	the	parameters	of	the	theory	remain	unchanged	under	further	RG	rescaling;	i.e.,	they

become	scale	invariant.	As	Batterman	explains,	at	a	critical	point,

there	is	a	loss	of	a	characteristic	length	scale.	This	leads	to	the	hypothesis	of	scale	invariance	and	the

idea	that	the	large	scale	features	of	a	system	are	virtually	independent	of	what	goes	on	at	a	microscopic

level.	In	the	thermodynamic	case	we	see	that	the	bulk	properties	of	the	thermodynamic	systems	are

independent	of	the	detailed	microscopic,	molecular	constitution	of	the	physical	system.	(Batterman	2005,

243)

In	the	discussion	in	section	3	above,	a	fixed	point	in	the	RG	flow	associated	with	an	RQFT	is	the	explicit	indication

that	the	theory	is	scale-independent	and	hence	renormalizable.	For	such	a	theory,	the	low-energy	properties	of	its

constituents	are	independent	of	its	detailed	high-energy	constitution.	As	in	the	TD/SM	case,	this	also	represents	the

loss	of	a	characteristic	scale,	in	this	case	an	energy	scale.	Thus,	the	features	of	a	renormalizable	theory	are

independent	of	what	goes	on	at	large	energies.	And	just	as	in	the	TD/SM	case,	scale	invariance	in	a	renormalizable

RQFT	is	associated	with	the	existence	of	physical	singularities.	In	this	case,	a	physical	singularity	is	associated	with

an	observable	quantity	(like	a	scattering	cross	section)	that	is	represented	by	a	divergent	Green's	function.

This	analogy	between	the	intertheoretic	relation	between	TD	and	SM,	on	the	one	hand,	and	the	relation	between

the	low-energy	and	high-energy	sectors	of	a	renormalizable	RQFT,	on	the	other,	suggests	that	Batterman's	notion

of	emergence	might	be	applicable	in	the	latter	case.	To	make	this	analogy	more	explicit,	consider	the	following

summaries	of	the	relevant	features	of	these	examples:

Example	1:	T	=	statistical	mechanics	(SM).	T′	=	thermodynamics	(TD).	The	limiting	relation	is	the	thermodynamic

limit:	N,	ν	→	∞	while	N/ν	=	constant.

(i)	The	thermodynamic	limit	fails	at	a	fixed	point	in	the	associated	RG	flow	in	the	sense	that,	at	a	fixed	point,

there	is	no	link	between	the	bulk	TD	properties	and	the	microscopic	SM	properties.	This	is	a	manifestation	of

scale	independence.

(ii)	A	physical	singularity	associated	with	the	failure	of	the	thermodynamic	limit	is	a	diverging	correlation

length.	Emergent	properties	are	properties	associated	with	the	system	at	the	fixed	point.

Example	2:	T	=	renormalizable	continuum	RQFT.	T′	=	cutoff-regulated	RQFT.	The	limiting	relation	is	the	continuum

limit:	Λ(s)	→	∞.	More	precisely,	to	further	the	analogy	with	Example	1,	the	continuum	limit	can	be	given

schematically	by	Λ(s)	→	∞,	[bare	parameters]	→	∞,	while	[renormalized	parameters]	=	[bare	parameters]/Λ(s)	=

constant.

(i)	The	continuum	limit	fails	at	a	fixed	point	in	the	associated	RG	flow	in	the	sense	that,	at	a	fixed	point,	there

is	no	link	between	the	low-energy	cutoff	theory	and	the	high-energy	continuum	theory.	This	is	a	manifestation

of	scale	independence.

(ii)	A	physical	singularity	associated	with	the	failure	of	the	continuum	limit	is	represented	by	a	diverging

Green's	function.	Emergent	properties	are	properties	associated	with	the	system	at	a	fixed	point.	In	principle,

these	are	properties	constructed	out	of	relevant	operators.

Fraser	has	pointed	out	the	following	disanalogy	between	Examples	1	and	2:	“whereas	the	description	of	a	system

as	containing	an	infinite	number	of	particles	furnished	by	[statistical	mechanics]	is	taken	to	be	false,	the	description

of	space	as	continuous	and	infinite	that	is	furnished	by	QFT	with	an	infinite	number	of	degrees	of	freedom	is	taken

to	be	true”	(Fraser	2009,	565).	Thus,	in	Example	1,	the	limiting	relation	is	taken	to	be	an	idealization,	whereas	in
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Example	2	it	is	not.	It	would	appear,	however,	that	this	disanalogy	is	not	relevant	to	Batterman's	notion	of

emergence,	to	the	extent	that	the	latter	is	associated	with	the	necessary	conditions	(a)	and	(b)	above.	Condition

(a)	requires	simply	that	a	limiting	relation	exist,	but	it	says	nothing	about	the	status	of	this	relation;	in	particular,

whether	it	is	taken	to	be	an	idealization	or	not.

This	suggests	that	the	properties	associated	with	the	values	of	observable	quantities	constructed	from	the	Green's

functions	of	a	renormalizable	RQFT	are	emergent	in	Batterman's	sense.	The	question	now	is:	To	what	extent	does

Example	2	offer	insight	into	the	nature	of	emergence	in	the	context	of	EFTs?

Two	observations	appear	to	be	relevant	in	this	context.	First,	not	all	EFTs	are	associated	with	renormalizable	high-

energy	theories.	For	those	that	are	not,	Batterman's	notion	of	emergence	cannot	be	supported	without	further	ado.

Second,	even	in	the	case	of	an	EFT	with	an	associated	renormalizable	high-energy	theory,	the	EFT	will	typically	be

formally	distinct	from	the	latter.	This	is	a	result	of	the	second	step	in	the	construction	of	an	EFT	(for	both	Wilsonian

and	continuum	versions)	in	which	the	effective	Lagrangian	density	is	constructed	via	a	local	operator	expansion.

In	an	RG	analysis	of	a	renormalizable	continuum	RQFT,	this	step	is	replaced	with	a	parameter-rescaling	procedure

by	means	of	which	the	low-energy	cutoff	Lagrangian	density	is	transformed	back	into	the	initial	form	of	the	original

Lagrangian	density.	The	upshot	is	that	T	and	T′	in	Example	2	are	formally	identical,	whereas	an	EFT	and	its	high-

energy	theory	are	not.	Simply	put,	the	cutoff-regulated	RQFT	of	Example	2	is	not	the	same	mathematical	object	as

an	EFT	associated	with	a	renormalizable	high-energy	theory.

This	suggests	that	further	work	needs	to	be	done	if	Batterman's	notion	of	emergence	is	to	be	applied	in	the	context

of	an	EFT	and	its	high-energy	theory.

7.	Conclusion

Two	general	conclusions	seem	appropriate	from	this	review	of	effective	field	theory.	First,	the	discussion	in

sections	4	and	5	suggests	that,	in	order	to	understand	how	EFTs	can	be	interpreted,	one	needs	to	understand	the

methods	that	physicists	use	in	applying	them.	By	focusing	attention	on	different	renormalization	schemes	that

practicing	physicists	actually	employ,	one	can	discern	two	types	of	empirically	equivalent	EFTs—Wilsonian	EFTs

and	continuum	EFTs.	These	are	nontrivial	examples	of	empirically	equivalent	theories	insofar	as,	in	the	context	of	a

given	high-energy	theory,	they	make	the	same	low-energy	predictions,	but	they	suggest	different	ontologies.

Continuum	EFTs	support	an	ontology	of	quasi-autonomous	domains,	whereas	Wilsonian	EFTs	do	not.	Continuum

EFTs	support	an	ontology	that	includes	a	continuous	spacetime,	whereas	Wilsonian	EFTs	require	space	to	be

discrete	and	finite.	These	features	of	Wilsonian	EFTs	have	contributed	to	the	view	that	EFTs	in	general	engage	in

idealization	and	are	inherently	approximate.	The	fact	that	continuum	EFTs	do	not	engage	in	such	idealizations

suggests	that	EFTs	do	admit	interpretations	in	which	they	are	not	considered	inherently	approximate.

The	second	conclusion	one	may	draw	from	this	review	is	that,	if	one	desires	to	associate	(some	aspect	of)	the

intertheoretic	relation	between	an	EFT	and	its	(possibly	hypothetical)	high-energy	theory	with	a	notion	of

emergence,	then	more	work	has	to	be	done.	In	the	context	of	standard	accounts	of	emergence,	the	relevant

feature	of	the	EFT	intertheoretic	relation	is	that	it	supports	a	notion	of	derivational	autonomy	(i.e.,	an	EFT	cannot	be

said	to	be	a	derivation	of	its	associated	high-energy	theory).	But	just	how	derivational	autonomy	can	be	linked	with

a	notion	of	emergence	will	depend	on	such	things	as	how	one	articulates	additional	concepts	such	as	reduction,

explanation,	and/or	causation.	Section	6	also	demonstrated	that	the	EFT	intertheoretic	relation	does	not	support

Batterman's	(2002)	more	formal	notion	of	emergence	based	on	the	failure	of	a	limiting	relation	between	two

theories.	Such	a	failure	of	a	limiting	relation	does	occur	between	a	renormalizable	high-energy	RQFT	and	a	cutoff-

regulated	theory	obtained	from	it	by	renormalization	group	techniques,	but	this	is	a	different	context	than	the	one

in	which	an	EFT	is	obtained	from	a	high-energy	theory.	Again,	the	relevant	property	of	the	EFT	intertheoretic

relation	here	is	that	it	is	a	relation	between	formally	distinct,	derivationally	autonomous,	theories.
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Notes:

(1)	This	exposition	is	based	on	Polchinski	(1993),	and	Campbell-Smith	and	Mavromatos	(1998).	See	also	Burgess

(2004,	2007),	Dobado	et	al.	(1997),	Manohar	(1997),	Pich	(1998),	Rothsein	(2004),	and	Schakel	(2008).

(2)	Consider,	for	instance,	a	scalar	field	theory	with	free	action	S	=	(1/2)	ʃ	d 	x(∂ φ) .	This	action	contains	D

powers	of	the	spacetime	coordinate	from	d 	x	(with	total	energy	units	E ),	and	−2	powers	from	the	two

occurrences	of	the	spacetime	derivative	∂ 	≡	∂/∂x 	(with	total	units	E ).	Thus,	in	order	for	the	action	to	be

dimensionless	(with	units	E ),	the	field	φ	must	have	units	E 	satisfying	E 	E 	E 	E 	=	E ,	and	thus	dimension	y	=

D/2	−	1.

(3)	Consider,	again,	scalar	field	theory	From	note	2,	the	dimension	of	a	scalar	fields	is	given	by	D/2	−	1;	hence,	in

general,	an	operator	 	constructed	from	Mϕ's	and	N	derivatives	will	have	dimension	δ 	=	M(D/2	−	1)	+	N.	For	D	≥

3,	there	are	only	a	finite	number	of	ways	in	which	Si	〈	D	and	δ 	=	D.

(4)	See,	e.g.,	Neubert	(2006,	155).

(5)	Polchinski	(1993,	9).	Another	way	to	motivate	this	restriction	is	by	noting	that	mass	terms	correspond	to	gaps	in

the	energy	spectrum	insofar	as	such	terms	describe	excitations	with	finite	rest	energies	that	cannot	be	made

arbitrarily	small.	These	gaps	create	problems	when	taking	a	smooth	low-energy	limit	(in	the	sense	of	a	smooth

renormalization	group	evolution	of	parameters).	Thus,	for	Weinberg	(1996,	145),	renormalization	group	theory	can

only	be	applied	to	EFTs	that	are	massless	or	nearly	massless.

(6)	While	these	aspects	of	the	Standard	Model	suggest	it	can	be	viewed	as	a	natural	EFT,	other	aspects	famously

preclude	this	view.	In	particular,	terms	representing	massive	scalar	particles	like	the	Higgs	boson	are	not	protected

by	any	symmetry	and	thus	should	not	appear	in	an	EFT.	That	they	do,	and	that	the	order	of	the	Higgs	term	is

proportional	to	the	electroweak	cutoff,	generates	the	“hierarchy	problem”	for	the	Standard	Model.

(7)	Another	example	is	Non-Relativistic	QCD	(NRQCD),	which	is	an	EFT	of	quark/gluon	bound	systems	for	which	the

relative	velocity	is	small.	The	low-energy	fields	are	obtained	by	splitting	the	gluon	field	into	four	modes	and	identify

three	of	these	as	light	variables.	Rothsein	(2003,	61)	describes	this	process	of	identification	as	an	“art	form”	as

opposed	to	a	systematic	procedure.

(8)	Tree-level	calculations	are	contributions	to	the	perturbative	expansion	of	a	physical	quantity	(like	a	scattering

cross-section)	that	do	not	involve	integrating	over	the	internal	momenta	of	virtual	processes.	Loop	calculations,	on
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the	other	hand,	involve	possibly	divergent	integrals	over	internal	momenta	and	are	typically	associated	with

higher-order	corrections	to	tree-level	calculations.	(The	terminology	is	based	on	the	graphical	representation	of

perturbative	calculations	by	Feynman	diagrams.)

(9)	The	following	exposition	draws	on	Wen	(2004,	82–83;	259–264)	and	Zee	(2003,	257–258;	314–316).

(10)	Formally	this	involves	calculating	the	functional	integral	 ,	where	S [θ]	is	the

effective	low-energy	action,	and	 	is	the	action	of	the	high-energy	theory	As	mentioned	at

the	end	of	section	2.1,	such	integrals	can	be	calculated	using	a	saddle-point	approximation,	which,	in	this	context,

is	equivalent	to	the	semiclassical	expansion	method	outlined	above	(Schakel	2008,	75).

(11)	More	precisely,	vortices	are	soliton	solutions	to	the	equations	of	motion	of	(4)	characterized	by	π	=	f(r)e ,	with

boundary	conditions	f(0)	=	0	and	f(r)	→	ψ ,	as	r→	∞.	Intuitively,	these	conditions	describe	a	localized	wave	with

finite	energy	that	does	not	dissipate	over	time.

(12)	Note	that	the	form	of	 	contracts	over	skew	and	symmetric	indices;	however,	it	is	not	identically	zero,	since

for	vortices,	θ	is	not	a	globally	defined	function.

(13)	In	this	context,	relevant	terms	are	called	“super	renormalizable,”	irrelevant	terms	are	called

“nonrenormalizable,”	and	marginal	terms	are	called	“renormalizable.”

(14)	A	Green's	function	is	a	vacuum	expectation	value	of	field	operators.

(15)	More	precisely,	a	mass-dependent	subtraction	scheme	is	one	in	which	anomalous	dimensions	and

renormalization	group	β	functions	explicitly	depend	on	μ/M,	where	μ	is	the	renormalization	scale	and	M	is	the

heavy	mass	(Georgi	1993,	221).

(16)	Burgess	(2004,	20)	explains	this	in	the	following	way:	“the	difference	between	the	cutoff-	and	dimensionally

regularized	low-energy	theory	can	itself	be	parameterized	by	appropriate	local	effective	couplings	within	the	low-

energy	theory	Consequently,	any	regularization-dependent	properties	will	necessarily	drop	out	of	final	physical

results,	once	the	(renormalized)	effective	couplings	are	traded	for	physical	observables.”

(17)	Grinbaum	(2008,	40),	notably,	makes	a	distinction	between	the	“strict”	form	of	decoupling	associated	with	the

Appelquist-Carazzone	theorem,	and	a	“milder”	empirical	decoupling	thesis,	which	evidently	is	to	be	associated

with	the	matching	calculations	involved	in	the	construction	of	continuum	EFTs.

(18)	See	also	Huggett	and	Weingard	(1995,	178)	for	similar	intuitions.

(19)	This	suggests	that	the	categories	of	empirically	equivalent	variants	of	QFT	that	Fraser	(2009,	538)	identifies

should	be	expanded.	Her	“cutoff	QFT”	category	might	be	split	into	“cutoff	regularized	QFT”	and	“dimensionally

regularized	QFT.”

(20)	For	instance,	Zhang	(2004,	669)	reviews	“examples	of	emergence	in	condensed	matter	systems”	that	take

the	form	of	relativistic	EFTs,	including	the	QED 	case.	These	and	other	examples	in	the	condensed	matter	literature

are	discussed	in	Bain	(2008).

(21)	See	Castellani	(2002)	for	a	review	of	the	1960s?1970s	debates	between	solid-state	physicists	and	particle

physicists	over	the	concepts	and	status	of	reduction	and	emergence.

(22)	Both	philosophers	and	physicists	have	considered	notions	of	emergence	in	condensed	matter	systems	exhibit

ing	spontaneously	broken	symmetries.	But,	as	section	6.1	below	suggests,	this	context	is	distinct	from	the	context

in	which	emergence	might	be	associated	with	EFTs.

(23)	Butterfield	and	Isham	(1999,	122)	observe	that	the	standard	definition	of	supervenience	can	be	characterized

in	terms	of	an	infinitistic	definitional	extension;	thus	neither	can	it	be	said	that	an	EFT	supervenes	(in	this	sense)

on	its	associated	high-energy	theory.

= ∫ Dρei [θ]Seft ei [θ,ρ]S4He
eff

[θ,ρ] = ∫ xS4He d4
L4He
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(24)	Admittedly	this	assumes	that,	whatever	else	reduction	amounts	to,	it	is	essentially	nomic	in	nature.

(25)	Batterman's	(2002,	78)	example	is	the	reduction	of	special	relativity	to	classical	mechanics	in	the	limit	ν/c	→	0,

where	ν	is	the	velocity	of	a	given	physical	system	and	c	is	the	speed	of	light.

(26)	See	Stone	(2000,	204)	for	the	condensed	matter	context.	The	bare	parameters	are	the	parameters	of	the

theory	before	rescaling	is	performed	to	restore	the	cutoff	back	to	its	initial	value	after	one	iteration	of	the	RG

transformations.	The	renormalized	parameters	are	the	rescaled	parameters.
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Abstract	and	Keywords

This	chapter	addresses	the	problem	in	applied	mathematics	and	physics	concerning	the	behavior	of	materials	that

display	radically	different,	dominant	behaviors	at	different	length	scales.	It	offers	strategies	for	upscaling	from

theories	or	models	at	small	scales	to	those	at	higher	scales,	and	discusses	the	philosophical	consequences	of

having	to	consider	structures	that	appear	at	scales	intermediate	between	the	micro	and	the	macro.	The	chapter

also	considers	why	the	Navier-Cauchy	equations	for	isotropic	elastic	solids	work	so	well	in	describing	the	bending

behavior	of	steel	beams	at	the	macroscale.

Keywords:	applied	mathematics,	physics,	behavior	of	materials,	philosophical	consequences,	Navier-Cauchy	equations,	elastic	solids,	steel	beams,

macroscale

1.	Introduction

In	this	essay	I	will	focus	on	a	problem	in	physics	and	applied	mathematics.	This	is	the	problem	of	modeling	across

scales.	Many	systems,	say	a	steel	girder,	manifest	radically	different,	dominant	behaviors	at	different	length	scales.

At	the	scale	of	meters,	we	are	interested	in	its	bending	properties,	its	buckling	strength,	etc.	At	the	scale	of

nanometers	or	smaller,	it	is	composed	of	many	atoms,	and	features	of	interest	include	lattice	properties,	ionic

bonding	strengths,	etc.	To	design	advanced	materials	(such	as	certain	kinds	of	steel),	materials	scientists	must

attempt	to	deal	with	physical	phenomena	across	10+	orders	of	magnitude	in	spatial	scales.	According	to	a	recent

(2006)	NSF	research	report,	this	“tyranny	of	scales”	renders	conventional	modeling	and	simulation	methods

useless	as	they	are	typically	tied	to	particular	scales	(Oden	2006,	p.	29).	“Confounding	matters	further,	the

principal	physics	governing	events	often	changes	with	scale,	so	the	models	themselves	must	change	in	structure

as	the	ramifications	of	events	pass	from	one	scale	to	another”	(Oden,	pp.	29–30).	Thus,	even	though	we	often

have	good	models	for	material	behaviors	at	small	and	large	scales,	it	is	often	hard	to	relate	these	scale-based

models	to	each	other.	Macroscale	models	represent	the	integrated	effects	of	very	subtle	factors	that	are	practically

invisible	at	the	smallest,	atomic,	scales.	For	this	reason	it	has	been	notoriously	difficult	to	model	realistic	materials

with	a	simple	bottom-up-from-the-atoms	strategy.	The	widespread	failure	of	that	strategy	forced	physicists

interested	in	overall	macro-behavior	of	materials	toward	completely	top-down	modeling	strategies	familiar	from

traditional	continuum	mechanics.

A	response	to	the	problem	of	the	“tyranny	of	scales”	would	attempt	to	exploit	our	rather	rich	knowledge	of

intermediate	micro-	(or	meso-)	scale	behaviors	in	a	manner	that	would	allow	us	to	bridge	between	these	two

dominant	methodologies.	Macroscopic	scale	behaviors	often	fall	into	large	common	classes	of	behaviors	such	as

the	class	of	isotropic	elastic	solids,	characterized	by	two	phenomenological	parameters—so-called	elastic	moduli.

Can	we	employ	knowledge	of	lower	scale	behaviors	to	understand	this	universality—to	determine	the	moduli	and	to

group	the	systems	into	classes	exhibiting	similar	behavior?	This	is	related	to	engineering	concerns	as	well:	Can	we

employ	our	smaller	scale	knowledge	to	better	design	systems	for	optimal	macroscopic	performance
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characteristics?

The	great	hope	that	has	motivated	a	lot	of	recent	research	into	so-called	“homogenization	theory”	arises	from	a

conviction	that	a	“between-scales”	point	of	view,	such	as	that	developed	by	Kadanoff,	Fisher,	and	Wilson	in	the

renormalization	group	approach	to	critical	phenomena	in	fluids	and	magnets,	may	very	well	be	the	proper

methodological	strategy	with	which	to	begin	to	overcome	the	tyranny	of	scales.	A	number	of	philosophers	have

recently	commented	on	the	renormalization	group	theory,	but	I	believe	their	focus	has	overlooked	what	is	truly

novel	about	the	methodological	perspective	that	the	theory	employs.

Philosophical	discussions	of	the	applicability	of	mathematics	to	physics	have	not,	in	my	opinion,	paid	sufficient

attention	to	contemporary	work	on	this	problem	of	modeling	across	scales.	In	many	instances,	philosophers	hold

on	to	some	sort	of	ultimate	reductionist	picture:	whatever	the	fundamental	theory	is	at	the	smallest,	basic	scale,	it

will	be	sufficient	in	principle	to	tell	us	about	the	behavior	of	the	systems	at	all	scales.	Continuum	modeling	on	this

view	represents	an	idealization—as	Feynman	has	said,“a	smoothed-out	imitation	of	a	really	much	more

complicated	microscopic	world”	(Feynman,	Leighton,	and	Sands	1964,	p.	12).	Furthermore,	the	suggestion	is	that

such	models	are	in	principle	eliminable.

There	is	a	puzzle	however.	Continuum	model	equations	such	as	the	Navier-Stokes	equations	of	hydrodynamics	or

the	equations	for	elastic	solids	work	despite	the	fact	that	they	completely	(actually,	almost	completely—this	is

crucial	to	the	discussion	below)	ignore	small	scale	or	atomistic	details	of	various	fluids.	The	recipe	(I	call	it	“Euler's

continuum	recipe”)	by	which	we	construct	continuum	models	is	safe:	if	we	follow	it,	we	will	most	always	be	led	to

empirically	adequate	successful	equations	characterizing	the	behavior	of	systems	at	the	macroscopic	level.	Why?

What	explains	the	safety	of	this	recipe?	Surely	this	requires	an	answer.	Surely,	the	answer	must	have	something	to

do	with	the	physics	of	the	modeled	systems	at	smaller	scales.	If	such	an	answer	cannot	be	provided,	we	will	be	left

with	a	kind	of	skepticism:	without	such	an	answer,	we	cannot	expect	anything	like	a	unified	conception	of	applied

mathematics'	use	of	continuum	idealizations. 	If	an	answer	is	forthcoming,	then	we	have	to	face	the	reductionist

picture	mentioned	above.	Will	such	an	answer—an	answer	that	explains	the	robustness	and	safety	of	employing

continuum	modeling—support	the	view	that	continuum	models	are	mere	conveniences,	only	pragmatically	justified,

given	the	powerful	simplifications	gained	by	replacing	large	but	finite	systems	with	infinite	systems?	As	noted,	many

believe	that	a	reductionist/eliminitivist	picture	is	the	correct	one.	I	maintain	that	even	if	we	can	explain	the	safety

and	robustness	of	continuum	modeling	(how	this	can	be	done	is	the	focus	of	this	essay),	the	reductionist	picture	is

mistaken.

It	is	a	mistaken	picture	of	how	science	works.	My	focus	here	is	on	a	philosophical	investigation	that	is	true	to	the

actual	modeling	practices	of	scientists.	(I	am	not	going	to	be	addressing	issues	of	what	might	be	done	in	principle,	if

not	in	practice.)	The	fact	of	the	matter	is	that	scientists	do	not	model	the	macroscale	behaviors	of	materials	using

pure	bottom-up	techniques. 	I	suggest	that	much	philosophical	confusion	about	reduction,	emergence,	atomism,

and	antirealism	follows	from	the	absolute	choice	between	bottom-up	and	top-down	modeling	that	the	tyranny	of

scales	apparently	forces	upon	us.	As	noted,	recent	work	in	homogenization	theory	is	beginning	to	provide	much

more	subtle	descriptive	and	modeling	strategies.	This	new	work	calls	into	question	the	stark	dichotomy	drawn	by

the	“do	it	in	a	completely	bottom-up	fashion”	folks	and	those	who	insist	that	top-down	methods	are	to	be	preferred.

The	next	section	discusses	the	proposal	that	the	use	of	continuum	idealizations	present	no	particular	justificatory

worries	at	all.	Recent	philosophical	literature	has	focused	on	the	role	of	continuum	limits	in	understanding	various

properties	of	phase	transitions	in	physical	systems	such	as	fluids	and	magnets.	Some	authors,	particularly	Jeremy

Butterfield	(2011)	and	John	Norton	(2011),	have	expressed	the	view	that	there	are	no	particularly	pressing	issues

here:	the	use	of	infinite	limits	is	perfectly	straightforwardly	justified	by	appeal	to	pragmatic	considerations.	I	argue

that	this	view	misses	an	important	difference	in	methodology	between	some	uses	of	infinite	limits	and	those	used	by

renormalization	group	arguments	and	homogenization	theory.

In	section	3,	I	present	an	interesting	historical	example	involving	nineteenth	century	attempts	to	derive	the	proper

equations	governing	the	behavior	of	elastic	solids	and	fluids.	A	controversy	raged	throughout	that	century

concerning	the	merits	of	starting	from	bottom-up	atomic	description	of	various	bodies	in	trying	to	arrive	at

empirically	adequate	continuum	equations.	It	turns	out	that	the	bottom-up	advocates	lost	the	debate.	Correct

equations	apparently	could	only	be	achieved	by	eschewing	all	talk	of	atomic	or	molecular	structure,	advocating

instead	a	top-down	approach	supplemented,	importantly,	with	experimentally	determined	data.	In	section	4,	I
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formulate	the	tyranny	of	scales	as	the	problem,	just	mentioned,	of	trying	to	understand	the	connection	between

recipes	for	modeling	at	atomic	scales	(Euler's	discrete	recipe)	and	Euler's	continuum	recipe	appropriate	for

continuum	models.	Finally,	I	present	a	general	discussion	of	work	on	homogenization	that	provides	at	least	the

beginning	of	an	answer	to	the	safety	question	and	to	the	problem	of	bridging	scales	between	the	atomic	and	the

continuum.	This	research	can	be	seen	as	allaying	skeptical	worries	about	a	unified	applied	mathematical

methodology	regarding	the	use	of	continuum	idealizations	of	a	certain	kind.

2.	Steel	Beams,	Scales,	Scientific	Method

Let	us	consider	the	steel	girder	in	a	bit	more	detail.	In	many	engineering	applications	steel	displays	linear	elasticity.

This	is	to	say	that	it	obeys	Hooke's	Law—its	strain	is	linearly	proportional	to	its	stress.	One	phenomenological

parameter	related	to	its	stress/strain	(i.e.,	stiffness)	properties	is	Young's	modulus	appearing	in	the	equations	of

motion	for	solids,	as	well	as	in	equilibrium	and	variational	equations.	At	scales	of	1	meter	to	10	meters,	say,	the

steel	girder	appears	to	be	almost	completely	homogeneous:	zooming	in	with	a	small	microscope	will	reveal	nothing

that	looks	much	different.	In	fact,	there	appears	to	be	a	kind	of	local	scale	invariance	here. 	So	for	behaviors	that

take	place	within	this	range	of	scales,	the	steel	girder	is	well-modeled	or	represented	by	the	Navier-Cauchy

equations:	(1)

The	parameters	λ	and	μ	are	the	“Lamé”	parameters	and	are	related	to	Young's	modulus.

Now	jump	from	this	large-scale	picture	of	the	steel	to	its	smallest	atomic	scale.	Here	the	steel,	for	typical

engineering	purposes,	is	an	alloy	that	contains	iron	and	carbon.	At	this	scale,	the	steel	exhibits	highly	ordered

crystalline	lattice	structures.	It	looks	nothing	like	the	homogeneous	girder	at	the	macroscales	that	exhibits	no

crystalline	structure.	Somehow	between	the	lowest	scale	of	crystals	on	a	lattice	and	the	scale	of	meters	or

millimeters,	the	low-level	ordered	structures	must	disappear.	But	that	suggests	that	properties	of	the	steel	at	its

most	basic,	atomic	level	cannot,	by	themselves,	determine	what	is	responsible	for	the	properties	of	the	steel	at

macroscales.	I	will	discuss	this	in	more	detail	below.

In	fact,	the	story	is	remarkably	complex.	It	involves	appeal	to	various	geometrical	properties	that	appear	at

microscales	intermediate	between	the	atomic	and	the	macro, 	as	well	as	a	number	of	other	factors	such	as

martensitic	transformations. 	The	symmetry	breaking	is	effected	by	a	combination	of	point	defects,	line	defects,	slip

dislocations,	and	higher	dimensional	wall	defects	that	characterize	interfacial	surfaces.	All	of	these	contribute	to

the	homogenization	of	the	steel	we	see	and	manipulate	at	the	macroscale.	And,	of	course,	in	engineering	contexts

the	macro	features	(bending	properties,	for	example)	are	the	most	important—we	do	not	want	our	buildings	or

bridges	to	collapse.

2.1	Reduction,	Limits,	Continuum	Models

A	simpler	case	than	steel	involves	trying	to	connect	the	finite	statistical	mechanical	theory	of	a	fluid	at	the	atomic

scale	to	the	thermodynamic	continuum	theory	at	macro	scales. 	The	relationship	between	statistical	mechanics

and	thermodynamics	has	received	a	lot	of	attention	in	the	recent	philosophical	literature.	Debates	about

intertheoretic	reduction,	its	possibility,	and	its	nature	have	all	appealed	to	examples	from	thermodynamics	and

statistical	mechanics.	Many	of	these	discussions,	in	the	recent	literature,	have	focused	on	the	nature	and	potential

emergence	of	phase	transitions	in	the	so-called	thermodynamic	limit 	(Butterfield	2011a;	Menon	and	Callender

2012;	Belot	2005;	Bangu	2009).	What	role	does	the	thermodynamic	limit	play	in	connecting	theories?	What	role

does	it	play	in	understanding	certain	particular	features	of	thermodynamic	systems?	It	will	be	instructive	to

consider	the	role	of	this	limit	in	a	more	general	context	than	that	typical	of	the	literature.	This	is	the	context	in	which

we	consider	the	generic	problem	of	upscaling	from	atomic	to	laboratory	scales,	as	in	the	case	of	the	steel	girder

discussed	above.	In	doing	this,	I	hope	it	will	become	clear	that	many	of	the	recent	philosophical	discussions	miss

crucial	features	of	the	methodology	of	applying	limits	like	the	thermodynamic	limit.

Before	turning	to	the	debates	about	the	use	of	the	thermodynamic	limit	and	the	justification	of	using	infinite	limits	to

understand	the	goings	on	in	finite	systems,	I	think	it	is	worthwhile	to	step	back	to	consider,	briefly,	some	general

issues	about	theory	reduction.	As	mentioned	above,	many	philosophers	and	physicists	tacitly	(and	sometimes

explicitly)	maintain	some	sort	of	in	principle	reductionist	point	of	view.	I	do	not	deny	that	maybe	in	some	as	yet	to
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be	articulated	sense	there	may	be	an	in	principle	bottom-up	story	to	be	told.	However,	appeals	to	this	possibility

ignore	actual	practices	and	furthermore	are	never	even	remotely	filled	out	in	any	detail.	Typically	the	claim	is

simply:	“The	fundamental	theory	(whatever	it	is,	quantum	mechanics,	quantum	field	theory,	etc.),	because	it	is

fundamental	(whatever	that	ultimately	means),	must	be	able	to	explain/reduce	everything.”

Nagel's	seminal	work	(1961)	considered	the	reduction	of	thermodynamics	to	statistical	mechanics	to	be	a

straightforward	and	paradigm	case	of	intertheoretic	reduction.	On	his	view,	as	is	well	known,	one	derives	the

thermodynamic	laws	from	the	laws	of	statistical	mechanics	employing	so-called	bridge	laws	connecting

terms/predicates	appearing	in	the	reduced	theory	with	those	appearing	in	the	reducing	theory. 	In	several	places

I	have	argued	that	this	Nagelian	strategy	and	its	variants	fail	for	many	cases	of	so-called	reduction	(Batterman

1995,	2002).	I	have	argued	that	a	limiting	sense	of	reduction	in	which,	say,	statistical	mechanics	“reduces	to”

thermodynamics	in	an	appropriate	limit	(if	it	does)	provides	a	more	fruitful	conception	of	intertheoretic	reduction

than	the	Nagelian	strategies	where	the	relation	seems	to	go	the	other	way	around:	on	the	Nagelian	strategies	one

has	it	that	thermodynamics	reduces	to	statistical	mechanics,	in	the	sense	of	deductive	derivation.	There	are	a

number	of	reasons	for	thinking	the	nonNagelian,	“limiting,”	sense	of	reduction	is	a	superior	sense	of	reduction.	For

one,	there	is	the	difficulty	of	finding	the	required	definitional	connections	that	the	bridge	laws	are	meant	to

embody. 	But	in	addition,	the	kinds	of	connections	established	between	theories	by	taking	limits	do	not	appear	to

be	expressible	as	definitional	extensions	of	one	theory	to	another.	In	many	cases,	the	limits	involved	are	singular,

and	even	when	they	are	not,	the	use	of	mathematical	limits	invokes	mathematics	well	beyond	that	expressible	in

the	language	of	first	order	logic—a	characteristic	feature	of	Nagel's	view	of	reduction	and	of	its	neoNagelian

refinements.

Despite	these	arguments	a	number	of	authors	have	recently	tried	to	argue	that	reduction	should	be	understood	in

Nagelian	terms;	that	is,	as	the	definitional	extension	of	one	theory	to	another.	Jeremy	Butterfield	and	Nazim	Bouatta,

for	example,

…take	reduction	as	a	relation	between	theories	(of	the	systems	concerned).	It	is	essentially	deduction;

though	the	deduction	is	usually	aided	by	adding	appropriate	definitions	linking	two	theories'	vocabularies.

This	will	be	close	to	endorsing	the	traditional	philosophical	account	[Nagel's],	despite	various	objections

levelled	against	it.	The	broad	picture	is	that	the	claims	of	some	worse	or	less	detailed	(often	earlier)	theory

can	be	deduced	within	a	better	or	more	detailed	(often	later)	theory,	once	we	adjoin	to	the	latter	some

appropriate	definitions	of	the	terms	in	the	former.	…So	the	picture	is,	with	D	standing	for	the	definitions:

T &D	⇒	T .	In	logicians'	jargon	T 	is	a	definitional	extension	of	T .	(Butterfield	and	Bouatta	2011)

In	the	current	context	the	more	basic,	better	theory	(statistical	mechanics)	is	T 	and	the	reduced,	tainted	theory

(thermodynamics)	is	T .

Butterfield	and	Bouatta	obviously	are	not	moved	by	the	objections	to	the	Nagelian	scheme	that	I	briefly	mentioned

above.	I	suggest	though,	as	we	delve	a	bit	more	deeply	into	the	examples	of	phase	transitions	and	of	the	steel

girder,	that	we	keep	in	mind	the	question	of	whether	the	continuum	account	of	the	bending	behavior	of	the	steel

can	be	reduced	to	the	theory	of	its	atomic	constituents	in	the	sense	that	we	can	derive	that	continuum	behavior

from	the	“better,”	“more	detailed,”	and	“later”	atomic	theory.	Even	if	we	extend	the	logicians'	sense	of	deduction

(as	definitional	extension)	beyond	that	of	first	order	logic	so	as	to	include	inferences	involving	mathematical	limits,

will	such	a	deduction/reduction	be	possible?

So	the	real	question,	as	both	of	these	examples	employ	continuum	limits,	concerns	why	the	use	of	such	limits	is

justified.	The	debate	about	the	justification	of	the	use	of	infinite	limits	and,	ultimately,	about	reduction	concerns

whether	the	appeal	to	limits	can	in	the	end	be	eliminated.	It	is	a	pressing	debate,	because	no	party	thinks	that	at

the	most	fundamental	level,	the	steel	girder	is	a	continuum.	And	no	party	thinks	that	a	tea	kettle	boiling	on	the	stove

contains	an	infinite	number	of	molecules.	What	justifies	our	employing	such	infinite	idealizations	in	describing	and

explaining	the	behaviors	of	those	systems?

For	Butterfield	there	is	a	“Straightforward	Justification”	for	the	use	of	infinite	limits	in	physical	modeling.

This	Justification	consists	of	two	obvious,	very	general,	broadly	instrumentalistic,	reasons	for	using	a	model

that	adopts	the	limit	N	=	∞:	mathematical	convenience,	and	empirical	adequacy	(up	to	a	required

accuracy).	So	it	also	applies	to	many	other	models	that	are	almost	never	cited	in	philosophical	discussions
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of	emergence	and	reduction.	In	particular,	it	applies	to	the	many	classical	continuum	models	of	fluids	and

solids,	that	are	obtained	by	taking	a	limit	of	a	classical	atomistic	model	as	the	number	of	atoms	N	tends	to

infinity	(in	an	appropriate	way,	e.g.	keeping	the	mass	density	constant).	(2011,	p.	1080)

He	continues	by	emphasizing	two	“themes”	common	to	the	use	of	many	different	infinite	models:

The	first	theme	is	abstraction	from	finitary	effects.	That	is:	the	mathematical	convenience	and	empirical

adequacy	of	many	such	models	arises,	at	least	in	part,	by	abstracting	from	such	effects.	Consider	(a)	how

transient	effects	die	out	as	time	tends	to	infinity;	and	(b)	how	edge/boundary	effects	are	absent	in	an

infinitely	large	system.

The	second	theme	is	that	the	mathematics	of	infinity	is	often	much	more	convenient	than	the	mathematics

of	the	large	finite.	The	paradigm	example	is	of	course	the	convenience	of	the	calculus:	it	is	usually	much

easier	to	manipulate	a	differentiable	real	function	than	some	function	on	a	large	discrete	subset	of	ℝ	that

approximates	it.	(2011,	p.	1081)

The	advantages	of	these	themes	are,	according	to	Butterfield,	twofold.	First,	it	may	be	easier	to	know	or	determine

the	limit's	value	than	the	actual	value	primarily	because	of	the	removal	of	boundary	and	edge	effects.	Second,	in

many	examples	of	continuum	modeling	we	have	a	function	defined	over	the	finite	collection	of	atoms	or	lattice	sites

that	oscillates	or	fluctuates	and	so	can	take	on	many	values.	In	order	to	employ	the	calculus	we	often	need	to

“have	each	value	of	the	function	defined	as	a	limit	(namely,	of	values	of	another	function)”	(pp.	1081–82).

Butterfield	seems	to	have	in	mind	the	standard	use	of	averaging	over	a	“representative	elementary	volume”

(REV) 	and	then	taking	limits	N	→	∞,	volume	going	to	zero,	so	as	to	identify	a	continuum	value	for	a	property	on

the	macroscale.	In	fact,	he	cites	continuum	models	of	solids	and	fluids	as	paradigm	examples:

For	example,	consider	the	mass	density	varying	along	a	rod,	or	within	a	fluid.	For	an	atomistic	model	of	the

rod	or	fluid,	that	postulates	N	atoms	per	unit	volume,	the	average	mass-density	might	be	written	as	a

function	of	both	position	x	within	the	rod	or	fluid,	and	the	side-length	L	of	the	volume	L 	centred	on	x,	over

which	the	mass	density	is	computed:	f(N,x,L).	Now	the	point	is	that	for	fixed	N,	this	function	is	liable	to	be

intractably	sensitive	to	x	and	L.	But	by	taking	a	continuum	limit	N	→	∞,	with	L	→	0	(and	atomic	masses

going	to	zero	appropriately	so	that	quantities	like	density	do	not	“blow	up”),	we	can	define	a	continuous,

maybe	even	differentiable,	mass-density	function	ρ(x)	as	a	function	of	position—and	then	enjoy	all	the

convenience	of	the	calculus.

So	much	by	way	of	showing	in	general	terms	how	the	use	of	an	infinite	limit	N	=	∞	can	be	justified—but	not

mysterious!	At	this	point,	the	general	philosophical	argument	of	this	paper	is	complete!	(p.	1082)

So	for	Butterfield	most	of	the	discussions	concerning	the	role,	and	particularly	the	justification,	of	the	use	of	the

thermodynamic	limit	in	the	debates	about	phase	transitions	have	generated	a	lot	of	hot	air.	The	justification,	on	his

view,	for	employing	such	limits	in	our	modeling	strategies	is	largely	pragmatic—for	the	sake	of	convenience.	In

addition,	there	is,	as	he	notes,	the	further	concern	that	the	use	of	such	limits	be	empirically	adequate—getting	the

phenomena	right	to	within	appropriate	error	bounds.	Much	of	his	discussion	concerns	showing	that	the	use	of	such

limits	can	most	always	be	shown	to	be	empirically	adequate	in	this	sense	(Butterfield	2011).	Unfortunately,	I	think

that	sometimes	things	are	more	subtle	than	the	straightforward	justification	admits.	In	fact,	there	are	good	reasons

to	think	that	the	use	of	the	thermodynamic	limit	in	the	context	of	the	renormalization	group	(RG)	explanation	of

critical	phenomena—one	of	the	cases	he	highlights—fails	to	be	justified	by	his	own	criteria.	It	is	a	different

methodology,	one	that	does	not	allow	for	the	sort	of	justificatory	story	just	told.	The	straightforward	story	as

described	above	cannot	be	told	for	the	RG	methodology	for	the	simple	reason	that	that	story	fails	to	be	empirically

adequate	in	those	contexts.

One	can	begin	to	understand	this	by	making	a	distinction	between	what	might	be	called	“ab	initio”	and	“post	facto”

computational	strategies.	Butterfield's	remarks	about	the	mass	density	in	a	rod	(say	a	steel	girder)	in	one	sense

appear	to	endorse	the	ab	initio	strategy.	Consider	a	model	of	the	rod	at	the	scale	of	atoms	where	the	atoms	lock

together	on	a	crystal	lattice.	The	limit	averaging	strategy	has	us	increase	the	size	of	the	lattice	until	we	have,	in

effect,	a	perfect	crystal	of	infinite	extent.	This	lets	us	ignore	boundary	effects	as	he	notes.	The	limiting	average

density	that	we	arrive	at	using	this	ab	initio	(atomic	only)	strategy	will	actually	be	grossly	incorrect	at	higher	scales.

This	is	because,	at	higher	micro	(meso)	scales	real	iron	contains	many	structures	such	as	dislocations,	grain
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boundaries,	and	other	metastabilities	that	form	within	its	mass	and	that	energetically	allow	local	portions	of	the

material	at	these	higher	scales	to	settle	into	stable	modes	with	quite	different	average	densities.	See	figure	7.1.

These	average	densities	will	be	quite	different	than	the	ab	initio	calculations	from	the	perfect	crystal.	What	special

features	hidden	within	the	quantum	chemistry	of	iron	bond	allow	those	structures	to	form?	We	really	don't	know.	But

until	we	gain	some	knowledge	of	how	those	structures	emerge,	we	will	not	be	able	accurately	to	determine

computationally	the	bulk	features	of	steel	girders	in	the	way	described.	Values	for	Young's	modulus	and	fracture

strength	that	we	may	try	determine	on	the	basis	of	this	ab	initio	reasoning	will	be	radically	at	variance	with	the

actual	measured	values	for	real	steel.

On	the	other	hand,	if	we	possessed	a	realistic	model	of	steel	at	all	length	scales,	then	we	could	conceivably	define

a	simple	average	over	a	representative	volume	(at	a	much	higher	scale	than	the	atomic).	But	this	post	facto

calculation	would	rely	upon	complete	data	about	the	system	at	all	scales.	No	limits	would	be	involved	whatsoever.

Perhaps	some	super	genius	may	someday	in	principle	propose	an	incredibly	detailed	model	of	iron	bonding	that

would	allow	the	calculation	of	the	macro	parameters	like	Young's	modulus	in	a	kind	of	ab	initio	mode	imagined	by

Butterfield,	but	such	a	hypothetical	project	is	certainly	not	the	aim	of	the	RG	techniques	that	are	under

consideration	here.

Figure	7.1 	Microstructures	of	steel

Such	ab	initio	calculations	provide	wrong	answers	because	they	cannot	“see”	the	energetically	allowed	local

structural	configurations	that	steel	manifests	at	larger	scales.	On	the	other	hand,	if	we	are	investigating	materials

that	(for	whatever	reason)	display	nice	scaling	relationships	across	some	range	of	scales	(as	steel	does	for	scales

8–10	orders	of	magnitude	above	the	atomic),	then	we	will	be	able	to	employ	RG	type	techniques	to	determine	the

various	universality	classes	(characterized	by	the	phenomenological	parameters—Young's	modulus,	e.g.)	into

which	they	must	fall.	Thus	the	RG	methodology,	unlike	the	ab	initio	REV	averaging	strategy,	provides	a	rationale	for

evading	extreme	bottom-up	computations	so	as	to	gain	an	understanding	of	why	steel,	for	example,	only	requires	a

few	effective	parameters	to	describe	its	behavior	at	macroscales.

While	there	surely	are	cases	in	which	averaging	is	appropriate,	and	the	straight-forward	justification	may	be

plausible,	there	are	other	cases,	as	I	have	been	arguing,	in	which	it	is	not.	In	order	to	further	elucidate	this	point,	I

will	say	a	bit	about	what	the	RG	argument	aims	to	do.	I	will	then	give	a	very	simple	example	of	why	one	should,	in
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many	instances,	expect	the	story	involving	averaging	over	a	representative	volume	element	(REV)	to	fail.	In	fact,

the	failure	of	this	story	is	effectively	the	motivation	behind	Wilson's	development	of	the	distinct	RG	methodology.

More	generally,	if	our	concern	is	to	understand	why	continuum	models	such	as	the	Navier-Cauchy	equation	are

safe	and	robust,	the	straightforward	justification	will	miss	what	is	most	crucial.

I	have	discussed	the	RG	in	several	publications	(Batterman	2002;	2005;	2011).	Butterfield	(2011)	and	Butterfield

and	Bouatta	(2011)	present	concise	descriptions	as	well.	For	the	purposes	here,	as	noted	earlier,	I	am	going	to

present	some	of	the	details	with	a	different	emphasis	than	these	other	discussions	have	provided.	In	particular,	I

want	to	stress	the	role	of	the	RG	as	part	of	a	methodology	for	upscaling	from	a	statistical	theory	to	a

hydrodynamic/continuum	theory.	In	so	doing,	I	follow	a	suggestion	of	David	Nelson	(2002,	pp.	3–4)	who	builds	on	a

paper	of	Ken	Wilson	(1974).	The	suggestion	is	that	entire	phases	of	matter	(not	just	critical	phenomena)	are	to	be

understood	as	determined	by	a	“fixed	point”	reflecting	the	fact	that	“universal	physical	laws	[are]	insensitive	to

microscopic	details”	(2002,	p.	3).	Specifically,	the	idea	is	to	understand	how	details	of	the	atomic	scale	physics	get

encoded	(typically)	into	a	few	phenomenological	parameters	that	appear	in	the	continuum	equations	governing	the

macroscopic	behavior	of	the	materials.	In	a	sense,	these	phenomenological	parameters	(like	viscosity	for	a	fluid,

and	Young's	modulus	for	a	solid)	characterize	the	appropriate	“fixed	point”	that	defines	the	class	of	material

exhibiting	universal	behavior	despite	potentially	great	differences	in	microscale	physics.

Let	us	consider	a	ferromagnet	modeled	as	a	set	of	classical	spins	σ 	on	a	lattice—the	Ising	model.	In	this	model,

neighboring	spins	tend	to	align	in	the	same	direction	(either	up	or	down:	σ 	=	±1).	Further,	we	might	include	the

effect	of	an	external	magnetic	field	B.	Then	the	Hamiltonian	for	the	Ising	model	is	given	by

with	the	first	sum	over	nearest	neighbor	pairs	of	spins,	μ	is	a	magnetic	moment.	A	positive	value	for	the	coupling

constant	J	reflects	the	fact	that	neighboring	spins	will	tend	to	be	aligned,	both	up	or	both	down.

Figure	7.2 	Spontaneous	magnetization	at	T

For	ferromagnets	we	can	define	an	order	parameter—a	function	of	the	net	magnetization	for	the	system—whose

derivative	exhibits	a	discontinuity	or	jump	at	the	so-called	critical	or	Curie	temperature,	T .	Above	T ,	in	zero

magnetic	field,	the	spins	are	not	correlated	due	to	thermal	fluctuations	and	so	the	net	magnetization	is	zero.	As	the

system	cools	down	to	the	Curie	temperature,	there	is	singularity	in	the	magnetization	(defined	as	a	function	of	the

free	energy).	(See	figure	7.2.)	The	magnetization	exhibits	power	law	behavior	near	that	singularity	characterized

by	the	relation

where	t	is	the	reduced	temperature	 .	It	is	a	remarkable	fact	that	physically	quite	distinct	systems—magnets

modeled	by	different	Hamiltonians,	and	even	fluids	(whose	order	parameter	is	the	difference	between	vapor	and

liquid	densities	in	a	container)—all	exhibit	the	same	power	law	scaling	near	their	respective	critical	points:	The

number	β	is	universal	and	characterizes	the	phenomenological	behavior	of	a	wide	class	of	systems	at	and	near

criticality.

The	RG	provides	an	explanation	for	this	universal	behavior;	and	in	particular,	it	allows	one	theoretically	to

i
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determine	the	value	for	the	exponent	β.	For	the	3-dimensional	Ising	model,	that	theoretical	value	is

approximately.33.	Experimentally	determined	values	for	a	wide	class	of	fluids	and	magnets	are	found	in	the

range.31–.36.	So-called	“mean	field”	calculations	predict	a	value	of	.5	for	β	(Wilson	1974,	p.	120).	A	major	success

of	the	RG	was	its	ability	to	correct	mean	field	theory	and	yield	results	in	close	agreement	with	experiment.	In	a

mean	field	theory,	the	order	parameter	M	is	defined	to	be	the	magnetic	moment	felt	at	a	lattice	site	due	to	the

average	over	all	the	spins	on	the	lattice.	This	averaging	ignores	any	large-scale	fluctuations	that	might	(and,	in

fact,	are)	present	in	systems	near	their	critical	points.	The	RG	corrects	this	by	showing	how	to	incorporate

fluctuations	at	all	length	scales,	from	the	atomic	to	the	macro,	that	play	a	role	in	determining	the	macroscopic

behavior	(specifically	the	power	law	dependence—M	α	\t\ )	of	the	systems	near	criticality.	In	fact,	near	criticality

the	lattice	system	will	contain	“bubbles”	(regions	of	correlated	spins—all	up	or	all	down)	of	all	sizes	from	the	atomic

to	the	system	size.	As	Kadanoff	notes,	“[f]rom	this	picture	we	conclude	that	critical	phenomena	are	connected	with

fluctuations	over	all	length	scales	between	ξ	[essentially	the	system	size]	and	the	microscopic	distance	between

particles”	(Kadanoff	1976,	p.	12).

So	away	from	criticality,	below	the	critical	temperature,	say,	the	lattice	systems	will	look	pretty	much

homogeneous. 	For	a	system	with	T	≪	T 	in	figure	7.2	we	would	have	relatively	large	correlated	regions	of	spins

pointing	in	the	same	direction.	There	might	be	only	a	few	insignificantly	small	regions	where	spins	are	correlated	in

the	opposite	direction.	This	is	what	is	responsible	for	there	being	a	positive,	nonzero,	value	for	M	at	that

temperature.	Now	suppose	we	were	interested	in	describing	a	large	system	like	this	away	from	criticality	using	the

continuum	limit	as	understood	by	Butterfield	above.	We	would	choose	a	representative	elementary	volume	of

radius	L	around	a	point	x.	The	volume	is	small	with	respect	to	the	system	size	ξ,	but	still	large	enough	to	contain

many	spins.	Next	we	would	average	the	quantity	M(N,x,L)	over	that	volume	and	take	the	limits	N	→	∞,	L	→	0	so	as

to	obtain	the	proper	continuum	value	and	so	that	we	would	be	able	to	model	the	actually	finite	collection	of	spins

using	convenient	continuum	mathematics.

But	near	the	critical	temperature	(near	T )	the	system	will	look	heterogeneous—exhibiting	a	complicated	mixture	of

two	distinct	phases	as	in	figure	7.3.	Now	we	face	a	problem.	In	fact,	it	is	the	problem	that	effectively	undermined

the	mean	field	approach	to	critical	phenomena.	The	averaging	method	employing	a	representative	elementary

volume	element	misses	what	is	most	important.	For	one	thing,	we	will	need	to	know	how	to	weight	the	different

phases	as	to	their	import	for	the	macroscopic	behavior	of	the	system.	In	other	words,	were	we	to	perform	the	REV

averaging,	all	of	the	physics	of	the	fluctuations	responsible	for	the	coexisting	bubbles	of	up	spins	and	bubbles	of

down	spins	would	be	ignored.

Here	is	a	simple	example	to	see	why	this	methodology	will	often	fail	for	heterogeneous	systems	(Torquato	2002,	p.

11).	Consider	a	composite	material	consisting	of	equal	volumes	of	two	materials,	one	of	which	is	a	good	electrical

conductor	and	one	of	which	is	not.	A	couple	of	possible	configurations	are	shown	in	figure	7.4.

Suppose	that	the	dark,	connected	phase	is	the	good	conductor.	If	we	were	to	proceed	using	the	REV	recipe,	then,

because	the	volume	fractions	are	the	same,	we	would	grossly	underestimate	the	bulk	conductivity	of	the	material

in	the	left	configuration	and	grossly	underestimate	its	bulk	insulating	capacities	in	the	right	configuration.	REV

averaging	treats	only	the	volume	fraction	and	completely	misses	microstructural	details	that	are	relevant	to	the

bulk	(macroscale)	behavior	of	the	material.	In	this	simple	example,	the	microstructural	feature	that	is	relevant	is	the

topological	connectedness	of	the	one	phase	vs.	the	other—that	is,	the	details	about	the	boundaries	between	the

two	phases.	Note	that	the	fact	that	boundaries	play	an	important	role	serves	to	undermine	the	first	“theme”	of	the

Straightforward	Justification	for	the	use	of	limits;	namely,	that	taking	the	limits	enable	us	to	remove	edge	and

boundary	effects.	To	the	contrary,	these	can	and	do	play	very	important	roles	in	determining	the	bulk	behavior	of

the	materials.

β
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Figure	7.3 	Bubbles	within	bubbles	within	bubbles	…(after	Kadanoff	1976,	pp.	11–12)

Figure	7.4 	50–50	volume	mixture

One	might	object	that	all	one	needs	to	do	to	save	the	REV	methodology	would	be	to	properly	weight	the con-

tribution	of	the	different	phases	to	the	overall	average.	But	this	is	not	something	that	one	can	do	a	priori	or through	

ab	initio	calculations	appealing	to	details	and	properties	of	the	individual	atoms	at	the	atomic	scale.	Even worse,	

note	the	partial	blobs	at	the	corners	marked	by	the	arrows	in	figure	7.4.	How	large	are	the	complete	blobs	of which	

they	are	a	part?	We	do	not	know	because	the	limited	scale	of	the	window	(size	L	of	the	REV)	does	not	allow us	to	

“see”	what	is	happening	at	large	scales.	It	is	entirely	possible	(and	in	the	case	of	critical	phenomena	actually the	

case)	that	these	partial	blobs	will	be	part	of	larger	connected	regions	only	visible	at	greater	scale	lengths.	They

may	be	dreaded	invaders	from	a	higher	scale. 	If	such	invaders	are	present,	then	we	have	another	reason	to	be

wary	of	limiting	REV	averaging	methods—we	will	grossly	fail	to	estimate	the	effective	conductivity	of	the	material	at

macroscales.	On	the	other	hand,	if	we	have	some	nice	scaling	data	about	the	behavior	of	material	of	the	sort

exploited	by	the	RG,	we	may	well	gain	enough	of	a	handle	on	the	material's	overall	behavior	to	place	its

conductivity	in	a	firm	universality	class	with	other	materials	that	scale	in	similar	ways.

As	noted	above,	in	more	complicated	situations,	such	as	the	steel	girder	with	which	we	began,	microstructural

features	include	mesoscale	dislocations,	defects	of	various	kinds,	and	martensitic	transformations.	If	we	engaged

in	a	purely	bottom-up	lattice	view	about	steel,	paying	attention	only	to	the	structures	for	the	pure	crystal	lattice,

then	we	would	get	completely	wrong	estimates	for	its	total	energy,	for	its	average	density,	and	for	its	elastic

properties.	The	relevant	Hamiltonians	require	terms	that	simply	do	not	appear	at	the	smallest	scales.

The	upshot,	then,	is	that	the	straightforward	justification	for	the	use	of	infinite	limits	will	miss	exactly	what	is

important	for	understanding	what	is	going	on	for	systems	at	and	near	criticality.	There,	they	no	longer	appear

homogeneous	across	a	large	range	of	scales.	If	we	are	to	try	to	connect	(and	thereby	extract)	correct phe-

nomenological	macroscopic	values	for	appropriate	parameters	(e.g.,	β)	we	need	to	consider	structures	that

exist	at	scales	greater	than	the	fundamental/basic/atomic.	Again,	what	does	this	say	about	the	prospects	for	an

overall	reductionist	understanding	of	the	physics	of	systems	viewed	at	macroscales?

The	RG	considers	such	intermediate	scales	by	including	in	the	calculations	the	effects	of	fluctuations	or equivalent-

ly,	the	fact	that	bubbles	within	bubbles	of	different	phases	appear	near	criticality.	We	need	methods	that tell	us	

how	to	homogenize	heterogeneous	materials.	In	other	words,	to	extract	a	continuum	phenomenology,	we need	a	

methodology	that	enables	us	to	upscale	models	of	materials	that	are	heterogeneous	at	small	scales	to those	that	

are	homogeneous	at	macroscales,	as	is	evidenced	by	the	fact	that	only	a	very	small	number	of phenomenological	

parameters	are	required	to	characterize	their	continuum	level	behaviors.	It	appears,	then,	that the	straightforward	

justification	of	the	use	of	continuum	limits	needs	to	be	reconsidered	or	replaced	in	those
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contexts	where	the	materials	of	interest	exhibit	heterogeneous	microstructures.

In	section	5	I	will	say	a	bit	more	about	the	nature	and	generality	of	this	different	methodology.	In	the	next	section,	I

present	a	historical	discussion,	one	aim	of	which	is	to	illustrate	that	this	debate	about	modeling	across	scales	is

not,	in	the	least	bit,	new.	Furthermore,	the	discussion	should	give	pause	to	those	who	think	continuum	models	are

ultimately	unnecessary.	This	is	the	story	of	deriving	appropriate	continuum	equations	for	the	behavior	of	elastic

solids	and	gave	rise	to	a	controversy	that	lasted	for	most	of	the	nineteenth	century.

3.	Bridging	across	Scales:	A	Historical	Controversy

Why	are	the	Navier-Stokes	equations	named	after	Navier	and	Stokes?	The	answer	is	not	as	simple	as	“they	both,

independently,	arrived	at	the	same	equation.”	In	fact,	there	are	differences	between	the	equation	Navier	first	came

up	with	and	that	derived	by	Stokes.	The	differences	relate	to	the	assumptions	that	each	employed	in	his	derivation,

but	more	importantly,	these	different	assumptions	actually	led	to	different	equations.	Furthermore,	the	difference

between	the	equations	was	symptomatic	of	a	controversy	that	lasted	for	most	of	the	nineteenth	century	(de	Boer

2000,	p.	86).

While	the	Navier-Stokes	equation	describes	the	behavior	of	a	viscous	fluid,	the	controversy	has	its	roots	in	the

derivation	of	equations	for	the	behavior	of	an	elastic	solid.	I	intend	to	focus	on	the	latter	equations	and	only	at	the

end	make	some	remarks	about	the	fluid	equations.

The	controversy	concerned	the	number	of	material	constants	that	were	required	to	describe	the	behavior	of	elastic

solids.	According	to	Navier's	equation,	a	single	constant	marked	a	material	as	isotropic	elastic.	According	to	Stokes

and	Green,	two	constants	were	required.	For	anisotropic	elastic	materials	(where	symmetries	cannot	be	employed)

the	debate	concerned	whether	the	number	of	necessary	constants	was	15	or	21.	This	dispute	between,

respectively,	“rari-constancy”	theorists	and	“multi-constancy”	theorists	depended	upon	whether	one's	approach

to	the	elastic	solid	equations	started	from	a	hypothesis	to	the	effect	that	solids	are	composed	of	interacting

molecules	or	from	the	hypothesis	that	solids	are	continuous.

Navier's	derivation	began	from	the	hypothesis	that	the	deformed	state	of	an	elastic	body	was	to	be	understood	in

terms	of	forces	acting	between	individual	particles	or	molecules	that	make	up	the	body.	Under	this	assumption,

he	derived	equations	containing	only	one	material	constant	ε.

Navier's	equations	for	an	elastic	solid	are	as	follows	(de	Boer	2000,	p.	80):	(2)

(3)

(4)

Here	ε,	Navier's	material	constant,	reflects	the	molecular	forces	that	are	supposed	to	turn	on	when	external	forces

are	applied	to	the	body.	x,	y,	z	are	the	coordinates	representing	the	location	of	a	material	point	in	the	body. 	u,

v,	w	are	the	displacement	components	in	the	directions	x,	y,	z;	X,	Y,	Z	represent	the	external	accelerations

(forces)	in	the	directions	x,	y,	z;	 	is	the	Laplace	operator;	 	is	the

volume	strain;	and	ρ	is	the	material	density.

Cauchy	also	derived	an	equation	for	isotropic	elastic	materials	by	starting	from	a	molecular	hypothesis	similar	to

Navier's.	However,	his	equation	contains	the	correct	number	of	material	constants	(two).	It	is	instructive	to	write

down	Cauchy's	equations	and	to	discuss	how,	essentially,	a	mistaken,	inconsistent	derivational	move	on	his	part

yielded	a	more	accurate	set	of	equations	than	Navier.
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Cauchy's	equations	for	an	elastic	solid	are	as	follows	(de	Boer	2000,	p.	81)	(compare	with	equation	(1)):	(5)

(6)

(7)

R,	A	are	the	two	material	constants.	Cauchy	noted,	explicitly,	that	when	A	=	0	his	equations	agree	with	Navier's

when	R	=	ε 	(de	Boer	2000,	p.	81).	How	did	Cauchy	arrive	at	a	different	equation	than	Navier,	despite	starting,

essentially,	from	the	same	molecular	assumptions	about	forces?	He	did	so	by	assuming	that,	despite	the	fact	that

he	is	operating	under	the	molecular	hypothesis,	he	can,	in	his	derivation	replace	certain	summations	by

integrations.	In	effect,	he	actually	employs	a	continuum	condition	contradictory	to	his	fundamental	starting

assumption.

George	Green,	in	1839,	published	a	study	that	arrived	at	the	correct	equations—essentially	(5)–(7)—by	completely

eschewing	the	molecular	hypothesis.	He	treated	the	entire	body	as	composed	of	“two	indefinitely	extended	media,

the	surface	of	junction	when	in	equilibrium	being	a	plane	of	infinite	extent.” 	He	also	assumed	that	the	material

was	not	crystalline	and,	hence,	isotropic.	Then	using	a	principle	of	the	conservation	of	energy/work	he	derived,

using	variational	principles	of	Lagrangian	mechanics,	his	multi-constant	equation.

Finally,	following	the	discussion	of	Todhunter	and	Pearson	(1960),	we	note	that	Stokes's	work	supported	the	multi-

constancy	theory	in	that	he	was	able	to	generalize	his	equations	for	the	behavior	of	viscous	fluids	to	the	case	of

elastic	solids	by	making	no	distinction	between	a	viscous	fluid	and	a	solid	undergoing	permanent—plastic—

deformation.	“He	in	fact	draws	no	line	between	a	plastic	solid	and	a	viscous	fluid.	The	formulae	for	the	equilibrium

of	an	isotropic	plastic	solid	would	thus	be	bi-constant”	(Todhunter	and	Pearson	1960,	p.	500).	This	unification	of

continuum	equations	lends	further	support	to	the	multi-constancy	theory.

The	historical	debate	represents	just	the	tip	of	the	iceberg	of	the	complexity	surrounding	both	theoretical	and

experimental	work	on	the	behavior	of	the	supposedly	simpler,	isotropic,	cases	of	elastic	solids.	Nevertheless,	the

multi-constancy	theory	wins	the	day	for	appropriate	classes	of	structures.	And,	derivations	that	start	from	atomic

assumptions	fail	to	arrive	at	the	correct	theory.	It	seems	that	here	may	very	well	be	a	case	where	a	continuum

point	of	view	is	actually	superior:	bottom-up	derivation	from	atomistic	hypotheses	about	the	nature	of	elastic	solid

bodies	fails	to	yield	correct	equations	governing	the	macroscopic	behavior	of	those	bodies.	There	are	good

reasons,	already	well	understood	by	Green	and	Stokes,	for	eschewing	such	reductionist	strategies.

This	controversy	is	important	for	the	current	project	for	the	following	reason.	Green	and	Stokes	were	moved	by	the

apparent	scaling	or	homogeneity	observed	in	elastic	solids	and	fluids.	That	is,	as	one	zooms	in	with	reasonable

powerful	microscopes	one	sees	the	steel	to	be	the	same	at	different	magnifications;	likewise	for	the	fluid.	Green

and	Stokes	then	extrapolated	this	scale	invariance	to	hold	at	even	larger	magnifications—at	even	smaller	scales.

We	now	know	(and	likely	they	suspected)	that	this	extrapolation	is	not	valid	beyond	certain	scale	lengths—the

atomistic	nature	of	the	materials	will	begin	to	show	itself.	Nevertheless,	the	continuum	modeling	was	dramatically

successful	in	that	it	predicted	the	correct	number	and	the	correct	character	of	the	phenomenological	constants.

De	Boer	reflects	on	the	reasons	for	why	this	controversy	lasted	so	long	and	was	so	heated:

Why	was	so	much	time	spent	on	molecular	theory	considerations,	in	particular,	by	the	most	outstanding

mechanics	specialists	and	mathematicians	of	the	epoch?	One	of	the	reasons	must	have	been	the

temptation	of	gaining	the	constitutive	relation	for	isotropic	and	anisotropic	elastic	continua	directly	from

pure	mathematical	studies	and	simple	mechanical	principles; 	It	was	only	later	realized	that	Hooke's

generalized	law	is	an	assumption,	and	that	the	foundation	of	the	linear	relation	had	to	be	supported	by

experiments.	(2000,	pp.86–87)
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The	upshot	of	this	discussion	is	reflected	in	de	Boer's	emphasis	that	the	constitutive	equations	or	special	force	laws

(Hooke's	law)	are	dependent,	for	their	very	form,	on	experimental	results.	So	a	simple	dismissal	of	continuum

theories	as	“in	principle”	eliminable,	as	reducible,	and	merely	pragmatically	justified,	is	mistaken.	Of	course,	the

phenomenological	parameters,	like	Young's	modulus	(related	to	Navier's	ε),	must	encode	details	about	the	actual

atomistic	structure	of	elastic	solids.	But	it	is	naive,	indeed,	to	think	that	one	can,	in	any	straightforward	way	derive

or	deduce	from	atomic	facts	what	are	the	phenomenological	parameters	required	for	continuum	model	of	a	given

material.	It	is	probably	even	more	naive	to	think	that	one	will	be	able	to	derive	or	deduce	from	those	atomic	facts

what	are	the	actual	values	for	those	parameters	for	a	given	material.

This	historical	discussion	and	the	intense	nineteenth-century	debate	between	the	rari-	and	multi-constancy

theorists	apparently	supports	the	view	that	there	is	some	kind	of	fundamental	incompatibility	between	small	scale

and	continuum	modeling	practices.	That	is,	it	lends	support	to	the	stark	choice	one	must	apparently	make	between

bottom-up	and	top-down	modeling	suggested	by	the	tyranny	of	scales.

A	modern,	more	nuanced,	and	better	informed	view	challenges	this	consequence	of	the	tyranny	of	scales	and	will

be	discussed	in	section	5.	However,	such	a	view	will	not,	in	my	opinion,	bring	much	comfort	to	those	who	believe

the	use	of	continuum	models	or	idealizations	is	only	pragmatically	justified.	A	modern	statement	supporting	this

point	of	view	can	be	found	in	(Phillips	2001):

[M]any	material	properties	depend	upon	more	than	just	the	identity	of	the	particular	atomic	constituents

that	make	up	the	material.…[M]icrostructural	features	such	as	point	defects,	dislocations,	and	grain

boundaries	can	each	alter	the	measured	macroscopic	“properties”	of	a	material.	(pp.	5–8)

It	is	important	to	reiterate	that,	contrary	to	typical	philosophical	usage,	“microstructural	features”	here	is	not

synonymous	with	“atomic	features”!	Defects,	dislocations,	etc.	exist	at	higher	scales.

In	the	next	section	I	will	further	develop	the	stark	dichotomy	between	bottom-up	modeling	and	top-down	modeling

as	a	general	philosophical	problem	arising	between	different	recipes	for	applying	mathematics	to	systems

exhibiting	different	properties	across	a	wide	range	of	scales.

4.	Euler's	Recipes:	Discrete	and	Continuum

4.1	Discrete

Applied	mathematical	modeling	begins	with	an	attempt	to	write	down	an	equation	governing	the	system	exhibiting

the	phenomenon	of	interest.	In	many	situations,	this	aim	is	accomplished	by	starting	with	a	general	dynamical

principle	such	as	Newton's	second	law:	F	=	ma.	Unfortunately,	this	general	principle	tells	us	absolutely	nothing

about	the	material	or	body	being	investigated	and,	by	itself,	provides	no	model	of	the	behavior	of	the	system.

Further	data	are	required	and	these	are	supplied	by	so-called	“special	force	laws”	or	“constitutive	equations.”

A	recipe,	due	to	Leonhard	Euler,	for	finding	an	appropriate	model	for	a	system	of	particles	proceeds	as	follows

(Wilson	1974):

1.	Given	the	class	of	material	(point	particles,	say),	determine	the	kinds	of	special	forces	that	act	between

them.	Massive	particles	obey	the	constitutive	gravitational	force:	 .	Charged	particles

additionally	will	obey	the	Coulomb	force	law:	 .

2.	Choose	Cartesian	coordinates	along	which	one	decomposes	the	special	forces.

3.	Sum	the	forces	acting	on	each	particle	along	the	appropriate	axis.

4.	Set	the	sum	for	each	particle	i	equal	to	 	to	yield	the	total	force	on	the	particle.

This	yields	a	differential	equation	that	we	then	employ	(=	try	to	solve)	to	further	understand	the	behavior	of	our

point	particle	system.	Only	rarely	(for	very	few	particles	or	for	special	symmetries)	will	this	equation	succumb	to

analytical	evaluation.	In	many	instances,	further	simplification	employing	mathematical	strategies	of	variable

reduction,	averaging,	etc.	enable	us	to	gain	information	about	the	behavior	of	interest.

  =  GFG

mimj

r2
ij

  =  FE ke

qiqj

r2
ij

mi
xd2

dt2

PDF Compressor Free Version 



The Tyranny of Scales

Page 13 of 23

4.2	Continuum

As	we	saw	in	section	3,	Cauchy	had	a	role	in	the	derivation	of	equations	for	elastic	solids.	We	note	again	that	he

was	lucky	to	have	arrived	at	the	correct	equations,	given	that	he	started	with	a	bottom-up	derivation	in	mind.

Nevertheless,	Cauchy	was	an	important	figure	in	the	development	of	continuum	mechanics:	it	turns	out	that	at

macroscales,	forces	within	a	continuum	can	be	represented	by	a	single	second-rank	tensor,	despite	all	of	the

details	that	appear	at	the	atomic	level.	This	is	known	as	the	Cauchy	stress	tensor	(Philips	2001,	p.	39).	The	analog

of	Newton's	second	law,	for	continua	is	the	principle	of	balance	of	linear	momentum.	It	is	a	statement	that	“the	time

rate	of	change	of	the	linear	momentum	is	equal	to	the	net	force	acting	on	[a]	region	Ω”: 	(8)

Here	∂Ω	is	the	boundary	of	the	region	Ω,	t	is	the	traction	vector	representing	surface	forces	(squeezings,	for

instance),	and	f	represents	the	body	forces	such	as	gravity.	The	left-hand	side	of	equation	(8)	is	the	time	rate	of

change	of	linear	momentum.	The	material	time	derivative,	D/Dt,	is	required	because	in	addition	to	explicit	time

dependence	of	the	field,	we	need	to	consider	the	fact	that	the	material	itself	can	move	into	a	region	where	the	field

is	different.

As	with	Euler's	discrete	recipe,	equation	(8)	requires	input	from	constitutive	equations	to	apply	to	any	real	system.

Whether	our	interest	is	in	the	description	of	injecting	polymers	into	molds,	the	evolution	of	Jupiter's	red

spot,	the	development	of	texture	in	a	crystal,	or	the	formation	of	vortices	in	wakes,	we	must	supplement

the	governing	equations	of	continuum	mechanics	with	some	constitutive	description.	(Phillips	2001,	p.	51)

For	the	case	of	a	steel	girder,	considered	in	the	regime	for	use	in	constructing	bridges	or	buildings	we	need	the

input	that	it	obeys	something	like	Hooke's	law—that	its	stress	is	linearly	related	to	its	strain.	In	modern	terminology,

we	need	to	provide	data	about	the	Cauchy	stress	tensor.	For	isotropic	linear	elastic	solids,	symmetry

considerations	come	into	play	and	we	end	up	with	equation	(1)—the	Navier-Cauchy	equation	that	characterizes

the	equilibrium	states	of	such	solids:

The	“Lamé”	parameters	(related	to	Young's	modulus)	express	the	empirical	details	about	the	material	response	to

stress	and	strain.

4.3	Controversy

A	question	of	pressing	concern	is	why	the	continuum	recipe	should	work	at	all.	We	have	seen	in	the	historical

example	that	it	does,	and	in	fact,	we	have	seen	that	were	we	simply	to	employ	the	discrete	(point	particle)	recipe,

we	would	not	arrive	at	the	correct	results.	In	asking	why	the	continuum	recipe	works	on	the	macroscale,	we	are

asking	about	the	relationship	between	the	dynamical	models	that	track	the	behavior	of	individual	atoms	and

molecules	and	equations	like	those	of	Navier,	Stokes,	Cauchy,	and	Green	that	are	applicable	at	the	scale	of

millimeters.	Put	slightly	differently,	we	would	like	an	account	of	why	it	is	safe	to	use	the	Cauchy	momentum	equation

in	the	sense	that	it	yields	correct	equations	with	the	appropriate	(few)	parameters	for	broadly	different	classes	of

systems—from	elastic	solids	to	viscous	fluids.

From	the	point	of	view	of	Euler's	continuum	recipe,	one	derives	the	equations	for	elastic	solids,	or	the	Navier-

Stokes	equations,	independently	of	any	views	about	the	molecular	or	atomic	makeup	of	the	medium.	(In	the

nineteenth	century	the	question	of	whether	matter	was	atomistic	had	yet	to	be	settled.)

To	ask	for	an	account	of	why	it	is	safe	to	use	the	continuum	recipe	for	constructing	macroscale	models	is	to	ask	for

an	account	of	the	robustness	of	that	methodology.	The	key	physical	fact	is	that	the	bulk	behaviors	of	solids	and

fluids	are	almost	completely	insensitive	to	the	actual	nature	of	the	physics	at	the	smallest	scale.	The	“almost”	here

is	crucial.	The	atomic	details	that	we	do	not	know	(and,	hence,	do	not	explicitly	refer	to)	when	we	employ

continuum	recipe	are	encoded	in	the	small	number	of	phenomenological	parameters	that	appear	in	the	resulting

equations—Young's	modulus,	the	viscosity,	etc.	So	the	answer	to	the	safety	question	will	involve	showing	how	to

determine	the	“fixed	points”	characterizing	broad	classes	of	macroscopic	materials—fixed	points	that	are
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characterized	by	those	phenomenological	parameters.	Recall	the	statement	by	Nelson	cited	above	in	section	2.1.

In	the	context	of	critical	phenomena	and	the	determination	of	the	critical	exponent	β,	this	upscaling	or	connection

between	the	Euler's	discrete	and	continuum	recipes	is	accomplished	by	the	renormalization	group.	In	that	context,

the	idea	of	a	critical	point	and	related	singularities	plays	an	important	role.	But	Nelson's	suggestion	is	that	upscaling

of	this	sort	should	be	possible	even	for	classes	of	systems	without	critical	points.	For	example,	we	would	like	to

understand	why	Young's	modulus	is	the	appropriate	phenomenological	parameter	for	classifying	solids	as	linear

elastic,	despite	rather	severe	differences	in	the	atomic	structure	of	members	of	that	class.	Finding	answers	to

questions	of	this	latter	type	is	the	purview	of	so-called	“homogenization”	theory,	of	which	one	can	profitably	think

the	RG	to	be	a	special	case.

In	the	next	section,	I	will	spend	a	bit	more	time	on	the	RG	explanation	of	the	universality	of	critical	behavior,	filling	in

some	gaps	in	the	discussion	in	section	2.1.	And,	I	will	try	to	say	something	about	general	methodology	of	upscaling

through	the	use	of	homogenization	limits.

5.	A	Modern	Resolution

To	begin,	consider	a	problem	for	a	corporation	that	owns	a	lot	of	casinos.	The	CEO	of	the	corporation	needs	to

report	to	the	board	of	trustees	(or	whomever)	on	the	expected	profits	for	the	corporation.	How	is	she	to	do	it?

Assuming	(contrary	to	fact)	that	casino	gaming	is	fair,	she	would	present	to	the	board	a	Gaussian	or	normal

probability	distribution	showing	the	probabilities	of	various	profits	and	losses,	with	standard	deviations	that	would

allow	for	statistical	predictions	as	to	expected	profits	and	losses.	She	may	also	seek	information	as	to	how	to

manipulate	the	mean	and	variance	so	as	to	guarantee	the	likelihood	of	greater	profits	for	less	risk,	etc.	The

Gaussian	distribution	is	a	function	characterized	by	two	parameters—the	mean	μ	and	the	variance	σ .	Where	will

the	CEO	get	the	values	for	the	mean	and	variance?	Most	likely	by	empirically	investigating	the	actual	means	and

variances	displayed	over	the	past	year	by	the	various	casinos	in	the	corporation.	Consider	figure	7.5.	Should	the

CEO	look	to	the	individual	gambles	or	even	to	collections	of	individual	gambles	of	different	types	in	particular

casinos?	A	bottom-up	reductionist	would	say	that	all	of	the	details	about	the	corporation	as	a	whole	are	to	be	found

by	considering	these	details.	But,	in	fact,	(i)	she	should	not	focus	too	much	on	spatiotemporal	local	features	of	a

single	casino:	suppose	someone	hits	the	jackpot	on	a	slot	machine.	Likely,	many	people	will	run	to	that	part	of	the

casino,	diminishing	profits	from	the	roulette	wheels	and	blackjack	tables,	and	skewing	the	prediction	of	the	actual

mean	and	variance	she	is	after.	Nor	(ii)	would	it	be	wise	to	focus	too	much	on	groups	of	casinos	say	in	a	particular

geographic	area	(such	as	Las	Vegas)	over	casinos	owned	in	another	area	(such	as	Atlantic	City).	After	all,

different	tax	structures	in	these	different	states	and	municipalities	play	an	important	role	as	well.	Such	intermediate

structures	and	environmental	considerations	are	crucial—consider	again	the	bubbles	within	bubbles	structures	that

characterize	the	heterogeneities	at	lower	scales	in	the	case	of	the	universality	of	critical	phenomena.	The	CEO

needs	to	look	at	large	groups	of	collections	of	casinos	where	there	is	evident	scaling	and	self-similarity.	Apparent

scaling	behavior	and	self-similarity	at	large	scales	is	an	indication	of	homogeneity.	Thus,	as	with	our	steel	girder,

empirical	data	(at	large	scales)	is	required	to	determine	the	values	of	the	relevant	parameters.
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Figure	7.5 	Gambles	within	gambles	within	gambles	…

Now	why	should	she	think	that	these	two	parameters—properties	of	collections	of	casinos	offering	different	and

varied	kinds	of	games	(roulette,	poker,	blackjack,	slots,	etc.)—are	the	correct	ones	with	which	to	make	the pre-

sentation	to	the	board?	Equivalently,	why	she	should	employ	a	Gaussian	probability	distribution	(it	is	uniquely

defined	by	the	mean	and	variance)	in	the	first	place,	as	opposed	to	some	other	probability	distribution?	The

answer	is	effectively	provided	by	an	RG	argument	analogous	to	that	which	allows	us	to	determine	the	functional

form	of	the	order	parameter	M	near	criticality—that	it	scales	as	|t| 	near	criticality.	It	is	an	argument	that	leads	us	to

expect	behavior	in	accord	with	the	central	limit	theorem.	There	are	deep	similarities	between	the	arguments	for why	

the	functional	form	with	exponent	β	is	universal	and	why	Gaussian	or	central	limiting	behavior	is	so	ubiquitous. In	

the	former	case,	the	RG	demonstrates	that	various	systems	all	flow	to	a	single	fixed	point	in	an	abstract	space	of

Hamiltonians	or	coupling	constants.	That	fixed	point	determines	the	universality	class	that	is	characterized	by	the

scaling	exponent	β.	Similarly,	the	Gaussian	probability	distribution	is	a	fixed	point	for	a	wide	class	of	probability

distributions	under	a	similar	renormalization	group	transformation.	(For	details	see	Batterman	2010	and	Sinai	1992.)

Thus,	the	answer	to	why	the	mean	μ	and	the	variance	σ 	are	the	relevant	parameters	depends	upon	an	RG,

limiting	argument.	Generalizing,	one	should	expect	related	argument	strategies	to	tell	us	why	the	two	elastic

“constants”	(related	to	Young's	modulus)	are	the	correct	parameters	with	which	to	characterize	the	universality

class	of	elastic	solids.	The	appeal	to	something	like	central	limiting	behavior	is	characteristic	of	homogenization

theory	and	distinguishes	this	line	of	argumentation	from	that	employing	REV	averaging	techniques.

In	fact,	the	difference	between	averaging	and	homogenization	is	related	to	the	difference	between	the	law	of	large

numbers	and	the	central	limit	theorem:	averaging	or	first	order	perturbation	theory	“can	often	be	thought	of	as	a

form	(or	consequence)	of	the	law	of	large	numbers.”	Homogenization	or	second	order	perturbation	theory	“can

often	be	thought	of	as	a	form	(or	consequence)	of	the	central	limit	theorem”	(Pavliotis	and	Stuart	2008,	pp.	6–7).

Here	is	a	brief	discussion	that	serves	to	motivate	these	connections.	Consider	a	sum	function	of	independent	and

identically	distributed	random	variables,	 .	The	sample	average	

converges	to	the	mean	or	expected	value	μ.	The	strong	law	of	large	numbers	asserts	that

As	such	it	tells	us	about	the	first	moment	of	the	random	variable	( —the	average.	The	central	limit	theorem	by

contrast	tells	us	about	the	second	moment	of	the	normalized	sum	( ;	that	is	it	tells	us	about	the	behavior	of

fluctuations	about	the	average	μ.	It	says	that	for	n	→	∞	the	probability	distribution	of	 )	converges

to	the	normal	or	Gaussian	distribution	 ,	with	mean	0	and	variance	 	where	σ	is	the	standard	deviation	of

the	Y 's.
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Thus	again	we	see	that	in	the	probabilistic	scenario,	as	in	the	case	of	critical	phenomena,	we	must	to	pay	attention

to	the	fact	that	collections	of	gambles	(bubbles)	contribute	to	the	behavior	of	the	system	at	the	macroscale.	Once

again,	we	need	to	pay	attention	to	fluctuations	about	some	average	behavior,	and	not	just	the	average	behavior

itself.

Furthermore,	a	similar	picture	is	possible	regarding	the	upscaling	of	our	modeling	of	the	behavior	of	the	steel	girder

with	which	we	started.	Compare	the	two	cases,	figure	7.6,	noting	that	here	too	only	a	small	number	of

phenomenological	parameters	are	needed	to	model	the	continuum/macroscale	behavior.	(E	is	Young's	modulus

and	I	is	the	area	moment	of	inertia	of	a	cross-section	of	the	girder.)

The	general	problem	of	justifying	the	use	of	Euler's	continuum	recipe	to	determine	the	macroscopic	equation

models	involves	connecting	a	statistical/discrete	theory	in	terms	of	atoms	or	lattice	sites	to	a	hydrodynamic	or

continuum	theory.	Much	effort	has	been	spent	on	this	problem	by	applied	mathematicians	and	materials	scientists.

And,	as	I	mentioned	above,	the	RG	argument	that	effectively	determines	the	continuum	behavior	of	systems	near

criticality	is	a	relatively	simple	example	of	this	general	homogenization	program.

Figure	7.6 	Gaussian	and	steel—few	(macro)	parameters:	[μ,	σ ];	[E,	I]

In	hydrodynamics,	for	example	Navier-Stokes	theory,	there	appear	density	functions,	ρ(x),	that	are	defined	over	a

continuous	variable	x.	These	functions	exhibit	no	atomic	structure	at	all.	On	the	other	hand,	for	a	statistical	theory,

such	as	the	Ising	model	of	a	ferromagnet,	we	have	seen	that	one	defines	an	order	parameter	(a	magnetic	density

function)	M(x)	that	is	the	average	magnetization	in	a	volume	surrounding	x	that	contains	many	lattice	sites	or

atoms.	The	radius	of	the	volume,	L,	is	intermediate	between	the	lattice	constant	(or	atomic	spacing)	and	the cor-

relation	length	ξ:	(a	≪	L	≪	ξ).	As	noted	in	section	2.1	this	makes	the	order	parameter	depend	upon	the	length	L

(Wilson	1974,	p.	123).

A	crucial	difference	between	the	hydrodynamic	(thermodynamic)	theory	and	the	statistical	theory	is	that	the	free

energy	in	the	former	is	determined	using	the	single	magnetization	function	M(x).	In	statistical	mechanics,	on	the

other	hand,	the	free	energy	is	“a	weighted	average	over	all	possible	forms	of	the	magnetization	M(x).”	(Wilson

1974,	p.	123)	This	latter	set	of	functions	is	parameterized	by	the	volume	radius	L.	On	the	statistical	theory	due

originally	to	Landau,	the	free	energy	defined	as	a	function	of	M(x)	takes	the	following	form:	(9)

where	R	and	U	are	(temperature	dependent)	constants	and	B	is	a	(possibly	absent)	external	magnetic	field.	(Wilson

1974,	p.	122)	This	(mean	field)	theory	predicts	the	wrong	value,	1/2,	for	β–the	critical	exponent.	The	problem,	as

diagnosed	by	Wilson,	is	that	while	the	Landau	theory	can	accommodate	fluctuations	for	lengths	λ	〈	L	in	its definition	

of	M	as	an	average,	it	cannot	accommodate	fluctuations	of	lengths	L	or	greater.

A	sure	sign	of	trouble	in	the	Landau	theory	would	be	the	dependence	of	the	constants	R	and	U	on	L.	That

is,	suppose	one	sets	up	a	procedure	for	calculating	R	and	U	which	involves	statistically	averaging	over

fluctuations	with	wavelengths	λ	〈	L.	If	one	finds	R	and	U	depending	on	L,	this	is	proof	that	long-wavelength

fluctuations	are	important	and	Landau's	theory	must	be	modified.	(p.	123)
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The	RG	account	enables	one	to	exploit	this	L-dependence	and	eventually	derive	differential	equations	(RG)	for	R

and	U	as	functions	of	L	that	allow	for	the	calculation	of	the	exponent	β	in	agreement	with	experiment.	The	key	is	to

calculate	and	compare	the	free	energy	for	different	averaging	sizes	L	and	L	+	δL.	One	can	proceed	as	follows :

Divide	M(x)	in	the	volume	element	into	two	parts:	(10)

M 	is	a	hydrodynamic	part	with	wavelengths	of	order	ξ	and	M 	is	a	fluctuating	part	with	wavelength	between	L	and

L	+	δL.	The	former	will	be	effectively	constant	over	the	volume.

By	performing	a	single	integral	over	m—the	scale	factor	in	(10)—we	get	an	iterative	expression	for	the	free	energy

for	the	averaging	size	L	+	δL,	F ,	in	terms	of	the	free	energy	for	the	averaging	size	L:	(11)

In	effect,	one	finds	a	step	by	step	way	to	include	all	the	fluctuations—all	the	physics—that	play	a	role	near

criticality	One	moves	from	a	statistical	theory	defined	over	finite	N	and	dependent	on	L	to	a	hydrodynamic	theory

of	the	continuum	behavior	at	criticality.	“Including	all	of	the	physics”	means	that	the	geometric	structure	of	the

bubbles	within	bubbles	picture	gets	preserved	and	exploited	as	one	upscales	from	the	finite	discrete	atomistic

account	to	the	continuum	model	at	the	scale	of	ξ—the	size	of	the	system.	That	is	exactly	the	structure	that	is	wiped

out	by	the	standard	REV	averaging,	and	it	is	for	that	reason	that	Landau's	mean	field	theory	failed.

5.1	Homogenization

Continuum	modeling	is	concerned	with	the	effective	properties	of	materials	that,	in	many	instances,	are

microstructurally	heterogeneous.	These	microstructures,	as	noted,	are	not	always	to	be	identified	with	atomic	or

lowest	scale	“fundamental”	properties	of	materials.	Simple	REV	averaging	techniques	often	assume	something	like

that,	but	in	general	the	effective,	phenomenological	properties	of	materials	are	not	simple	mixtures	of	volume

fractions	of	different	composite	phases	or	materials.	Many	times	the	microstructural	features	are	geometric	or

topological	including	(in	addition	to	volume	fractions)	“surface	areas	of	interfaces,	orientations,	sizes,	shapes,

spatial	distributions	of	the	phase	domains;	connectivity	of	the	phases;	etc.”	(Torquato	2002,	p.	12).	In	trying	to

bridge	the	scales	between	the	atomic	domain	and	that	of	the	macroscale,	one	needs	to	connect	rapidly	varying

local	functions	of	the	different	phases	to	differential	equations	characterizing	the	system	at	much	larger	scales.

Homogenization	theory	accomplishes	this	by	taking	limits	in	which	the	local	length	(small	length	scale)	of	the

heterogeneities	approaches	zero	in	a	way	that	preserves	(and	incorporates)	the	topological	and	geometric

features	of	the	microstructures.

Most	simply,	and	abstractly,	homogenization	theory	considers	systems	at	two	scales:	ξ,	a	macroscopic	scale

characterizing	the	system	size,	and	a	microscopic	scale,	a,	associated	with	the	microscale	heterogeneities.	There

may	also	be	applied	external	fields	that	operate	at	yet	a	third	scale	Λ.	If	the	microscale,	a,	is	comparable	with	either

ξ	or	Λ,	then	the	modeler	is	stuck	trying	to	solve	equations	at	that	smallest	scale.	However,	as	is	often	the	case,	if	a

≪	Λ	≪	ξ,	then	one	can	introduce	a	parameter

that	is	associated	with	the	fluctuations	at	the	microscale	of	the	heterogeneities—the	local	properties	(Torquato

2002,	pp.	305–6).	In	effect,	then	one	looks	at	a	family	of	functions	u 	and	searches	for	a	limit	u	=	lim 	u 	that	tells

us	what	the	effective	properties	of	the	material	will	be	at	the	macroscale.
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Figure	7.7 	Homogenization	limit	(after	Torquato	2002,	pp.	2,	305–6)

Figure	7.7	illustrates	this.	The	left	box	shows	the	two	scales	a	and	ξ	with	two	phases	of	the	material	K 	and	K .	The

homogenization	limit	enables	one	to	treat	the	heterogeneous	system	at	scale	a	as	a	homogeneous	system	at	scale

ξ	with	an	effective	material	property	represented	by	K .	For	an	elastic	solid	like	the	steel	girder,	K 	would	be	the

effective	stiffness	tensor	and	is	related	experimentally	to	Young's	modulus.	For	a	conductor,	K 	would	be	the

effective	conductivity	tensor	that	is	related	experimentally	to	the	parameter	σ—the	specific	conductance—

appearing	in	Ohm's	law:

where	J	is	the	current	density	at	a	given	location	x	in	the	material	and	E	is	the	electric	field	at	x.	At	the	risk	of	being

overly	repetitive,	note	that	in	these	and	other	cases,	it	is	unlikely	that	the	effective	material	property	K 	will	be	a

simple	average.

Let	me	end	this	brief	discussion	of	homogenization	by	highlighting	what	I	take	to	be	a	very	important	concept	for the	

general	problem	of	upscaling.	This	is	the	concept	of	an	order	parameter	and	related	functions.	The	notion	of	an

order	parameter	was	introduced	in	our	discussion	of	continuous	phase	transitions	in	thermodynamics,	and	the

statistical	mechanical	explanations	of	certain	of	their	features.	In	effect,	the	order	parameter	is	a	microstructure

(mesoscopic	scale)	dependent	function	introduced	to	codify	the	phenomenologically	observed	transition	between

different	states	of	matter.	As	we	have	seen,	the	magnetization	M	represented	in	figure	7.2	is	introduced	to	reflect

the	fact	that	at	the	Curie	temperature	the	systems	goes	from	an	unordered	phase,	above	T 	to	an	ordered	phase,

below	T .	In	this	context,	the	divergences	and	nonanalyticities	at	the	critical	point	play	an	essential	role	in deter-

mining	the	fixed	point	that	characterizes	the	class	of	systems	exhibiting	the	same	scaling	behavior:	M	α	|t| . But,	

again	following	Nelson's	suggestion,	entire	classes	of	systems	such	as	the	class	of	linear	elastic	solids	are	also

characterized	by	“fixed	points”	represented	by	a	relatively	few	phenomenological	parameters	like	Young's

modulus.

It	is	useful	to	introduce	an	order-like	parameter	in	this	more	general	context	of	upscaling	where	criticality	is	not

really	an	issue.	For	example,	consider	the	left	image	in	figure	7.7.	In	upscaling	to	get	to	the	right	image,	one	can

begin	by	defining	indicator	or	characteristic	functions	for	the	different	phases	as	a	function	of	spatial	location

(Torquato	2002,	pp.	24–5).	For	instance,	if	the	shaded	phase	occupies	a	region	U 	in	the	space,	then	an	indicator

function	of	that	phase	is	given	by

One	can	also	introduce	indicator	functions	for	the	interfaces	or	boundaries	between	the	two	phases. 	Much

information	can	then	be	determined	by	investigating	n-point	probability	functions	expressing	the	probabilities	that	n

locations	x ,	…,	x 	are	to	be	found	in	regions	occupied	by	the	shaded	phase.

In	this	way	many	features,	other	than	simple	volume	fraction,	that	exist	at	microscales	can	be	represented	and

employed	in	determining	the	homogenization	limit	for	complex	heterogeneous	systems.	The	introduction	of	such

field	variables,	correlation	functions,	etc.,	allow	us	to	characterize	the	heterogeneous	structures	above	the	atomic

scales.	In	some	cases,	such	as	the	bubbles	within	bubbles	structure	of	the	different	phases	at	a	continuum	phase

transition,	much	of	this	additional	apparatus	will	not	be	necessary.	(Though,	of	course,	it	is	essential	to	take	into

consideration	that	structure	in	that	particular	case.)	But	for	many	more	involved	upscaling	problems	such	as	steel,
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the	additional	mathematical	apparatus	will	be	critical	in	determining	the	appropriate	effective	phenomenological

theory	at	the	continuum	level.	As	we	have	seen	these	microstructures	are	critical	for	an	understanding	of	how	the

phenomenological	parameters	at	the	continuum	scale	emerge.

The	main	lesson	to	take	from	this	all-too-brief	discussion	is	that	physics	at	these	micro/meso-scopic	scales	need	to

be	considered.	Bottom-up	modeling	of	systems	that	exist	across	a	large	range	of	scales	is	not	sufficient	to	yield

observed	properties	of	those	systems	at	higher	scales.	Neither	is	complete	top-down	modeling.	After	all,	we	know

that	the	parameters	appearing	in	continuum	models	must	depend	upon	details	at	lower	scale	levels.	The	interplay

between	the	two	strategies—a	kind	of	mutual	adjustment	in	which	lower	scale	physics	informs	upper	scale	models

and	upper	scale	physics	corrects	lower	scale	models—is	complex,	fascinating,	and	unavoidable.

6.	Conclusion

The	solution	to	the	tyranny	of	scales	problem	has	been	presented	as	one	of	seeing	if	it	is	possible	to	exploit

microstructural	scale	information	(intermediate	between	atomic	scales	and	macroscopic	scales)	to	bridge	between

two	dominant	and	apparently	incompatible	modeling	strategies.	These	are	the	traditional	bottom-up	strategies

associated	with	a	broadly	reductionist	account	of	science	and	pure	top-down	strategies	that	held	sway	in	the

nineteenth	century	and	motivated	the	likes	of	Mach,	Duhem,	Maxwell,	and	others.	Despite	great	progress	in

understanding	the	physics	of	atomic	and	subatomic	particles,	the	persistence	of	continuum	modeling	has	led	to

heated	debates	in	philosophy	about	emergence,	reduction,	realism,	etc.	We	have	canvassed	several	different

attitudes	to	the	apparent	in	eliminability	of	continuum	level	modeling	in	physics.	On	the	one	hand,	there	is	the	view

of	Butterfield	and	others,	that	the	use	of	continuum	limits	represents	nothing	more	than	a	preference	for	the

mathematical	convenience	of	the	infinite.	Another	possible	view,	coming	out	of	the	tyranny	of	scales,	suggests	a

kind	of	skepticism:	we	need	both	atomic	scale	models	and	continuum	scale	models	that	essentially	employ	infinite

idealizations.	However,	a	unified	account	of	applied	mathematics	that	incorporates	both	the	literally	correct	atomic

models	and	the	essentially	idealized	continuum	models	seems	to	be	beyond	our	reach.

I	claim	that	neither	of	these	attitudes	is	ultimately	acceptable.	Butterfield	et	al.	are	wrong	to	believe	that	continuum

models	are	simply	mathematical	conveniences	posing	no	real	philosophical	concerns.	This	position	fails	to	respect

some	rather	deep	differences	between	kinds	of	continuum	modeling.	In	particular,	the	strategies	employed	in	the

renormalization	group	and	in	homogenization	theory	differ	significantly	from	those	employed	in	standard

representative	elementary	volume	(REV)	averaging	scenarios.	The	significance	of	Wilson's	renormalization	group

advance	was	exactly	to	point	out	why	such	REV	methods	fail	and	how	that	failure	can	be	overcome.	The	answer,

as	we	have	seen,	is	to	pay	attention	to	“between”	scale	structures	as	in	the	case	of	the	bubbles	within	bubbles

picture	of	what	happens	at	phase	transitions.	Incorporating	such	structures—features	that	cannot	be	understood

as	averages	over	atomic	level	structures—is	exactly	the	strategy	behind	upscaling	attempts	that	connect	Euler-

type	discrete	modeling	recipes	to	Euler-type	continuum	recipes.	Homogenization	lets	us	give	an	answer	to	why	the

use	of	the	continuum	recipe	is	safe	and	robust.	It	provides	a	satisfactory	justification	for	the	use	of	such	continuum

models,	but	not	one	that	is	“straightforward”	or	pragmatically	motivated.	As	such,	homogenization	provides	the

beginning	of	an	account	of	applied	mathematics	that	unifies	the	radically	different	scale-dependent	modeling

strategies.

I	have	also	tried	here	to	focus	attention	on	a	rather	large	subfield	of	applied	mathematics	that	should	be	of	interest

to	philosophers	working	on	specific	issues	of	modeling,	simulation,	numerical	methods,	and	idealizations.	In

addition,	understanding	the	nature	of	materials	in	terms	of	homogenization	strategies	can	inform	certain	questions

about	the	nature	of	physical	properties	and	issues	about	realism.	For	instance,	we	have	seen	that	many	materials

at	macroscales	are	characterized	by	a	few	phenomenological	parameters	such	as	the	elastic	constants.

Understanding	the	nature	of	materials	requires	understanding	why	these	constants	and	not	others	are	appropriate,

as	well	as	understanding	from	where	the	constants	arise.	One	important	lesson	is	that	many	of	these	material

defining	parameters	are	not	simply	dependent	upon	the	nature	of	the	atoms	that	compose	the	material.	There	is	a

crucial	link	between	structure	at	intermediate	scales	and	observed	properties	at	the	macroscale.

It	may	do	to	end	with	an	nice	statement	(partially	cited	earlier)	from	Rob	Phillips's	excellent	book	Crystals,	Defects,

and	Microstructures	(2001)	expressing	this	point	of	view.

Despite	the	power	of	the	idea	of	a	material	parameter,	it	must	be	greeted	with	caution.	For	many	features	of
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materials,	certain	“properties”	are	not	intrinsic.	For	example,	both	the	yield	strength	and	fracture

toughness	of	a	material	depend	upon	its	internal	constitution.	That	is,	the	measured	material	response	can

depend	upon	microstructural	features	such	as	the	grain	size,	the	porosity,	etc.	Depending	upon	the	extent

to	which	the	material	has	been	subjected	to	prior	working	and	annealing,	these	properties	can	vary

considerably.	Even	a	seemingly	elementary	property	such	as	the	density	can	depend	significantly	upon

that	material's	life	history.	The	significance	of	the	types	of	observations	given	above	is	the	realization	than

many	material	properties	depend	upon	more	than	just	the	identity	of	the	particular	atomic	constituents	that

make	up	that	material.…[M]icrostructural	features	such	as	point	defects,	dislocations,	and	grain

boundaries	can	each	alter	the	measured	macroscopic	“properties”	of	a	material.	(pp.	5–8)

Philosophers	who	insist	that	bottom-up	explanations	of	the	macroscopic	properties	of	materials	are	desirable	to	the

exclusion	of	top-down	modeling	considerations	are,	I	think	being	naive,	similar	to	those	who	maintain	that	top-down

continuum	type	modeling	strategies	are	superior.	The	tyranny	of	scales	appears	to	force	us	to	choose	between

these	strategies.	However,	new	work	on	understanding	the	problem	of	upscaling	or	modeling	across	scales

suggests	that	both	types	of	strategies	are	required.	Our	top-down	considerations	will	inform	the	construction	of

models	at	lower	scales.	And	our	bottom-up	attempts	will	likewise	induce	changes	and	improvements	in	the

construction	of	higher	scale	models.	Mesoscopic	structures	cannot	be	ignored	and,	in	fact,	provide	the	bridges

that	allow	us	to	model	across	scales.
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Notes:

(1)	For	related	discussions,	see	Mark	Wilson's	forthcoming	Physics	Avoidance	and	Other	Essays.

(2)	See	Maddy	(2008)	for	a	forceful	expression	of	this	skeptical	worry.
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(3)	Those	who	think	that	the	renormalization	group	provides	a	bottom-up	explanation	of	the	universality	of	critical

phenomena,	e.g.	Norton	(2011),	are	mistaken,	as	we	shall	see	below.

(4)	“Local”	in	the	sense	that	the	invariance	holds	for	scales	of	several	orders	of	magnitude	but	fails	to	hold	if	we

zoom	in	even	further,	using	x-ray	diffraction	techniques,	for	example.

(6)	I	call	these	intermediate	scales	“microscales”	and	the	structures	at	these	scales	“microstructures”	following

the	practice	in	the	literature,	but	it	may	be	best	to	think	of	them	as	“mesoscopic.”

(7)	These	latter	are	transformations	that	take	place	under	cooling	when	a	relatively	high	symmetry	lattice	such	as

one	with	cubic	symmetry	loses	symmetry	to	become	tetragonal.	Some	properties	of	steel	girders	therefore	depend

crucially	on	dynamical	changes	that	take	place	at	scales	in	between	the	atomic	and	the	macroscopic	(Phillips

2001,	p.	547–8).

(8)	Though	simpler	than	the	case	of	understanding	how	atomic	aspects	of	steel	affect	its	phenomenological

properties,	this	is,	itself,	a	difficult	problem	for	which	a	Nobel	prize	was	awarded.

(9)	This	is	the	limit	in	which	the	number	of	particles	N	in	a	system	approaches	infinity	in	such	a	way	that	the	density

remains	constant—the	volume	has	to	go	to	infinity	at	the	same	time	as	the	number	of	particles.

(10)	See	Batterman	2001	and	2006	for	surveys	of	this	and	more	sophisticated	strategies.

(11)	In	the	present	example,	it	is	hard	indeed	to	see	how	to	define	or	identify	a	nonstatistical	quantity	such	as

temperature	or	pressure	in	thermodynamics	with	a	necessarily	statistical	quantity	or	set	of	quantities	in	the

reducing	statistical	mechanics.	(See	Sklar	1993,	Chapter	9.)

(12)	I	believe	that	the	use	of	the	evaluative	terms	“better,”	“worse,”	and	“tainted”	reflects	an	inherent	prejudice

against	nonreductionist	points	of	view.	In	particular,	as	one	of	the	issues	is	whether	a	more	detailed	(atomic)	theory

is	really	better	for	explanatory,	predictive,	and	modeling	concerns,	this	way	of	speaking	serves	to	block	debate

before	it	can	get	started.

(13)	I	have	taken	this	terminology	from	Hornung	(1997,	p.	1).

(14)	See	Kadanoff	(2000)	and	Batterman	(2002,	2005,	2011)	for	details.

(15)	Systems	above	the	critical	temperature	will	also	appear	homogeneous	as	the	spins	will	be	uncorrelated,

randomly	pointing	up	and	down.

(16)	Thanks	to	Mark	Wilson	for	the	colorful	terminology!

(17)	See	(Phillips	2001).

(18)	Note	that	in	continuum	mechanics,	generally,	a	material	point	or	“material	particle”	is	not	an	atom	or	molecule

of	the	system;	rather	it	is	an	imaginary	region	that	is	large	enough	to	contain	many	atomic	subscales	(whether	or

not	they	really	exist)	and	small	enough	relative	to	the	scale	of	field	variables	characterizing	the	impressed	forces.

Of	course,	as	noted,	Navier's	derivation	did	make	reference	to	atoms.

(19)	I	have	fixed	a	typographical	error	in	these	equations.

(20)	See	Todhunter	and	Pearson	(1960,	pp.	224	and	235–27)	for	details.	Note	also	how	this	limiting	assumption

yields	different	and	correct	results	in	comparison	to	the	finite	atomistic	hypotheses.

(21)	Cited	in	Todhunter	and	Pearson	(1960,	p.	495).

(22)	This	is	the	temptation	promised	by	an	ultimate	reductionist	point	of	view.

(23)	See	Phillips	(2001,	pp.	41–42).

(24)	Proofs	of	the	central	limit	theorem	that	involve	moment	generating	functions	M(t)	for	the	component	random

variables	Y 	make	explicit	that	there	is	an	asymptotic	expansion	in	a	small	parameter	t,	where	truncation	of	the

series	at	first	order	gives	the	mean,	and	truncation	of	the	series	at	second	order	gives	the	fluctuation	term.	Hence

i
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the	connection	between	these	limit	theorems	and	first	and	second	order	perturbation	theory.	In	fact,	two	limits	are

involved:	the	limit	as	the	small	parameter	t	→	0	and	the	limit	n	→	∞.

(25)	Details	in	Wilson	(1974,	pp.	125–27).

(26)	These	will	be	generalized	distribution	functions.

(27)	See	Torquato	(2002)	for	a	detailed	development	of	this	approach.

(28)	See	Maddy	(2008)	for	a	good	discussion	of	this	point	of	view	among	other	interesting	topics	about	the

applicability	of	mathematics.
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Abstract	and	Keywords

This	chapter,	which	provides	a	broad	and	comprehensive	survey	of	concepts	of	symmetry	and	invariance,

discusses	the	classification	of	symmetries	and	analyzes	continuous	symmetries	and	the	so-called	gauge

argument.	It	describes	a	concrete	situation	in	the	1960s	where	symmetry	arguments	led	to	the	predictions	of

elementary	pchapters.	The	chapter	also	examines	the	connection	between	symmetries	and	laws,	and	evaluates

the	idea	that	certain	symmetries	can	be	considered	“superprinciples.”

Keywords:	symmetry,	invariance,	continuous	symmetries,	gauge	argument,	elementary	pchapters,	superprinciples

1.	Introduction

Always	a	fascination	for	the	human	mind,	symmetry	plays	a	fundamental	role	in	modern	physics.	Ancient	Greek

thinkers	introduced	the	concept	(and	the	word,	συμμετρια)	from	which	the	modern	one	derives; 	their	interest,

however,	was	mainly	aroused	by	the	aesthetic	connotations	attached	to	this	notion	(harmony,	good	proportion,

unity).	Later	on	symmetry	considerations	became	instrumental	in	the	domain	of	mathematized	physical	science.

The	work	of	Johannes	Kepler	illustrates	the	lure	of	mathematical	harmony	exemplarily:	he	famously	attempted,	in

his	Mysterium	Cosmographicum	(1596),	to	devise	a	theoretical	model	of	the	solar	system	by	drawing	inspiration

from	geometrical	relations.	Kepler	was	particularly	impressed	by	the	austere	beauty	of	the	image	of	the	spherical

shells	inscribed	within,	and	circumscribed	around,	the	five	Platonic	solids	(tetrahedron,	cube,	octahedron,

icosahedron,	and	dodecahedron).	More	precisely,	he	sought	to	demonstrate	a	correspondence	between	the

distances	of	the	planets	from	the	sun	and	the	radii	of	these	shells;	he	was	convinced	that	God's	blueprint	of	the

universe	reflects	an	agreement	between	the	observed	ratios	of	the	maximum	and	minimum	radii	of	the	planets	and

the	geometrical	ratios	calculated	for	the	nested	Platonic	solids.

Yet,	as	the	celebrated	physicist	Freeman	Dyson	once	noted,	“This	model	is	a	supreme	example	of	misguided

mathematical	intuition”	(1964,	130).	The	sought	correlations	did	not	exist,	since	there	are	discrepancies	between

the	predictions	and	the	observed	data.	A	similar	belief	in	the	perfection	of	the	circle	also	hindered	Kepler's	efforts

to	find	out	the	correct	(elliptical)	orbits	of	the	planets.	While	sometimes	leading	researchers	astray,	it	is	beyond

doubt	that	this	type	of	belief	has	very	often	helped	them	a	great	deal.	It	appears	that	Kepler's	confidence	that	the

universe	was	created	following	mathematical	symmetry	principles	has	in	the	end	been	useful	in	discovering	the

laws	of	planetary	motion.	In	fact,	it	turns	out	that	his	second	law 	does	establish	an	important	astronomical	relation

that	is	grounded	on	a	symmetry	(the	time-invariance	of	angular	momentum).

An	aesthetic	notion	of	symmetry	certainly	played	a	role	in	the	early	evolution	of	physics,	since	cases	other	than

Kepler's	can	be	easily	documented.	But	it	is	the	more	precise	notion	of	symmetry	as	invariance	that	is	truly

fundamental	for	the	modern	period.	At	an	intuitive	level	we	speak	of	symmetrical	geometrical	figures,	or

symmetrical	concrete	shapes,	such	as	snowflakes;	what	we	mean,	however,	is	that	they	have	invariance

1
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properties.	For	instance,	a	square	has	the	property	that	there	are	ways	to	manipulate	it	such	that	the	end	result	of

the	manipulation	is	a	square	identical	to	the	initial	one.	Such	transformations	can	be	a	reflection	in	one	of	its

diagonals,	or	a	clockwise	90°	rotation	about	its	center;	by	comparison,	a	circle	is	invariant	under	arbitrary	amounts

of	rotation	about	its	center.

Rotations	and	reflections	of	a	geometrical	figure	are	just	a	particular	type	of	transformation,	performed	on	a

particular	kind	of	entity.	As	has	been	observed,	this	idea	can	be	generalized	naturally:	in	addition	to	visualizable,

concrete	entities	(such	as	squares,	disks,	or	snowflakes),	abstract	entities	can	be	manipulated	too—	and	found	to

be	invariant.	For	instance,	the	relations	holding	within	a	certain	configuration	of	objects	can	be	invariant	under

permuting	the	objects	or	under	uniformly	shifting	the	objects’	positions	in	space;	also,	the	form	of	a	mathematical

expression	can	be	invariant	under	certain	mathematical	transformations.

Once	this	generalization	was	effected,	the	next	major	conceptual	advance	in	the	study	of	invariance	was	the

observation	that	one	can	consider	the	set	of	all	transformations	that	leave	an	entity	(either	abstract	or	concrete)

unchanged,	and	then	define	the	operation	of	composition	of	transformations	on	this	set.	A	simple	example	is	the	set

of	transformations	that	leave	the	square	invariant,	together	with	the	composition	operation.	There	are	eight	such

transformations:	four	clockwise	90°,	180°,	270°,	and	360°	rotations	and	four	reflections	(two	in	the	diagonals	and

two	in	the	lines	joining	the	middle	of	two	opposite	sides).	This	set,	call	it	R,	is	closed	under	successive	composition

of	these	transformations:	performing	two	successive	transformations	(either	rotations	or	reflections)	that	leave	the

square	invariant	is	equivalent	to	performing	one	(either	rotation	or	reflection),	with	this	resultant	transformation

being	included	in	R	too.	Moreover,	there	is	a	special	member	of	this	set,	a	clockwise	rotation	of	360°,	which	has	no

compositional	effect	when	following	or	preceding	other	transformations	from	the	set.	And,	for	any	transformation	t

in	R	there	is	another	transformation	in	the	set	that	can	be	composed	with	t	to	produce	the	effect	of	a	360°	rotation.

Finally,	we	note	that	the	operation	of	transformation	is	also	associative.	The	set	R	and	the	operation	of	composition

of	transformations	form	a	specific	mathematical	structure,	called	a	group.	In	this	case,	the	group	is	called	the

symmetry	group	of	the	square.

As	we	have	seen,	we	can	manipulate	both	concrete	and	abstract	entities.	This	latter	kind	of	manipulation	is

relevant	to	physics:	if	the	invariant	object	is	a	certain	mathematical	function	associated	with	the	evolution	of	a

physical	system—the	Lagrangian	(or,	more	precisely,	its	time	integral,	the	action)—then	important	consequences

follow	from	its	invariance.	They	have	to	do	with	the	existence	of	conservation	laws,	in	a	way	made	precise	by

Noether's	theorem	(discussed	in	section	3).	This	generalization	is	in	the	spirit	of	Herman	Weyl's	remark	that	the

deeper	significance	of	symmetry	for	modern	physics	comes	from	the	fact	that	“we	no	longer	seek	this	harmony	in

static	forms	like	regular	solids,	but	in	dynamic	laws”	(Weyl	1952,	77).

Group	theory	is	the	branch	of	mathematics	that	studies	the	most	general	properties	of	structures	like	R.	Unlike

analysis	or	differential	geometry,	the	connection	of	this	mathematical	theory	to	physics	was	underappreciated	until

the	beginning	of	the	twentieth	century. 	But,	as	has	been	pointed	out	(Brading	and	Castellani	2003,	4–5;	2007,

sect.	5),	earlier	attempts	to	link	physics	and	mathematical	transformations	can	be	documented.	The	case	they

discuss	is	that	of	C.	G.	Jacobi's	canonical	transformation	theory,	developed	in	the	context	of	the	“analytical”

version	of	classical	mechanics	elaborated	by	Lagrange,	d'Alembert,	Liouville,	Poisson,	Hamilton,	and	others.

The	essence	of	the	difficulty	confronting	the	analytical	formulation	of	mechanics	was	that	the	canonical

Hamiltonian	equations	of	motion	could	not	be	integrated	directly.	For	the	conservative	systems,	what	was	needed

was	a	(canonical)	transformation	that	would	turn	the	Hamiltonian	into	a	function	of	new	variables,	the	goal	being	to

transform	the	equations	of	motion	into	equivalent	ones—and	thus	the	initial	problem	into	an	equivalent	but	simpler

one	(i.e.,	one	in	which	the	canonical	equations,	in	the	new	system	of	coordinates,	can	be	integrated). 	What

grounds	this	approach	is	the	powerful	methodological	symmetry	principle	“Same	problem,	same	solution!”

(discussed	in	van	Fraassen	(1991,	25)	and	(1989,	ch.	10)).	This	transformational	strategy	is	the	conceptual

ancestor	of	the	line	of	research	pursued	by	the	famous	Göttingen	mathematicians	Felix	Klein,	Hermann	Weyl,	David

Hilbert,	and	Emmy	Noether,	who	pioneered	a	new	way	to	conceive	of	the	aims	and	methods	of	the	physical

science—as	the	study	of	the	invariant	properties	of	theories.

The	goal	of	the	following	survey	is	to	highlight	some	of	the	themes,	problems,	and	arguments	that	justify	viewing

symmetry	and	invariance	as	important	topics	in	physics	and	in	the	philosophy	of	physics.	The	approach	taken

here	(one	of	several	possible	ones )	is	to	focus	on	the	impressive	methodological	and	heuristic	effectiveness	of

3
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symmetry	thinking.	Although	methodology	and	heuristics	are	granted	center	stage,	the	discussion	will	branch	off

naturally	toward	a	variety	of	related	issues,	especially	traditional	metaphysical	and	epistemological	queries	about

scientific	classification,	explanation,	prediction,	ontology,	and	unification.	More	concretely,	as	we	just	saw	with

Jacobi,	specific	problems	in	physics	are	sometimes	solved	by	simplifying	them	as	a	result	of	operating	certain

invariance	transformations.	Or,	as	is	the	case	with	Einstein's	theories	of	special	and	general	relativity	(STR	and

GTR	henceforth),	laws	of	nature	and	even	whole	theories	are	selected	by	imposing	invariance	constraints.

Furthermore,	by	requiring	that	a	certain	type	of	symmetry	hold	locally	(as	opposed	to	globally),	one	discovers	that

the	most	natural	attempt	to	comply	with	this	constraint	leads	to	the	introduction	of	a	new	field,	which	happens	to	be

the	electromagnetic	field	(this	is	the	famous	gauge	argument,	to	be	outlined	in	section	3).

Mathematical	symmetries	are	also	an	indispensable	classificatory	tool	in	particle	physics.	Their	taxonomic	function

brings	with	it	two	main	benefits.	The	first	is	that	order	can	be	imposed	over	the	huge	variety	of	elementary

particles.	The	second	comes	from	the	use	of	these	schemes	of	classification	as	guides	toward	the	fundamental

ontology:	while	the	known	particles	neatly	fitted	the	schemes,	physicists	also	perceived	“gaps”	in	these	schemes,

that	is,	positions	for	which	no	corresponding	particle	was	detected.	The	existence	of	these	gaps	suggests	that	the

physical	particles	that	would	fill	them	might	themselves	exist,	as	discussed	in	section	5.

Moreover,	symmetry	considerations	can	operate	at	a	higher	level,	in	the	form	of	overarching	methodological	or

heuristic	principles.	We	have	already	encountered	the	seemingly	unassailable	dictum	“Same	problem,	same

solution!”	constraining	the	types	of	answers	proposed	to	physical	questions.	Even	more	general	is	the	famous

Principle	of	Sufficient	Reason,	which	is	often	invoked	as	a	justification	for	attempts	to	discover	factors	responsible

for	breaking	a	symmetry.	A	related,	but	more	specific,	methodological	rule	is	the	so-called	“Curie	Principle,”	which,

by	urging	that	any	asymmetry	in	the	effects	is	reflected	in	an	asymmetry	of	the	cause	(or,	equivalently,	that	no

asymmetry	arises	spontaneously),	suggests	a	direction	of	research	when	dealing	with	certain	problems	in

physics.

In	addition	to	its	heuristic-methodological	role,	symmetry	has	a	more	specific	epistemological	function	too.	It	is	quite

natural	to	try	to	capture	the	very	notion	of	objectivity	in	terms	of	invariance,	and	a	number	of	recent	authors	have

tried	to	do	this	in	a	variety	of	ways	(Nozick	2001;	Kosso	2003;	Debs	and	Redhead	2007).	When	judged	in

connection	to	physics,	the	key	link	between	invariance	and	objectivity	is	the	idea	that,	roughly	speaking,	what	is

truly,	objectively	real	must	look	the	same	independent	of	the	perspective	from	which	it	is	described.	In	other	words,

it	should	be	invariant	under	changing	the	frame	of	reference	of	the	observer.	The	experimental	side	of	science

also	offers	good	examples	of	the	conceptual	connection	between	objectivity	and	invariance:	the	result	of	an

experiment	qualifies	as	a	piece	of	objective	knowledge	insofar	as	the	experiment	can	be	replicated.	And	this

means	that	the	result	is	robust,	or	invariant	under	changing	laboratories,	lab	technicians,	countries,	political

systems,	and	so	on.	This	epistemological	relation	between	invariance	and	objectivity	is	not	restricted	to	physics,

but	occurs	naturally	in	ethics	as	well:	our	moral	judgments	should	not	be	influenced	by	(i.e.,	remain	invariant	under

changes	in)	the	social	status,	race,	ethnicity,	nationality,	and	so	on	of	the	persons	involved.	It	is	widely	accepted

that	these	invariance	properties	are	important	constituents	of	an	objective	ethical	assessment.

Finally,	while	symmetry	is	no	doubt	a	pivotal	notion	in	modern	science,	one	should	not	forget	that	there	are

important	aspects	of	recent	physics	in	which	it	is	an	asymmetry,	or	the	breaking	of	a	symmetry,	that	must	receive

special	attention.	One	such	example	is	the	asymmetry	between	past	and	future,	as	observed	in	the	behavior	of

entropy	in	thermodynamics	and	statistical	mechanics. 	Another	example	is	the	asymmetry	between	matter	and

antimatter,	an	asymmetry	effect	incorporated	in	the	weak	interactions. 	Equally	important,	spontaneous	symmetry

breaking	(SSB)	plays	a	central	role	in	the	Standard	Model	for	particle	physics.

This	chapter	is	structured	as	follows.	Section	2,	after	introducing	the	classification	of	symmetries,	focuses	on

discrete	symmetries.	Section	3	begins	with	a	presentation	of	the	main	result	holding	for	continuous	symmetries

(Noether's	theorem)	and	develops	naturally	toward	an	examination	of	the	so-called	“gauge	argument.”	The	aim	of

section	4	is	to	further	the	general	case	for	the	fertility	of	the	gauge	idea	but	also	to	offer	some	details	on	the	more

recent	concrete	uses	of	symmetry	in	physics,	such	as	in	achieving	electroweak	unification	and	in	the	ongoing	hunt

for	the	Higgs	boson.	Section	5	discusses	a	concrete	situation	in	which	symmetry	arguments	led	to	the	spectacular

predictions	of	elementary	particles	in	the	1960s.	Section	6	enlarges	the	perspective,	taking	up	the	theme	of	the

connection	between	laws	and	symmetries,	aiming	to	explore	Wigner's	idea	that	certain	symmetries	can	be	thought

of	as	“superprinciples”	(Wigner	1967,	43)	able	to	explain	the	laws	themselves.
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2.	Classifying	Symmetries

The	literature	reviewing	the	role	of	symmetry	in	physics,	by	philosophers	and	physicists	alike	(Brading	and

Castellani	2003b,	2007;	Morrison	2008;	Coughlan	and	Dodd	1991,	ch.	6,	etc.),	uses	the	following	classificatory

divisions.	First,	there	is	the	distinction	between	(i)	spacetime	symmetries	and	symmetries	that	do	not	involve

spacetime,	(ii)	between	continuous	and	discrete	symmetries,	and	(iii)	between	local	(“gauge”)	and	global	(“rigid”)

symmetries.	Another	important	distinction	is	the	one	introduced	by	Eugene	Wigner	(1967)	between	geometrical	and

dynamical	symmetries.	Geometrical	symmetries	are	universal,	spacetime	invariances	of	laws	of	nature—all	laws	of

physics	have	to	be	Lorentz	(Poincaré)	invariant;	dynamical	symmetries,	on	the	other	hand,	are	invariances	of	the

laws	governing	the	specific	interactions	found	in	nature	(weak,	strong,	electromagnetic,	and	gravitational).	After	I

sketch	the	variety	of	options	physicists	have	in	classifying	particular	invari-ances	in	section	2.1,	I	discuss	the

discrete	symmetries	(charge	conjugation,	parity,	and	time-reversal),	and	then	their	relations	(section	2.2).

Continuous	symmetries	and	the	local	vs.	global	distinction	will	be	examined	in	section	3;	I	will	return	to	Wigner's

views	in	the	final	section.

When	an	individual	symmetry	is	considered,	it	usually	falls	into	more	than	one	category.	For	instance,	isospin

symmetry	(to	be	discussed	below)	is	not	a	space-time	symmetry	while	being	a	global	symmetry	(in	the	sense,	to	be

explained,	that	the	proton-neutron	transformation	is	effected	everywhere	at	once).	By	contrast,	the	grounding

symmetry	principle	of	Einstein's	GTR,	the	invariance	of	the	laws	of	physics	under	transformations	of	coordinates

depending	on	arbitrary	functions	of	space	and	time,	is	of	course	a	spacetime	symmetry,	a	local	symmetry,	and,

moreover,	a	dynamical	one	(this	being	the	very	example	that	prompted	Wigner	to	introduce	the	geometrical-

dynamical	distinction	(Wigner	1967,	23)).	Yet,	when	referring	to	spatiotemporal	symmetries	physicists	usually	have

in	mind	the	symmetries	of	STR,	expressed	mathematically	as	the	10-parameter	Poincaré	group.	Another	typical

example	of	a	symmetry	unrelated	to	spatiotemporal	transformations	of	coordinates	is	charge-conjugation

symmetry,	which	holds	when	systems	transform	into	themselves	upon	swapping	particles	for	antiparticles	(e.g.,	the

electron	and	the	positron).	This	last	example	brings	up	another	way	to	classify	symmetries,	into	continuous	and

discrete.

2.1	Discrete	Symmetries:	Parity,	Charge	Conjugation,	Time-Reversal

Intuitively,	the	distinction	of	continuous	vs.	discrete	symmetries	can	be	captured	in	terms	of	the	simple	example

presented	in	section	1,	the	symmetries	of	a	square	vs.	the	symmetries	of	a	circle.	They	both	have	rotational

symmetry,	but	while	the	square	is	invariant	only	under	discrete	amounts	of	rotation	(multiples	of	90°),	the	circle

remains	invariant	under	any	amount	of	rotation	about	an	axis	passing	through	its	center.

Not	all	spatiotemporal	symmetries	are	continuous.	An	interesting	case	of	discrete	symmetry	that	is	also

spatiotemporal	is	parity,	or	space	inversion.	The	operation	involved	in	the	parity	symmetry	(the	operator	is

typically	denoted	by	P)	is	a	reflection	through	the	origin	of	the	coordinate	system.	The	transformation	simply

reverses	the	spatial	coordinates	of	an	event	from	(x,	y,	z)	to	(–x,	–y,	–z).

Importantly,	the	way	the	parity	transformation	has	been	described	above	amounts	to	understanding	it	in	an

“active”	way:	it	is	the	system	that	undergoes	the	transformation.	We	can	conceive	of	the	transformation	as	a

“passive”	one	too;	in	this	case	the	transformation	is	applied	to	the	coordinate	system	(used	in	the	system's

description),	not	to	the	system	itself.	Thus,	the	parity	transformation	amounts	to	turning	a	left-handed	coordinate

system	into	a	right-handed	one.	In	general,	physical	systems	(such	as	a	single	particle	or	a	collection	of	them)	that

remain	the	same	after	a	parity	transformation	are	said	to	have	“even”	parity;	if	they	do	not,	they	are	assigned

“odd”	parity.	More	concretely,	the	parity	transformation	operator	P	acts	on	wave-functions	as	follows.	If	r	is	the

spatial	coordinates	vector,	we	have,	by	definition,	that	P|ψ	(r,	t))	=	|ψ	(−r,	t)).	Those	states	that	are	eigenstates	of

the	parity	operator	have	definite	parity,	indicated	as	even	by	the	eigenvalue	+	1	(i.e.,	satisfying	P|ψ	(r,	t))	=	|ψ	(r,

t))),	or,	if	the	eigenvalue	is	−1,	as	odd	(P	|ψ(r,	t))	=	−|ψ(r,	t))).

While	parity	is	not	always	conserved	(e.g.,	in	processes	involving	weak	interaction,	such	as	the	beta	decay	of

cobalt-60),	physicists	recognize	an	important	epistemic	payoff	associated	with	its	conservation.	When	the	system

is	subjected	to	a	type	of	interaction	that	obeys	this	symmetry	(and	all	three	other	types	of	physical	interactions—

strong,	electromagnetic,	and	gravitational—do	obey	it),	then	changes	of	parity	state	are	forbidden.	Thus,	parity

conservation	imposes	a	constraint	on	the	possible	evolutions	of	the	system	in	question.9
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We	have	already	encountered	another	important	discrete	symmetry,	charge	conjugation	symmetry;	its	operator	is

typically	denoted	by	C,	and	the	charge	conjugation	transformation	is	C|ψ	(r))	=	±	|ψ	(r)〉.	Similar	to	the	parity

symmetry,	wave-functions	of	systems	can	have	either	even	or	odd	charge	conjugation	symmetry.	The	photon

wave-function,	for	instance,	is	odd.	This	helps	determine	the	parity	of	a	particle	that	previously	decayed	into	two

photons:	it	must	have	even	parity	(the	product	of	the	parities	of	the	two	photons),	if	the	interaction	responsible	for

the	decay	conserves	this	symmetry.	This	piece	of	information	is	extremely	valuable:	it	forbids	other	types	of

processes	to	happen,	in	particular	the	decay	of	that	particle	into	an	odd-charge	conjugated	state.

The	third	important	discrete	symmetry	is	time-reversal,	whose	operator	is	designated	as	T.	Generally	speaking,	this

invariance	means	that	the	direction	of	the	flow	of	time	is	irrelevant	in	fundamental	interactions. 	To	say	that	a

system	is	invariant	under	T	amounts	to	saying	that	if	the	system	evolves	from	an	initial	state	to	a	final	one,	then	the

reversal	of	the	direction	of	motion	of	its	components	is	possible	and	will	bring	the	system	from	the	final	state	back

to	the	initial	one	(mathematically	speaking,	we	simply	replace	the	expression	for	time	with	its	negative	version).

Particles’	collision	and	their	time-reversed	twin,	the	decay,	are	typical	contexts	in	which	this	symmetry	can	be

demonstrated.

2.2	The	CPT	Theorem

The	C	and	P	discrete	symmetries	can	operate	together,	as	a	product	(or	composite)	symmetry;	one	way	to

combine	them	is	in	the	form	of	a	CP	transformation	(i.e.,	charge	conjugation	and	space	reversal).	If	this	symmetry

is	to	hold,	then,	naturally,	the	laws	of	physics	should	be	invariant	under	two	operations:	interchanging	a	particle

with	its	antiparticle,	and	spatial	inversion	of	left	and	right.	But	this	symmetry	is	violated,	as	has	been	discovered	by

Christenson,	Cronin,	Fitch,	and	Turlay	(1964)	by	studying	the	decays	of	neutral	kaons.	More	precisely,	what	they

showed	was	that	weak	interactions	violate	both	the	charge-conjugation	symmetry	C	and	the	mirror	reflection

symmetry	P,	and	also	their	combination.	While	this	violation	might	sound	like	bad	news,	it	turns	out	that	it	is

intimately	linked	with	another	asymmetry	mentioned	above:	the	dominance	of	matter	over	antimatter	in	the	known

universe.	However,	once	the	third	operation	(time-reversal	T)	is	taken	into	account,	the	final	product	CPT	is	an

exact	symmetry—as	far	as	we	can	tell	for	now.	The	claim	has	testable	consequences,	and	two	are	usually

stressed.	First,	that	particles	and	antiparticles	have	the	same	masses	and	lifetimes—and,	as	a	corroboration	of	the

CPT	result,	this	has	been	confirmed	through	many	experiments	over	the	years.	Second,	that	some	sort	of

compensation	rule	is	in	effect:	when	one	symmetry	(or	a	pair	of	them)	is	broken,	the	other(s)	cancel	the	violation

out	so	that	the	final	composite	CPT	symmetry	remains	intact	(Coughlan	and	Dodd	1991,	48;	see	also	Greaves

2010,	for	some	philosophical	puzzles	associated	with	this	symmetry).

I	shall	stop	here	with	the	review	of	discrete	symmetries	and	in	the	next	section	I	will	turn	to	continuous	symmetries.

The	reason	they	must	be	given	special	attention	is	the	abovementioned	connection	between	these	symmetries	and

a	special	class	of	laws	of	nature—the	conservation	laws—as	established	by	a	famous	theorem	proved	by	Emmy

Noether	in	1918	(presented	in	section	3.1).	This	discussion	will	progress	naturally	toward	another	important	topic,

the	distinction	between	the	global	(or	“rigid”)	and	local,	or	gauge,	symmetries,	followed	by	the	so-called	“gauge

argument”	(section	3.2).

3.	Continuous	Symmetries,	Conservation	Laws,	and	the	“Gauge	Argument”

3.1	Noether's	Theorem

In	a	nutshell,	the	theorem	of	interest	here 	maintains	that	for	every	continuous	global	symmetry	of	the	Lagrangian

there	is	a	conservation	law	(and	vice	versa,	though	this	second	claim	is	not	made	in	the	original	theorem).	It	is

clear,	even	from	this	rough	formulation,	that	this	result	is	not	explicitly	available	in	standard	Newtonian	classical

mechanics.	It	presupposes	the	conceptual	framework	of	the	so-called	“analytical”	mechanics,	in	which	the

Lagrangian	function	L	(in	essence,	the	difference	between	the	kinetic	and	potential	energy)	plays	the	central	role.

An	important	methodological	innovation	lies	behind	the	Lagrangian	formulation	of	mechanics:	the	step-by-step

Newtonian	description	of	physical	systems	is	abandoned,	and	an	overall	approach	is	adopted.	Within	the

Newtonian	scheme,	the	aim	is	to	compute	what	the	system	(say,	a	moving	particle)	will	do	in	the	next	infinitesimal

time	interval.	Within	the	Lagrangian	scheme,	the	issue	is	tackled	from	a	different	angle:	we	take	an	overall	view	of
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the	trajectory	of	the	particle	and	determine	it	all	at	once.	The	actual	path	is	singled	out	as	the	one	that	satisfies

certain	minimization	constraints.	While	in	terms	of	predictive	power	the	Lagrangian	and	Newtonian	versions	of

mechanics	are	taken	to	be	equivalent,	physicists	tend	to	think	that	results	such	as	Noether's	make	the	former

preferable	to	the	latter; 	however,	recent	analyses	of	this	relation	(such	as	Mark	Wilson's,	in	this	volume)

recommend	more	caution	in	assigning	such	priorities.

The	Lagrangian	methodology	can	be	broken	down	into	two	steps.	After	defining	the	function	L,	a	functional	S—

called	the	action—is	introduced.	S	is	defined	for	each	possible	path	(“history”)	connecting	the	initial	and	the	final

spacetime	positions	of	a	particle,	as	the	time	integral	of	the	Lagrangian.	Second,	the	actual	path	followed	by	the

particle	is	selected:	among	all	possible	paths,	this	is	the	one	that	minimizes	S.	The	application	of	this	minimization

(extremum)	constraint—Hamilton's	“Principle	of	the	Least	Action”—leads	to	the	Euler-Lagrange	equations:

Physicists	recognize	important	heuristic	gains	obtained	from	reconceiving	classical	mechanics	in	this	way.	Unlike

the	Newtonian	approach,	the	analytical	approach	requires	the	construction	of	a	single	quantity	L,	a	scalar,	which

yields	the	equations	of	motion.	Moreover,	due	to	the	introduction	of	the	so-called	“generalized”	coordinates	in	the

analytical	scheme	(usually	denoted	by	q),	the	Euler-Lagrange	equations	preserve	the	same	form	upon	switching

from	Cartesian	coordinates	to	any	other	general	set	of	coordinates.	Finally,	the	observation	that	brings	us	closer	to

Noether's	theorem	is	that	in	this	formalism	the	link	between	symmetries	and	conservation	laws	becomes	easily

noticeable.	If	we	require	that	the	Lagrangian	L	be	independent	of	a	certain	coordinate	q	(which	is	to	require	that	L

is	invariant	under	the	transformations	of	this	coordinate)	then,	in	mathematical	terms,	this	is	tantamount	to	saying

that	its	corresponding	partial	derivative	is	zero:

Now,	if	we	look	at	the	Euler-Lagrange	identity,	it	is	evident	that	the	time	derivative	appearing	on	its	right	hand

has	to	be	nil	too,	which	amounts	to	the	statement	of	a	conservation	law:	namely,	that	the	quantity

does	not	vary	in	time.	In	particular,	if	we	return	to	usual	Cartesian	coordinates	and	plug	in

we	get	that

and,	since

is	the	linear	momentum	p,	it	follows	that	this	quantity	is	conserved.	In	other	words,	invariance	under	translations	in

space	implies	conservation	of	linear	momentum.

The	lesson	to	draw	from	these	simple	considerations	is	that	we	actually	do	not	need	Noether's	theorem	to	establish

some	straightforward,	but	important,	implications	like	the	one	above.	Since	the	relation	between	some	of	the	familiar

symmetries	and	the	conservation	laws	was	not	a	surprise	at	the	time	she	communicated	her	work,	the	main	reason

for	which	the	theorem	was	praised	was	its	generality	(Brading	and	Brown	2003,	89,	98):	roughly	put,	it	proves	the

most	general	fact	that	if	the	action	integral	S	is	invariant	under	a	continuous	(Lie)	group	of	transformations

(characterized	by	a	finite	number	s	of	parameters)	then,	if	the	Euler-Lagrange	equations	are	satisfied,	then	there

exist	s	conserved	“currents.”	Yet,	as	Brading	and	Brown	(2003,	92)	point	out,	Noether's	original	concern	had	to	do

with	the	following	(again,	more	general)	question,	the	so-called	“variational	problem”	(which	is	in	fact	the	title	of	her

paper):	given	a	smooth	infinitesimal	transformation	of	the	independent	or	dependent	variables	(appearing	in	the

Lagrangian),	under	what	conditions	does	the	action	remain	invariant?	More	precisely,	her	aim	was	to	find	the

general	conditions	that	the	variables	must	satisfy,	if	the	first-order	functional	variation	of	the	action	∂S	vanishes

(assuming	that	the	region	of	integration	in	the	integral	defining	the	action	is	arbitrary).	The	more	familiar

implications—such	as	the	one	holding	between	the	invariance	under	translations	in	time	and	the	conservation	of

energy,	or	between	the	invariance	under	spatial	rotations	and	the	conservation	of	angular	momentum—follow

immediately,	as	applications	of	the	general	result.	Furthermore,	the	theorem	is	general	in	yet	another	way.	Loosely

speaking,	it	turns	out	that	the	details	of	the	action	are	irrelevant:	if	two	different	actions	remain	invariant	under	the
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same	transformation,	the	same	conservation	law	corresponds	to	both	(Zee	2007,	119–120).

In	Noether's	obituary,	Einstein	placed	her	theorem	in	the	special	category	of	“spiritual	formulas.”	This	praise	was

meant	to	convey	the	point	that	the	result	amounts	to	significantly	more	than	a	technically	brilliant	achievement:	it	is

a	profound	insight	into	the	order	of	nature.	In	addition	to	this	gain	in	understanding,	the	practical-heuristic	use	of

the	theorem	is	equally	impressive.	Examples	are	easy	to	find,	especially	in	the	high-energy	domains.	As	Zee

(2007,	119–120)	explains,	these	are	situations	in	which	physicists	knew	the	continuous	symmetry	governing	a

certain	physical	situation,	and	thus	could	confidently	begin	to	look	for	a	conserved	quantity	(as	we	will	see,	isospin

is	a	case	in	point).	The	reverse	case	is	also	possible:	sometimes	the	physicists	did	not	have	any	clue	as	to	what

the	action	was	but	were	able	to	identify	experimentally	certain	conserved	quantities,	so	they	inferred	that	some

corresponding	symmetries	must	exist.	The	theorem	is	then	invoked	to	give	them	hints	about	what	the	action	might

be.	In	fact,	this	second	situation	is	illustrated	by	the	famous	example	of	the	electric	charge.	That	this	quantity	is

conserved	had	been	known	for	a	long	time,	and	Noether's	theorem	indicates	that	a	certain	symmetry	must

correspond	to	it.	Indeed,	in	1927,	Fritz	London,	building	up	on	some	ideas	advanced	by	Weyl	in	the	early	1920s,

showed	that	the	conservation	of	charge	follows	from	global	phase	invariance	(that	is,	invariance	of	the	physics

under	an	arbitrary	shift	in	the	complex	phase	of	the	wave-function).	Weyl's	previous	idea	was	to	propose	scale

invariance—i.e.,	the	requirement	that	the	physical	laws	do	not	change	if	the	scale	of	all	length	measurements	is

shifted	by	the	same	amount.	This	insight,	although	ultimately	incorrect,	was	nothing	short	of	revolutionary—it

marked	the	first	appearance	of	the	concept	of	“gauge.”	The	context	in	which	Weyl	did	this	work	was	his	reflections

on	possible	ways	to	generalize	the	Riemannian	geometry	of	Einstein's	GTR	(for	more	details,	see	Ryckman	2003).

3.2	The	Gauge	Argument

It	is	worth	beginning	the	following	brief	exposition	of	the	so-called	“gauge”	argument	(and	“gauge”	principle)	by

noting	that,	in	and	of	itself,	the	requirement	of	global	phase	invariance—i.e.,	the	requirement	that	the	physics	does

not	change	upon	the	multiplication	of	the	wave-function	by	a	constant	wave	factor—is	rather	uncontroversial.	The

more	interesting	question	is	what	happens	when	a	related	but	stronger	constraint	is	imposed,	namely	local	phase

invariance.	(Historically,	the	locality	idea	was	envisaged	in	analogy	with	the	symmetry	grounding	GTR,	the

requirement	of	invariance	under	arbitrary	curvilinear	coordinate	transformations.)	Thus,	the	original	thought	was	to

study	those	situations	in	which	the	phase	factor	is	not	held	constant	(same	everywhere),	but	is	allowed	to	vary	with

each	spacetime	point	(hence	the	global/local	distinction).

Following	Quigg	(1983,	45–47)	and	Martin	(2003,	42–43),	more	detail	can	be	filled	in	the	above	general	description.

If	we	start	with	the	Lagrangian	L	for	a	free	complex	scalar	field	ψ(x),	the	corresponding	action	will	be	invariant	(∂L	=

0)	under	global	transformations	of	the	form	 ,	where	θ	is	constant	(the	corresponding	group

is	the	abelian	Lie	group	U(1)).	When	the	equations	of	motion	are	satisfied,	Noether's	theorem	gives	us	the

corresponding	conserved	current	(where	q	can	be	identified	as	the	electric	charge).	As	noted,	the	next	step	is	the

localization	of	the	transformation;	we	now	take	θ	to	be	θ(x),	a	function	of	spacetime	coordinates.	It	is	immediate

that	L	is	no	longer	invariant	under	the	corresponding	transformation	 ,

since	simple	computations	show	that	the	derivatives	∂ θ	(x)	do	not	vanish.	Therefore,	if	the	local	invariance	is	to

be	preserved,	L	has	to	be	modified.	Instead	of	L	we	consider	a	new	Lagrangian,	L*	=	L	−	J A ,	where	

(the	factors	γ 	are	the	Dirac	matrices).	This	new	Lagrangian	is	invariant,	and	what	contributed	to	securing	the

invariance	was	the	introduction	of	the	(“compensatory”)	field	A 	(the	so-called	“gauge	potential”),	which

transforms	as	A (x)	→	A (x)	−	∂ θ(x).	It	is	in	virtue	of	this	behavior	that	A 	can	be	reinterpreted	as	the	(familiar)

electromagnetic	potential.	Thus,	the	consequences	of	imposing	this	“local”	symmetry	are	quite	astonishing:

roughly	speaking,	one	realizes	that	a	natural	route	to	take	is	to	introduce	a	new	field	that	has	the	properties	of	the

electromagnetic	field!	It	is	as	if	there	is	a	“gauge	logic”	of	nature	(Martin	2003,	43).	This	field	must	have	an	infinite

range,	so	its	quantum	must	be	massless	(to	obey	the	time-energy	uncertainty	relation:	massive	particles—the

quanta	of	the	fields—decay	quickly,	and	can	travel	only	short	distances). 	The	surprise	is	that	this	is	what	actually

happens	in	nature:	the	quantum	is	the	photon.	The	situation	is	conceptually	intriguing,	since	it	looks	like	something

(a	physically	significant	object)	has	been	gotten	from	nothing	(mere	mathematical	re-description).

A	rehearsal	of	the	main	philosophical	problems	raised	by	this	argument	is	in	order.	Physicists	reflecting	on	the

“power	of	the	gauge”	usually	endorse	this	feeling	of	mystery	and	surprise,	especially	in	their	more	popular

presentations	(e.g.,	Schumm	2004).	Most	philosophers,	however,	adopt	a	more	circumspect	attitude	(see	Brown

13

14

ψ → ψ;   →eiqθ ψ̄̄ e−iqθψ̄̄

ψ(x) → ψ(x),   (x) → (x)eiqθ(x) ψ̄̄ e−iqθ(x)ψ̄̄

μ

μ
μ = q ψJ μ ψ̄̄ γμ

μ

μ

μ μ μ μ

15

PDF Compressor Free Version 



Symmetry

Page 8 of 23

1999;	Teller	2000;	Earman	2003a;	Healey	2007;	etc.),	expressing,	in	some	cases,	serious	reservations	about	this

power.	Martin	(2003)	provides	a	recent	comprehensive	analysis	of	this	issue,	along	the	following	lines.	First	of	all,	it

is	not	clear	what	are	the	metaphysical	and	epistemological	grounds	upon	which	to	demand	local	gauge	invariance;

or,	in	other	words,	it	is	far	from	clear	why	one	should	embrace	the	Yang-Mills	gauge	principle—“every	continuous

symmetry	of	nature	is	a	local	symmetry”	(Mills	1989,	496;	emphasis	in	original).	A	series	of	reasons	are

traditionally	advanced	in	the	textbooks,	but	a	quick	review	of	the	philosophical	literature	(some	of	it	mentioned

above)	reveals	that	they	are	not	found	entirely	satisfying.	In	their	1954	paper,	Yang	and	Mills	argue	that	the	idea	of

local	symmetries	is	“more	consistent	with	the	concept	of	localized	fields”	(1954,	191;	see	also	Auyang	1995).	More

generally,	physicists	emphasize	that	locality	is	required	on	the	basis	of	STR	precluding	instantaneous

communication	between	distant	spacetime	locations.	Yet,	it	is	objected,	it	is	not	immediately	evident	whether	the

local–global	distinction	grounding	the	gauge	argument	perfectly	mirrors	the	locality	constraint	as	imposed	by	STR.

Another	topic	that	caught	philosophers’	attention	is	the	uniqueness	of	the	compensatory	modification	described

above.	Some	deny	this	feature	altogether;	Martin,	for	instance,	argues	that	“the	modification	is	not	uniquely

dictated	by	the	demand	of	local	gauge	invariance.	There	are	infinitely	many	gauge-invariant	terms	that	might	be

added	to	the	Lagrangian	if	gauge	invariance	were	the	only	input	to	the	argument”	(2003,	44).	In	other	words,	what

is	questioned	here	is	the	real	power	of	this	invariance	demand:	if	taken	in	isolation,	local	gauge	invariance	does

not	dictate	the	form	of	the	field;	this	uniqueness	is	achieved	only	by	also	requiring	(i)	Lorentz	invariance,	and	(ii)

that	the	final	outcome	be	a	renormalizable	theory. 	Thus,	Martin	suggests,	the	renormalizability	of	the	theory

(roughly,	the	mathematical	technique	by	which	it	is	ensured	that	the	theory	delivers	finite	values	as	predictions	of

the	quantities	of	interest,	such	as	the	electric	charge)	should	be	granted	a	more	prominent	role	in	the	evaluation	of

the	outcome	of	the	gauge	argument.

One	can	even	ask	why	the	gauge-invariance	constraint	is	more	significant	than	renormalizability	in	the	economy	of

the	argument.	Thus,	a	different	angle	of	attack	against	the	argument	is	possible,	according	to	which

renormalizability	is	in	fact	the	pivotal	feature	of	the	model;	gauge	invariance	becomes	only	one	among	a	few

valuable	features	of	a	quantum	theory.	Finally,	a	good	deal	of	the	discussion	in	the	philosophical	literature	is

devoted	to	clarifying	to	what	extent	the	argument	presents	us	with	a	situation	in	which	an	interaction	field	is

somehow	“generated”	out	of	sheer	mathematical	formalism. 	Earman	(2003a,	157)	summarizes	the	grounds	for	a

reserved	attitude	toward	the	“magic”	of	the	gauge	as	follows:

I	am	in	agreement	with	Martin	([2003])	who	finds	the	“getting	something	from	nothing”	character	of	the

gauge	argument	too	good	to	be	true.	In	particular,	a	careful	look	at	applications	of	this	argument	reveals

that	a	unique	theory	of	the	interacting	field	results	only	if	some	meaty	restrictions	on	the	form	of	the	final

Lagrangian	are	implicitly	in	operation;	and	furthermore,	the	kind	of	locality	needed	for	the	move	from	the

“global	symmetry”	(invoking	Noether's	first	theorem)	to	the	“local	symmetry”	(invoking	Noether's	second

theorem)	is	not	justified	by	an	appeal	to	the	no-action-at-a-distance	sense	of	locality	supported	by

relativity	theory.	Not	only	is	there	no	magic	to	be	found	in	the	gauge	argument,	but	the	“gauge	principle”

that	prescribes	a	move	from	global	to	local	symmetries	for	interacting	fields	can	be	viewed	as	output	rather

than	input:	for	example,	it	can	be	viewed	as	the	product	of	a	self-consistency	requirement	(see,	for

example,	Wald	1986)	or	as	a	consequence	of	the	requirement	of	renormalizability	(see,	for	example,

Weinberg	1974).

4.	Gauge	Theories,	Unification,	Symmetry	Breaking,	and	the	Higgs	Field

4.1	The	Fertility	of	the	Gauge	Idea

Electromagnetism	can	be	understood	as	the	first	illustration	of	the	application	of	the	(heuristic)	effectiveness	of	the

gauge	principle. 	But	physicists	were	able	to	find	a	larger	significance	of	the	local	gauge	invariance	idea.	As	Mills

(1989)	narrates,	C.	N.	Yang	was,	in	the	mid-1950s,	among	the	very	few	who	realized	the	potential	of	this	insight;	he

envisaged	the	thought	that	all	fundamental	physical	theories	could	be	formulated	as	gauge	theories.	Back	then,	the

only	conservation	law	seemingly	similar	to	that	of	the	electric	charge	was	the	conservation	of	a	quantity	called

“isospin”(more	on	this	below).	In	fact,	the	scheme	Yang	had	in	mind	was	an	analogy	with	the	local	gauge

invariance	idea	that	worked	so	well	in	the	electromagnetic	case:	as	we	saw,	for	the	strong	interaction	the	role	of

the	electric	charge	would	be	played	by	isospin,	and,	once	the	local	gauge	invariance	constraint	was	in	place,	new
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(gauge)	fields	needed	to	be	introduced,	having	the	“gluing”	role	assigned	to	the	electromagnetic	field	in

electrodynamics.

The	isospin	idea	has	been	developed	along	the	following	lines. 	Physicists	were	intrigued	by	two	indisputable

experimental	findings.	First,	neutrons	and	protons	have	approximately	the	same	mass. 	Second,	despite	the	fact

that	they	have	different	electric	charges	(neutrons	are	neutral	while	protons	are	positive),	they	are	bound	together

inside	the	nucleus	by	the	strong	nuclear	force.	This	means,	in	physicists’	jargon,	that	the	strong	force	is	“charge-

blind.”	Hence,	their	charge	could	not	be	of	physical	significance,	as	far	as	the	strong	force	is	concerned—that	is,

once	other	types	of	interactions,	the	electromagnetic	one	in	particular,	are	“switched	off.”	For	this	reason,	a

natural	idea	was	to	conceive	of	their	different	charges	as	mere	different	“labels”	applied	to	them.	Heisenberg,	who

introduced	the	isospin	idea	in	1932,	proposed	to	treat	protons	and	neutrons	as	different	states	(labeled	n	and	p)	of

the	same	particle,	called	the	nucleon.	In	this	way,	the	pair	n−p	can	be	understood	either	as	referring	to	two

particles	(the	orientation	of	the	isospin	distinguishing	them),	or	as	describing	two	different	states	of	the	same

particle,	the	nucleon.	Thus,	isospin	is	introduced	by	analogy	with	the	electron	spin;	just	as	the	spin	of	the	electron

can	have	two	orientations	along	the	third	axis,	so	too	the	nucleon	can	appear	in	two	isospin	states	(the	positive

eigenvalue	indicates	a	proton,	while	the	negative	one	a	neutron).

This	invariance	of	strong	interactions	under	neutron-proton	permutations	simply	means	that	the	proton	and	the

neutron	are	indistinguishable 	—when	looked	at	from	the	viewpoint	of	this	kind	of	interaction.	(I	mention	this

aspect	now,	since,	as	we	will	see	below,	it	is	important	for	classificatory	reasons.)	As	with	all	symmetries,	the

proton-neutron	isospin	symmetry	is	captured	mathematically	in	terms	of	a	group	structure;	the	group	involved	here

is	SU(2).	The	elements	of	this	group	“rotate”	protons	into	neutrons	(and	vice	versa);	nucleons	are	thus	“mixtures”

of	these	two	components.	Yang	and	Mills	built	up	on	this	idea	and	required	invariance	under	local	redefinitions	of

these	components	of	the	nucleon.	In	accordance	with	the	“gauge	logic”	presented	above,	this	invariance	led	to

the	introduction	of	a	massless	spin-1	gauge	particle	called	ρ,	which,	because	of	the	possibility	that	the	nucleon

might	change	its	electric	charge	during	interactions,	had	to	exist	in	three	charged	states—positive,	negative	and

neutral.

But	these	particles	(gauge	bosons)	could	not	be	found	in	nature,	so	a	new	theory	had	to	be	advanced.	As

gradually	became	evident,	the	strong	interactions	are	governed	by	a	bigger	symmetry	and,	consequently,	the

structure	of	interest	had	to	be	a	bigger	group.	Roughly	speaking,	the	story	unfolds	as	follows	(Coughlan	and	Dodd

1991,	60).	First,	a	new	characteristic	of	strong	interactions	has	been	discovered—the	conservation	of	a	new

quantity,	dubbed	by	Gell-Mann	“strangeness.”	Second,	once	this	new	quantum	number	was	considered	in	addition

to	the	isospin	number,	the	new	symmetry	governing	these	interactions	has	been	found	to	be	SU(3).	Thus,	it	turned

out	that	the	original	theories	about	isospin	have	in	fact	been	invoking	the	symmetry	above	its	fundamental	level.

Nevertheless,	those	theories	were	of	crucial	importance	in	the	development	of	the	ideas,	and	the	symmetries,

underlying	the	ultimately	successful	theory:	the	gauge	theory	based	on	the	SU(3)	group,	quantum

chromodynamics	(QCD),	which	postulates	quarks	(of	various	“colors”)	as	the	basic	entities	and	the	ultimate

constituents	of	hadrons	(the	generic	name	for	particles	participating	in	strong	interactions).

Not	only	strong	interactions,	but	weak	interactions	too	can	be	treated	within	the	gauge	framework. 	The	analogy

with	isospin	is	also	heuristically	helpful	in	this	context,	the	conserved	quantity	being	called	“weak	isospin.”	The	key

physical	invariance	grounding	the	theory	is	that	the	weak	interaction	is	blind	to	distinctions	between	the	neutrino

and	the	electron—it	only	“sees”	a	generic	lepton.	Mathematically,	the	structure	of	interest	is	the	group	of	weak

isospin,	which,	as	it	happens,	is	the	previously	introduced	SU(2).	So,	after	overcoming	a	series	of	false	starts	and

various	experimental	difficulties, 	one	can	say	that	at	the	beginning	of	the	1970s	the	strong,	electromagnetic	and

weak	interactions	were	described	by	relatively	well-understood	gauge	theories.	An	important	theoretical

breakthrough,	in	which	symmetry	considerations	had	a	crucial	role	to	play,	came	in	1967–68	when	Steven

Weinberg	and,	independently,	Abdus	Salam,	advanced	a	unified	model	of	the	electromagnetic	and	weak

interactions.	Their	model	drew	on	previous	work	by	Sheldon	Glashow	and,	in	a	nutshell,	was	a	gauge	theory	whose

gauge	group	consisted	in	“pasting”	together	the	two	groups	governing	the	component	interactions:	U(1)	×	SU(2).

The	Glashow-Salam-Weinberg	(GSW)	model,	shown	to	be	renormalizable	by	‘t	Hooft	and	Veltman	in	1971,	was

meant	to	describe	the	interactions	of	leptons	through	the	exchange	of	weak	bosons	and	photons. 	While	the

thought	that	the	two	types	of	interactions	might	receive	a	unified	treatment	was	in	the	air	for	a	while	(since	two	of

the	weak	bosons	bear	electrical	charge),	the	new,	distinctive	feature	of	the	model	was	the	incorporation	of	a

“mechanism”	meant	to	ensure	that	the	W	and	Z	bosons	acquire	mass,	while	the	photon	remains	massless—and
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today	this	is	called	the	“Higgs	mechanism”	after	Peter	Higgs,	the	physicist	who	proposed	it	in	1964.

4.2	Symmetry	Breaking	to	the	Rescue:	Electroweak	Unification	and	the	Higgs	Mechanism

One	way	to	solve	the	mass	problem	for	the	Standard	Model	was	to	borrow	an	idea	from	condensed	matter	physics,

the	spontaneous	breaking	of	a	symmetry	(SSB).	More	precisely,	it	was	the	work	done	on	phase	transitions	in

(quantum)	statistical	mechanics	that	offered	the	best	analogy.	Upon	a	drop	in	temperature	below	a	certain	value,

liquid	water	freezes;	the	formation	of	ice	crystals	brings	the	system	in	a	stable	state	(free	energy	is	minimized),	but

the	rotational	symmetry	of	molecules	available	in	the	liquid	state	is	lost	(or	“broken”).	In	essence,	SSB	claims	that

the	massiveness	of	the	particles	arise	in	an	analogous	fashion:	right	after	the	Big	Bang,	when	the	value	of	the

available	energy	dropped	under	a	critical	value,	the	unified	(and	symmetric)	electroweak	interaction	broke	into

what	we	observe	today,	the	electromagnetic	and	weak	components.	Particles’	interaction	with	the	Higgs	field

pervading	the	whole	space	“slowed	them	down,”	inducing	effects	similar	to	inertial	effects,	and	thus	mimicking	their

possession	of	mass.	Importantly,	this	is	a	general	solution	to	the	mass	problem:	all	particles	must	interact	with	this

“dragging”	field—not	only	the	W	and	Z	bosons,	but	electrons	and	protons	too,	the	top	quark,	and	so	on—to	appear

as	massive	(the	more	intensely	they	couple	to	the	Higgs	field,	the	more	massive	they	appear).	The	photon,	on	the

other	hand,	does	not	couple	to	the	Higgs	field	at	all,	and	thus	appears	as	massless.	More	precisely,	the	Higgs	field

is	a	doublet	of	fields	(Φ ,	Φ ),	and	the	theory	claims	that	right	after	the	Big	Bang	nature	chose	one	of	these

components	(the	lower	one)	as	being	the	field	pervading	the	whole	universe. 	As	this	choice	is	arbitrary,	the

symmetry	of	the	Higgs	doublet	is	in	fact	preserved;	it	is	not	really	broken,	only	hidden.

Models	borrowed	from	classical	mechanics	have	also	been	heuristically	instrumental	in	developing	the	SSB

insight. 	Imagine	a	small	ball	on	top	of	a	Mexican	hat;	this	is	a	symmetric	configuration,	but	not	the	one	of

minimum	energy.	Similar	to	the	freezing	example,	the	ground	state	is	asymmetric;	it	is	the	state	toward	which	the

system	tends	to	evolve	as	a	result	of	a	small	perturbation,	the	one	in	which	the	ball	tumbles	down	and	settles	into

the	rim	in	an	arbitrary	position	(one	among	the	infinite	number	of	positions	available). 	In	the	quantum	context,

SSB	occurs	(roughly	speaking)	when	the	Lagrangian	is	symmetric	but	the	ground	state	is	not.	When	tried	as	a

solution	to	the	mass	problem,	the	idea	of	a	spontaneous	breaking	of	a	global	symmetry	works	only	up	to	a	point.

Mathematical	manipulations—in	fact,	redefinitions	of	the	two	component	fields—do	deliver	the	sought	outcome,	that

is,	the	needed	mass	is	“generated”;	yet,	as	it	turns	out,	the	main	drawback	comes	from	a	result	known	as	the

Goldstone	theorem	(see	Goldstone	1961,	1962),	which	claims	in	essence	that	the	spontaneous	breaking	of	a

(global)	symmetry	results	in	the	appearance	of	a	massless	spin-0	boson,	the	so-called	“Goldstone	boson.”	But

such	an	entity	does	not	exist	in	nature,	so	this	specific	way	to	exploit	SSB	had	to	be	abandoned.	The	main	insight

could	be	rescued	though,	by	demanding	that	the	Mexican-hat-shaped	Lagrangian	be	invariant	under	local	gauge

transformations.	As	expected,	the	logic	of	gauge	has	it	that	this	requirement	can	be	satisfied	if	a	massless	gauge

boson	is	introduced.	In	this	new	context,	however,	the	old	trick	works.	Upon	redefining	the	two	component	fields,

physicists	achieved	exactly	what	they	needed:	the	Goldstone	boson	disappears,	as	if	absorbed	into	the	massless

gauge	boson	just	added 	—which	thus	acquires	mass	(since,	as	physicists’	say,	it	“eats”	the	Goldstone	boson).

For	this	story	to	work,	the	element	still	in	need	of	experimental	confirmation	is	the	actual	existence	of	the	quanta	of

the	Higgs	field	(the	Higgs	boson),	one	of	the	emerging	redefined	fields.	As	it	happens,	the	present	essay	is	being

written	during	the	time	when	experimentalists	at	Fermilab's	Tevatron	and	at	CERN's	Large	Hadron	Collider	are

searching	for	the	Higgs	boson;	as	of	May	2012,	its	existence	has	yet	to	be	either	confirmed	or	ruled	out.

While	various	events	associated	with	this	biggest	scientific	experiment	ever	performed	make	the	popular	news

regularly,	what	fascinates	physicists	and	philosophers	of	physics	alike	are	a	series	of	extremely	intriguing

theoretical	features	of	the	Higgs	field.	It	is	generally	acknowledged	that	this	field,	were	it	to	exist,	would	be	rather

unique.	The	Higgs	mechanism	is	indeed	the	simplest	mechanism	having	the	necessary	features	(gives	mass	to	the

gauge	bosons	and	is	incorporable	in	a	gauge	theory).	It	has	a	nonzero	(renormalized)	vacuum	expectation	value

(of	246	GeV)	and,	as	Gunion,	Stange,	and	Willenbrock	point	out,	“despite	the	simplicity	of	the	standard	Higgs

model,	it	does	not	appear	to	be	a	candidate	for	a	fundamental	theory.	The	introduction	of	a	fundamental	scalar	field

is	ad	hoc;	the	other	fields	in	the	theory	are	spin-one	gauge	fields	and	spin-half	fermion	fields….	The	standard	Higgs

model	accommodates,	but	does	not	explain,	those	features	of	the	electroweak	theory	for	which	it	is	responsible”

(1996,	24).	The	worry	here	is	akin	to	the	more	general	and	familiar	philosophical	antirealist	concern	that	the

postulation	of	entities	and	structures	guided	by	pragmatic	values	might	generate	a	conflict,	in	this	case	between

simplicity	and	explanatory	power.
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Even	when	told	in	this	oversimplified	form,	this	story	invites	a	diversity	of	philosophical	questions,	mainly

concerning	three	issues:	(i)	the	ontological	implications	of	the	electroweak	unification,	(ii)	the	nature	of	the	Higgs

mechanism,	and	(iii)	the	right	epistemological	attitude	toward	the	hidden/spontaneously	broken	symmetries.	In

essence,	the	literature	in	this	area	emphasizes	the	serious	difficulties	encountered	in	the	process	of	clarifying	and

interpreting	the	conceptual	moves	made	by	the	theoreticians.	In	particular,	a	key	epistemological	problem	stands

out:	insofar	as	it	is	impossible	to	“switch	off”	the	Higgs	field,	we	cannot	really	know	what	happens	with	the

particles’	mass	in	its	absence.

Moreover,	what	are	the	metaphysical	lessons	to	draw	from	the	electroweak	unification?	This	is	unclear	given	that

the	pasting	together	of	the	two	theories	and	the	mixing	of	the	fields	does	not	seem	to	be	much	more	than	a

mathematical,	formal	operation,	doing	rather	little	to	vindicate	the	idea	that	we	have	discovered	true	unity	in

nature,	as	Georgi	(1989),	Maudlin	(1996),	and	Morrison	(2000)	discuss.	Furthermore,	one	can	ask	whether	this

case	of	unification	lends	support	or	actually	undermines	the	idea	that	unification	and	explanation	are	connected

(Morrison	2000).	Another	source	of	concern	is	the	actual	meaning	of	SSB	and	the	(methodological)	reasons,	if	any,

for	which	we	should	give	priority	to	symmetric,	as	opposed	to	asymmetric,	laws	(Earman	2003b,	2004b).	Qualms

are	also	raised	with	regard	to	the	empirical	grounds	for	believing	in	the	existence	of	underlying	hidden	symmetries

given	that	what	we	observe	is	asymmetric	phenomena	(Morrison	2000,	2003).	Topics	prompted	by	the	analysis	of

the	Higgs	mechanism	range	from	the	difficulty	of	getting	a	grip	on	its	gauge-invariant	content	(Earman)	to	the

question	of	whether	we	should	interpret	it	realistically	or	not	(Morrison).

5.	Symmetries,	Classification,	and	Prediction

Ontological 	issues	such	as	the	ones	discussed	above	are	not	the	only	area	where	symmetry	considerations	are

important.	They	are	also	essential	in	classification	and	prediction;	more	precisely,	they	are	instrumental	in	framing

a	new	form	of	prediction	called,	by	the	physicists	themselves,“prediction	from	multiplet	structure”	(Lipkin	1966).

While	not	unknown	to	philosophers	of	science,	this	idea	has	not	been	fully	investigated	yet.	Below	I	present	it	very

briefly,	by	drawing	on	a	concrete	example,	the	prediction	of	the	“omega	minus”	hadron	by	Gell-Mann	and	Ne'eman

in	1962.

Since	Weyl	and	Wigner's	important	successes	in	applying	group	theory	to	quantum	mechanics,	physicists	have

tried	to	replicate	their	methods	and	take	inspiration	from	their	insights.	In	particular,	internal	symmetries	have

become	an	indispensable	tool	in	the	classification	of	elementary	particles	and,	as	we	will	see,	equally	important

achievements	have	followed.	Wigner	is	credited	with	introducing	the	idea	that	the	2-dimensional	space	defined	by

the	proton	and	neutron	has	a	mathematical	correspondent	in	the	2-dimensional	irreducible	representation	of	the

group	SU(2).	This	insight	is	now	exploited	more	generally:	in	mathematical	terms,	an	elementary	particle	is

conceived	to	be	a	physical	system	whose	possible	states	transform	into	each	other	according	to	some

representation	of	the	appropriate	symmetry	group—in	the	case	first	discussed	by	Wigner,	the	group	is	SU(2)	and

the	specific	way	in	which	these	transformations	take	place	is	described	mathematically	in	terms	of	the	irreducible

representations	of	SU(2).	There	is	an	intuitive	way	to	grasp	this	relation	(Castellani	1998):	the	elementarity	of	a

particle	(system)	is	mirrored	by	the	irreducibility	of	the	representation	of	a	certain	group,	where	the	elements	of	the

group	are	the	transformations	that	govern	the	interaction	into	which	the	particle	enters. 	Given	the	symmetry

group	governing	a	physical	system,	the	superposed	states	of	the	system	(in	particular,	the	protonness	and	the

neutronness	states)	transform	into	each	other	according	to	the	irreducible	representations	of	the	group.	But	what	is

the	connection	between	the	physics	and	the	mathematics	more	precisely?	At	the	physical	level,	there	are	the

transformations	(of	superposed	states),	and	these	transformations	are	expressed	mathematically	as	operators

acting	on	the	state	space.	The	eigenvalues	of	these	operators	supply	the	invariant	numbers	(to	be	used	as	labels)

for	identifying,	or	classifying,	the	irreducible	representations	of	the	group.

Given	their	similarity,	the	proton	and	the	neutron	were	thought	to	occupy	the	same	place	in	a	scheme	of

classification.	On	the	face	of	things,	one	might	wonder	why	this	is	important.	The	answer	is	that	the	epistemic

context	of	particle	physics	is	a	special	one.	The	taxonomical	aspects	are	far	from	trivial	here	because	elementary

particles,	by	their	very	elementary	nature,	lack	the	great	number	of	properties	displayed	by	the	medium-sized

physical	objects	(color,	shape,	texture,	etc.).	Therefore,	insofar	as	these	typical	classificatory	criteria	cannot	be

found	in	the	micro-world,	taxonomies	in	fundamental	physics	are	very	hard	to	come	by,	so	any	unambiguous

criterion	able	to	contribute	to	particles’	identification	and	classification	is	welcome. 	These	criteria	are	usually
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supplied	by	the	particles’	associated	sets	of	quantum	numbers	(mass,	charge,	spin,	isospin,	strangeness,	etc.),

which	describe	their	conservation	properties	under	various	sets	of	transformations	and	thus	determine	their

positions	in	multiplets.	These	multiplets,	in	turn,	are	mathematically	determined	as	bases	of	irreducible

representations	of	different	groups	of	transformations	(such	as	U(1),	SU(2),	or	SU(3)).	In	addition	to	ordering	the

multitude	of	particles,	the	schemes	of	classification	based	on	symmetries	have	been	put	to	a	different,	and

somewhat	surprising,	use:	they	have	been	instrumental	in	making	predictions.	Perhaps	the	most	famous	one	is	the

prediction	of	a	new	hadron,	called	“Omega	minus.”

Once	the	physicists	were	provided	with	a	multiplet	scheme	of	classification,	the	prediction	of	the	particles	filling	out

the	places	left	unoccupied	in	the	multiplet	came	“as	a	matter	of	course”	(Lipkin	1966,	25–26,	53).	Physicists	even

introduced	a	term	to	refer	to	it,	Lipkin	calling	this	idea	“prediction	from	the	multiplet	structure.”	How	does	this	work?

As	noted,	SU(2)	is	not	the	group	describing	the	strong	interactions;	they	are	governed	by	a	bigger	symmetry,	(the

flavor)	SU(3).	Similar	to	what	happens	with	the	SU(2)	group,	the	dimensionalities	of	SU(3)'s	irreducible

representations	(1,	8,	10,	27,	…)	give	the	cardinality	of	the	sets	of	hadron	multiplets.

The	definitive	success	of	this	classificatory	strategy	came	in	1964	with	the	detection	of	a	new	particle	that

completed	the	spin-3/2	baryon	decuplet.	The	main	idea	behind	this	prediction	is	rather	simple:	given	the

classification	scheme	for	the	already	known	spin-3/2	baryons,	the	unoccupied,	apparently	superfluous,	entry	in	the

scheme	was	taken	as	a	guide	to	the	existence	of	a	new	particle.	It	was	exactly	this	“surplus”	that	suggested	the

existence	of	new	physical	reality	(in	the	form	of	new	particles,	to	fill	in	gaps	in	multiplets).	Reminding	of

Mendeleev's	prediction	of	new	chemical	elements	from	his	table,	Murray	Gell-Mann	and	Yuvaal	Ne'eman's

predictive	reasoning	can	be	extracted	from	the	rather	detailed	account	of	Ne'eman	and	Kirsh:

In	1961	four	baryons	of	spin	3/2	were	known.	These	were	the	four	resonances	Δ ,	Δ ,	Δ ,	Δ 	which	had

been	discovered	by	Fermi	in	1952.	It	was	clear	that	they	could	not	be	fitted	into	an	octet,	and	the	eightfold

way	predicted	that	they	were	part	of	a	decuplet	or	of	a	family	of	27	particles.	A	decuplet	would	form	a

triangle	in	the	S—I 	[strangeness-isospin]	plane,	while	the	27	particles	would	be	arranged	in	a	large

hexagon.	(According	to	the	formalism	of	SU(3),	supermultiplets	of	1,	8,	10	and	27	particles	were	allowed.)

In	the	same	year	(1961)	the	three	resonances	Σ	(1385)	were	discovered,	with	strangeness	−1	and

probable	spin	3/2,	which	could	fit	well	either	into	the	decuplet	or	the	27-	member	family.

At	a	conference	of	particle	physics	held	at	CERN,	Geneva,	in	1962,	two	new	resonances	were	reported,

with	strangeness	−2,	and	the	electric	charge	−1	and	0	(today	known	as	the	Ξ	(1530)).	They	fitted	well	into

the	third	course	of	both	schemes	(and	could	thus	be	predicted	to	have	spin	3/2).	On	the	other	hand,

Gerson	and	Shoulamit	Goldhaber	reported	a	“failure”:	in	collisions	of	K 	or	K 	with	protons	and	neutrons,

one	did	not	find	resonances.	Such	resonances	would	indeed	be	expected	if	the	family	had	27	members.

The	creators	of	the	eightfold	way,	who	attended	the	conference,	felt	that	this	failure	clearly	pointed	out	that

the	solution	lay	in	the	decuplet.	They	saw	the	pyramid	being	completed	before	their	very	eyes	[see	figure

8.1].

Figure	8.1 	A	spin-3/2	baryon	decuplet

Only	the	apex	was	missing,	and	with	the	aid	of	the	model	they	had	conceived,	it	was	possible	to	describe

exactly	what	the	properties	of	the	missing	particle	should	be!	Before	the	conclusion	of	the	conference	Gell-

Mann	went	up	to	the	blackboard	and	spelled	out	the	anticipated	characteristics	of	the	missing	particle,

which	he	called	“omega	minus”	(because	of	its	negative	charge	and	because	omega	is	the	last	letter	of

the	Greek	alphabet).	He	also	advised	the	experimentalists	to	look	for	that	particle	in	their	accelerators.
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Yuval	Ne'emanhad	spoken	in	a	similar	vein	to	the	Goldhabers	the	previous	evening	and	had	presented

them	in	a	written	form	with	an	explanation	of	the	theory	and	the	prediction.

The	Gell-Mann	and	Ne'eman	predictive	reasoning	started	off	with	the	observation	that	each	of	the	upper	nine

positions	in	the	symmetry	scheme 	has	a	physical	interpretation.	In	other	words,	each	of	these	positions	gives	the

physical	coordinates	of	a	known	spin-3/2	baryon.	Now,	based	on	this	regularity,	it	was	conjectured	that	a	new

physical	law	might	be	in	sight,	claiming	that	the	SU(3)	scheme	describes	the	correct	symmetry	of	spin-3/2	baryons.

But,	were	this	the	case,	there	should	have	been	10	baryons,	not	only	nine,	since	the	scheme	contains	10

positions.	So,	a	question	was	raised	about	the	existence	of	the	tenth	particle.	Gell-Mann	noticed	that	the	apex	is

formally/mathematically	similar	to	the	other	nine	positions,	and	this	is	so	because	it	is,	like	them,	an	element	of	the

scheme.	Therefore,	he	made	the	prediction	that	the	apex	position	has	a	physical	interpretation	too:	in	other	words,

that	the	coordinates	of	this	position	describe	a	tenth	spin-3/2	baryon	as	well. 	However,	as	is	easy	to	notice,	an

extra	premise,	not	explicitly	stated	in	the	text,	is	of	course	needed	in	order	to	complete	the	reasoning.	This	is	the

idea	that	the	existence	of	a	baryon	having	the	predicted	characteristics	is	not	forbidden	by	the	laws	of	physics,

and	thus	can	occur	in	nature	(even	if	it	was	not	detected	so	far).

This	line	of	reasoning	is	supposed	to	answer	the	question	asked	by	an	experimentalist	ready	to	perform	the

detections	(and	by	the	politicians	in	charge	of	approving	the	expenses	with	the	accelerators!),	namely,	“What	are

the	grounds	to	believe	(a)	that	there	is	a	new	entity	in	nature,	and	also	(b)	that	this	entity	has	the	predicted

physical	characteristics?”	On	closer	inspection,	however,	the	reasoning	involved	here	is	very	peculiar.	It	bears

little	resemblance	to	other	famous	predictions	such	as	Leverrier	and	Adams's	prediction	of	the	planet	Neptune	in

1846,	or	Wolfgang	Pauli's	postulation	of	the	neutrino	in	1931.	Unlike	these	two	predictions,	the	omega	minus	one	is

essentially	formal,	because	the	criteria	of	similarity	are	given	in	mathematical	terms	(Steiner	1998).	The	heuristic-

ontological	role	of	the	mathematical	scheme	of	classification	is	thus	crucial;	mathematics	does	not	play	merely	an

eliminable,	descriptive,	or	computational	role,	since	in	this	case	it	seems	that	the	predictive	argument	cannot	be

reconstructed	without	invoking	the	mathematical	features	of	the	physical	description.	This	appears	to	be	a	rather

startling	example	of	the	“unreasonable	effectiveness	of	mathematics”	(Wigner	1960),	though	further	analysis	is

certainly	needed	in	order	to	sort	out	what	is	unreasonable	about	the	success	of	this,	and	other,	applications.

6.	Final	Remarks:	“The	Reversal	of	a	Trend”

While	the	present	survey	has	touched	upon	a	relatively	wide	range	of	arguments	and	issues,	a	central	theme	is

worth	discussing	before	the	end:	the	emergence	of	a	new	relation,	without	precedent	in	the	history	of	physics,

between	symmetries	and	the	laws	of	nature—an	idea	advocated	by	Wigner,	who	in	turn	attributes	it	to	Einstein.

Wigner	highlights	it	in	a	number	of	his	philosophical	writings,	a	particularly	sharp	formulation	of	it	being	given	in	his

Nobel	lecture	of	1963.

Wigner	begins	by	drawing	attention	to	an	important	distinction,	which,	he	suggests,	seems	to	have	been	first

perceived	by	Newton:	roughly,	this	is	the	separation	between	a	certain	kind	of	general	statement	expressing	a

regularity	holding	between	events	(a	law	of	nature),	and	more	specific	statements	taking	the	form	of	descriptions	of

current	states	of	affairs	(the	initial	conditions). 	To	Wigner,	the	distinction	is	methodologically	crucial:	its

introduction	simply	delineates	the	very	object	of	the	physical	science,	as	it	amounts	to	“the	specification	of	the

explainable”	(1967,	39);	moreover,	this	specification	“may	have	been	the	greatest	discovery	of	physics	so	far.”

So,	according	to	him,	it	is	wrong	to	say	that	physics	explains	“nature,”	if	this	means	that	the	focus	of	physical

theorizing	is	on	accounting	for	some	specific	states	of	affairs.	The	aim	of	physics	is	rather	“to	explain	the

regularities	in	the	behaviour	of	objects”	(1967,	39).	He	puts	this	contrast	in	historical	terms,	mentioning	Kepler,

who,	as	we	saw,	was	also	concerned	with	finding	what	determines	the	specific	magnitudes	of	the	planetary	orbits,

in	addition	to	his	search	for	the	laws	of	motion.	On	the	other	hand,	Newton	had	restricted	his	interest	to	searching

only	for	the	explanation	of	the	regularities,	the	laws	of	motion	(1967,	39–40).

If	physicists’	interest	lies	in	describing,	explaining,	and	predicting	regular	behavior,	then	the	separation	of	laws

from	initial	conditions	becomes	necessary,	as	the	laws	do	not	also	specify	their	initial	conditions.	While	the	former

are	“precise	beyond	anything	reasonable,”	“we	know	virtually	nothing”	about	the	latter	(1967,	40),	as	they	contain

“a	strong	element	of	randomness”	(1967,	41–42). 	Thus,	in	the	Wignerian	scheme	the	object	of	physics	is	to

discover	the	laws	of	nature,	which	describe	regular	correlations	between	events.	A	new	event	is	predicted	and
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explained	if	such	a	correlation,	or	law,	is	known.	But,	what	about	the	laws	themselves?	The	question	is	thus

whether	there	might	exist	“a	superprinciple	which	is	in	a	similar	relation	to	the	laws	of	nature	as	these	are	to

events”	(1967,	43,	emphasis	added).	That	is,	just	as	the	laws	constrain	what	events	might	take	place	in	the	world,

such	a	superprinciple	would	constrain,	or	determine,	the	laws—in	other	words,	it	would	have	the	role	of	a	meta-law

which	would	somehow	explain	the	laws. 	While	Wigner	never	states	this	heuristic	superprinciple	explicitly,	it	is

pretty	clear	that	he	understands	it	as	incorporating	certain	constraints,	which	he	calls	“invariance	principles,”

(“symmetry	principles”	or	“invariance	transformations”).

Wigner	explains	the	role	of	the	superprinciple	as	follows.	Suppose	that	events	A,	B,	C,…	entail	the	occurrence	of

another	event	X—this	is	the	general	form	of	a	law	of	nature.	The	question	is	whether	there	are	transformations	that

turn	A,	B,	C	into	A′,	B′,	C′,…	and	X	into	X′	such	that	if	A′,	B′,	C′,…	obtain,	then	X′	obtains	too—	so,	once	these

transformations	are	found,	new	laws	of	nature	are	established.	Next,	he	identifies	three	types	of	such	“invariance

transformations.”	First,	there	are	the	Euclidean	transformations,	where	the	primed	events	are	identical	to	the

unprimed	ones	except	for	a	shift	in	the	location	in	space.	In	particular,	the	spatial	relations	within	the	configurations

of	primed	and	unprimed	events	are	retained.	Second,	there	are	time	displacements:	the	primed	events	are	the

same	as	the	unprimed	ones,	but	they	occur	at	a	different	time,	and	the	time	intervals	in	the	primed	and	unprimed

configurations	are	retained.	Third,	there	is	the	uniform	motion	transformation:	when	assessed	from	the	perspective

of	a	uniformly	moving	coordinate	system,	the	primed	events	appear	to	be	identical	to	the	unprimed	events	(Wigner

1967,	43).	Having	identified	the	components	of	the	superprinciple	(of	which	the	last	invariance	was	crucial	in

Einstein's	formulation	of	STR),	Wigner	points	out	that	“the	use	of	the	set	of	invariance	principles	which	is	surely

most	important	at	present”	is	as	a	test	for	“the	validity	of	possible	laws	of	nature”	(1967,	46).	More	precisely,	“a

law	of	nature	can	be	accepted	as	valid	only	if	the	correlations	which	it	postulates	are	consistent	with	the	accepted

invariance	principles”	(1967,	46)—and,	historically,	the	first	illustration	of	this	insight	is	Einstein's	1905	construction

of	STR. 	In	fact,	Wigner	stresses	that	viewed	from	this	perspective,	Einstein's	work	on	STR	is	methodologically

revolutionary:	it	marks	“the	reversal	of	a	trend”	(1967,	5).	Before	it,	the	principles	of	invariance	were	seen	merely

as	interesting	features	to	be	noted	when	examining	the	laws;	after	it,	a	new	methodological	move	became

available:	“it	is	now	natural	for	us	to	derive	the	laws	of	nature	and	to	test	their	validity	by	means	of	the	laws	of

invariance,	rather	than	to	derive	the	laws	of	invariance	from	what	we	believe	to	be	the	laws	of	nature”	(1967,	5).

Even	a	cursory	glance	should	support	the	view	that	symmetry	is	an	extremely	generous	foundational	topic	in

physics	and	philosophy.	It	prompts	questions	about	the	relation	between	the	formal	or	mathematical	structures	and

the	constitution	of	the	world	(does	the	world	really	exhibit	symmetrical	structures,	or	they	are	just	an	artifact	of	our

description	of	it?),	and	it	also	challenges	us	to	make	sense	of	the	success	of	symmetry	thinking	at	a

methodological-heuristic	level.	Regardless	of	the	perspective	from	which	this	topic	is	approached,	understanding

the	power	of	symmetry	is	certainly	one	of	the	most	important	tasks	for	both	philosophers	of	science	and

philosophically-minded	physicists.
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Notes:

(1)	For	discussions	of	symmetry	before	the	Greeks,	see	Robson	(2008,	43–48)	on	Mesopotamian	mathematics,

third	and	early	second	millennia	B.C.	Mainzer	(2005,	especially	ch.	1)	surveys	the	role	of	symmetry	in	a	variety	of

cultural	spaces.	Hon	and	Goldstein	(2008)	aim	to	rewrite	the	conceptual	history	of	the	idea	of	symmetry,	taking

issue	with	a	series	of	received	views.

(2)	This	is	also	known	as	the	“equal	areas”	law:	a	segment	connecting	the	Sun	and	a	planet	on	an	elliptical	orbit

sweeps	out	equal	areas	in	equal	time	intervals.

(3)	Dyson	(1964,	129)	reports	a	conversation	between	O.	Veblen	and	J.	Jeans	in	1910	about	the	reformation	of	the

mathematics	curriculum	at	Princeton.	Jeans	was	of	the	opinion	that	“we	may	as	well	cut	out	group	theory.	This	is	a

subject	which	will	never	be	of	any	use	in	physics.”

(4)	This	follows	Lanczos	(1949,	229–239),	which	contains	the	technical	details.

(5)	Excellent	surveys	of	the	symmetry	theme	are	already	available,	a	few	by	philosophers	(e.g.,	Brading	and

Castellani	2003b,	2007;	Morrison	2008)	and	many	more	by	physicists	(Coughlan	and	Dodd	1991,	ch.	6;	Icke	1995;

entries	in	Francoise,	Naber,	and	Tsun	2006;	Zee	2007,	etc.),	so	a	challenge	for	the	present	survey	is	to	minimize

the	overlap.	The	existence	of	common	themes	is,	however,	unavoidable.

(6)	The	name	of	the	principle	comes	from	the	French	physicist	Pierre	Curie,	who	formulated	it	while	working	on	the

properties	of	crystals.	See	Curie	(1894).	For	recent	discussions,	see	Ismael	(1997),	Earman	(2004a),	and	Brading

and	Castellani	(2007,	sect.	2).

(7)	See	Sklar	(1993)	for	a	lucid	exposition.
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(8)	The	theory	of	this	type	of	interaction	cannot	yet	explain	a	key,	observed,	asymmetry—namely	why	there	is

significantly	more	matter	than	antimatter	in	the	universe.

(9)	Coughlan	and	Dodd	(1991,	44–49)	provide	further	technical	details.	Parity	violation	(demonstrated

experimentally	by	a	team	led	by	Wu,	in	1957)	has	reignited	the	interest	in	the	discussions	on	the	structure	of

physical	space	and	the	nature	of	chiral	objects,	going	back	to	Kant's	attempts	to	account	for	the	difference

between	the	“incongruent	counterparts”	by	appeal	to	their	relation	to	absolute	space	(“incongruent	counterparts”

are	objects	that	are	mirror	images	of	each	other	but	are	not	superposable	through	rigid	motion,	e.g.,	a	right	and	left

glove).	See	Nerlich	(1994)	for	an	introduction	and	Hoefer	(2000),	Huggett	(2003),	and	Pooley	(2003)	for	recent

discussions.

(10)	One	can	recall	here	Feynman's	famous	proposal	to	understand	antiparticles	as	particles	moving	backward	in

time,	or,	in	other	words,	that	the	time-reversal	operation	applied	to	a	particle	state	would	turn	it	into	the

corresponding	antiparticle	state	(Feynman	1985).	For	details	and	criticism,	see	Arntzenius	and	Greaves	(2009).

This	discussion	is	related	to	an	earlier	debate	between	Albert	and	Malament	with	regard	to	classical

electromagnetism.	Albert	(2000)	argued	that	classical	electromagnetism	is	not	time-reversal	invariant,	while

Malament	(2004)	defended	the	standard	view,	according	to	which	the	theory	does	possess	this	feature.

(11)	Noether's	original	1918	paper	contains	in	fact	two	theorems.	The	first	one,	briefly	discussed	here,	concerns

the	(“global”)	invariance	of	the	action	under	a	Lie	group	characterized	by	a	finite	number	of	parameters;	the

second	(“local”)	concerns	an	infinite	dimensional	Lie	group.	For	the	full	version	of	the	two	theorems,	see	p.	3	of

Tavel's	(1971)	translation	of	Noether	(1918)	at	http://arxiv.org/PS_cache/physics/pdf/0503/0503066v1.pdf

(12)	In	addition	to	this,	the	Lagrangian	framework	permits	a	more	natural	passage	to	quantum	mechanics—which

was	in	fact	worked	out	by	Feynman	in	the	1940s,	in	his	path	integral	formalism.

(13)	For	recent	work	on	the	philosophical	implications	of	the	Lagrangian	formalism	for	symmetries	and	other	related

issues,	see	Butterfield	2006	and	Smith	2008.

(14)	Interesting	questions	to	ask	here	are	(i)	to	what	extent	gauge	symmetries	are	actually	observable,	as	well	as

(ii)	whether	it	makes	sense	to	apply	to	them	the	distinction	between	the	active	and	passive	ways	of	understanding

a	transformation	(introduced	in	section	2.1).	See	Kosso	(2000)	and	Brading	and	Brown	(2004)	for	a	discussion.

(15)	However,	mass	and	life-time	are	only	indirectly	linked.	(The	proton	is	heavy	and	lives	more	than	10 	years.)

To	be	more	precise,	it	is	the	Compton	wavelength	that	is	inversely	proportional	to	the	mass	of	the	particle	(λ	=

h/mc),	and	thus	directly	linked	to	its	range.

(16)	Moreover,	it	is	demanded	that	we	write	as	simple	a	theory	as	possible,	hoping	that	the	notorious	vagueness	of

the	simplicity	constraint	can	somehow	be	satisfied.

(17)	Note	that	it	is	the	“kinetic”	component	−1/4F F 	of	the	Lagrangian	for	the	full	theory	(also	featuring	an

“interacting”	component),	which,	as	Martin	nicely	puts	it,	“imbues	the	field	with	its	own	existence,	accounting	for

the	presence	of	non-zero	electromagnetic	fields,	for	the	propagation	of	free	photons”	(2003,	43).	See	Quigg	(1983,

45–48)	for	the	technical	details.	But,	technicalities	aside,	one	of	the	main	complaints	against	this	standard	story	has

been	that	this	generation	talk	is	misleading,	as	the	gauge	field	is	put	in	by	hand.	For	discussion,	see	Brown	(1999).

A	number	of	further	issues	arise,	having	to	do	with	the	(in)determinist	character	of	a	gauge	theory.	A	source	of

concern	is	the	identification	of	those	quantities	that	are	actually	“physical,”	as	opposed	to	mere	artifacts	of

description.	The	discussions	in	the	literature	focus	on	Einstein's	“hole	argument”	(Earman	and	Norton	1987;

Butterfield	1989;	Belot	1996,	esp.	chs.	5,	6,	7;	1998;	Saunders	2002;	etc.;	for	a	recent	introduction,	see	Norton

2008).	Equally	pressing	is	the	question	about	the	right	ontological	interpretation	that	should	be	given	to	those

quantities	that	are	not	gauge-invariant,	the	so-called	(by	Redhead	2003)	“surplus	structure.”

(18)	We	can	say	this	with	the	benefit	of	hindsight;	electromagnetism,	as	a	theory,	of	course	pre-dates	gauge.

(19)	This	presentation	follows	Wilkinson	(1969).

(20)	The	current	explanation	of	the	difference	is	in	terms	of	the	mass	difference	between	the	up	and	down	quark.
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(21)	See	French	(2008)	for	identity	and	individuality	in	quantum	theory,	and	French	and	Rickles	(2003)	on	some

subtleties	of	the	permutation	symmetry.

(22)	To	clarify:	Gell-Mann's	so-called	“Eightfold	Way”	SU(3)-based	theory	mentioned	at	the	beginning	of	this

paragraph	is	not	QCD	as	developed	later	on.	The	degrees	of	freedom	of	the	Eightfold	Way	are	not	the	degrees	of

freedom	of	the	SU(3)-based	QCD—though	the	group	is	the	same,	SU(3).	This	later	theory	postulates	three	different

types	of	strong-force	charge	(the	red,	green,	and	blue	quarks).	The	former	SU(3)	space	(where	only	global

invariance	required)	is	a	different	entity	than	the	SU(3)	space	of	strong	charge,	which	is	under	the	constraint	of

local	(“gauge”)	invariance.	Within	the	former	theory,	we	only	categorize	nonfundamental	collections	of	quarks	(for

more,	see	section	5).	It	is	the	latter	theory	which	is	the	currently	accepted	dynamical	account	of	the	strong	nuclear

force.	Yang	and	Mills	(see	the	previous	paragraph)	attempted	to	make	a	dynamical	theory	out	of	the	SU(2)	isospin

space,	but	we	can	now	see	that	this	is	clearly	wrong-headed,	since	protons	and	neutrons	are	not	fundamental

particles.

(23)	This	account	follows	Coughlan	and	Dodd	(1991).

(24)	Part	of	this	story	provided	social-constructivists	with	a	case	to	uphold	their	position.	As	we	will	see	below	(next

footnote),	the	experimental	demonstration	of	the	so-called	“weak	neutral	currents”	would	have	corroborated	the

unified	model.	Analyzing	this	episode,	Andy	Pickering	(1998,	136)	writes:	“There	I	argue	that	the	acceptability	of

the	weak	neutral	current	(and	hence	of	the	associated	interpretative	practices)	was	determined	by	the

opportunities	its	existence	offered	for	future	experimental	and	theoretical	practice	in	particle	physics.	Quite	simply,

particle	physicists	accepted	the	existence	of	the	neutral	current	because	they	could	see	how	to	ply	their	trade

more	profitably	in	a	world	in	which	the	neutral	current	was	real.	The	key	idea	here	is	that	of	a	symbiotic	relationship

between	experimenters	and	theorists,	the	two	distinct	professional	groupings	within	particle	physics.”

(25)	Slightly	more	technically,	the	situation	is	as	follows.	After	the	development	of	the	U(1)	×	SU(2)	GSW	unified

(“standard”)	model	(SM),	one	should	distinguish	between	the	photon	of	the	electromagnetic	interaction	(as

described	in	quantum	electrodynamics	QED)	and	the	quantum	of	the	U(1)	symmetry	of	the	Standard	Model,	which

is	the	so-called	B 	field.	A	somewhat	similar	point	holds	for	the	quanta	of	weak	interaction;	the	SU(2)	field	quanta

are	the	previously	known	W 	and	W 	weak	field	quanta,	but	the	GSW	model	also	predicts	a	third,	neutral	W .

Experimental	results	(such	as	the	impossibility	to	tell	whether	a	certain	interaction	is	the	result	of	exchanging	B 	s

or	W 	s)	led	to	the	idea	that	those	interactions	leaving	the	electrical	charge	of	the	particles	involved	unchanged

must	take	place	through	the	exchange	of	a	composite	of	the	two	neutral	quanta.	Remarkably,	the	model	combines

precise	amounts	of	B 	and	W 	and	recovers	the	properties	of	the	(neutral)	photon	of	quantum	electrodynamics.

The	percentage	of	each	in	the	mixture	is	known,	being	given	by	the	Weinberg	mixing	angle	θ .	For	the	photon

(call	it	A),	A	=	W 	sin	θ +	B 	cos	θ .	The	“leftovers”	of	each	B 	and	W 	make	up	a	new	electrically	neutral	field

quantum	which	is	responsible	for	the	weak	nuclear	interaction	as	we	observe	it:	the	Z 	boson,	where	Z 	=	W

cosθ +	B 	sin	θ .	(For	more	details,	see	Coughlan	and	Dodd	1991,	100;	as	they	explain	it,	the	masses	of	the	Ws

and	of	Z s	depend	on	θ ,	which	is	such	that	sin 	θ 	≍	0.23.)	Note,	however,	that	the	B 	field	quanta	is

“unphysical.”	If,	for	instance,	one	would	somehow	manage	to	produce	a	B ,	it	would	decay	rapidly,	and	what	one

would	see	in	the	detector	is	either	that	it	lives	forever	(as	a	photon),	or	it	decays	quickly	as	a	Z .	The	experimental

discovery	(in	1973)	that	weak	interactions	can	also	take	place	via	the	exchange	of	a	neutral	weak	field	quanta	is

the	topic	of	the	essay	by	Pickering	mentioned	in	the	previous	footnote.

(26)	See	Higgs	(1964).	A	number	of	other	physicists	(R.	Brout,	F.	Englert,	G.	Guralnik,	C.	R.	Hagen,	and	T.	Kibble)

have	presented	ideas	similar	to	Higgs's.

(27)	The	specific	choice	is	dictated	by	the	so	called	“Higgs	potential.”

(28)	Liu	(2003)	discusses	SSB	in	the	classical	context.

(29)	Additional	difficulties	occur	in	the	matter	of	SSB	because	only	systems	with	infinite	degrees	of	freedom	can

undergo	such	“phase	transitions.”	For	philosophical	discussion,	see	Liu	(2001),	Batterman	(2001,	2005),	Callender

(2001),	Ruetsche	(2003,	2006),	and	Bangu	(2009).

(30)	More	precisely,	the	Goldstone	boson	becomes	the	third	polarization	state	of	the	mass-acquiring	boson.	The

technical	details	on	which	this	account	draws	can	be	found	in	the	textbooks	(e.g.,	Quigg	1983;	Aitchison	and	Hey
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1989;	Coughlan	and	Dodd	1991).

(31)	More	recent	work	on	the	Higgs	mechanism	is	Lyre	(2008).

(32)	This	section	draws	on	Bangu	(2008).

(33)	The	literature	on	the	(Wignerian)	group	theoretic	approach	to	the	constitution	of	physical	objects	has	been

growing	in	the	last	decade,	when	a	variety	of	approaches	have	been	attempted.	See	Castellani	(1998)	and

especially	the	work	on	ontic	structural	realism	by	French	(1998),	French	and	Ladyman	(2010),	and	Ladyman

(2009),	esp.	sect.	4	and	the	bibliography	therein.

(34)	In	particular,	physicists	associate	these	labels	(e.g.	-1/2	and	+1/2	in	the	isospin	case)	with	the	values	of	the

invariant	properties	(isospin)	characterizing	physical	systems	(in	this	case,	the	doublet	neutron-proton).	Wigner

(1959)	derives	a	formula	that	encodes	the	general	form	of	the	representations.	For	a	more	modern	approach,	see

Joshi	(1982,	131).

(35)	The	diversity	and	the	large	number	of	particles	had	always	bothered	the	high-energy	physicists.	Willis	Lamb

voiced	this	uneasiness	in	his	Nobel	speech,	in	which	he	reminded	the	public	of	a	popular	saying	in	the	particle

physics	community:	anyone	who	discovers	a	new	particle	ought	be	punished	by	a	$10,000	fine	(instead	of	being

awarded	a	Nobel	Prize!)

(36)	From	Ne'eman	and	Kirsh	(1996,	202–203).	For	more	details	on	Gell-Mann	and	Ne'eman's	work,	see	their

(1964).	This	collection	also	contains	the	Brookhaven	experimental	report	“Observation	of	a	Hyperon	with

Strangeness	Minus	Three”	(Phys.	Rev.	Letters	12	(1964)),	which	describes	the	details	of	the	detection	of	the

omega	minus.

(37)	More	precisely,	the	“scheme”	refers	to	the	“10-dimensional	representation	of	the	group	SU(3)”	pictured

above.

(38)	Its	mass	is	1672	MeV,	strangeness	–3,	spin	3/2	and	0	isospin	in	the	z-direction.

(39)	The	so-called	“totalitarian	principle”	(attributed	to	Gell-Mann),	according	to	which	“what	is	not	forbidden	must

occur”	is	of	notoriety	in	the	particle	physics	community.	It	is	unclear,	however,	whether	this	dictum	(reminiscent	of

the	ancient	Principle	of	Plenitude—stating,	roughly,	that	given	an	infinite	time,	all	genuine	possibilities	actualize)

played	an	important	role	in	this	episode.	Its	converse—when	it	seems	that	an	event	can	happen	but	it	does	not,

look	for	a	conservation	law	that	precludes	it—is	also	a	well-known	heuristic	tool.

(40)	See	Steiner	(1998,	2005),	French	(2000),	Wilson	(2000),	Bangu	(2006),	Maddy	(2007,	part	IV.2),	Batterman

(2006,	2010),	and	Pincock	(2010)	for	a	variety	of	recent	perspectives	on	this	issue.

(41)	See	Ryckman	(2008)	for	discussion.

(42)	Wigner	also	discusses	to	what	extent	the	initial	conditions	are	arbitrary;	see	pp.	40…41.

(43)	For	symmetries	as	meta-laws,	see	Lange	(2007).

(44)	See	Norton	(2004)	and	the	bibliography	therein	for	historical	details	and	philosophical	discussion	of	Einstein's

methodology	prior	to,	and	related	to,	his	1905	STR	paper.
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Abstract	and	Keywords

This	chapter	considers	the	issues	of	symmetry	and	physical	equivalence	or	invariance.	It	suggests	that	if	the

notions	of	symmetry	and	equivalence	coincide,	then	there	is	a	tight	connection	between	a	purely	formal

conception	of	the	symmetries	of	a	theory	and	a	methodological/interpretive	conception	of	what	it	is	for	two

solutions	to	represent	the	same	physical	state	of	affairs.	The	chapter	also	describes	different	ways	for	making

precise	the	notion	of	the	symmetries	of	a	classical	theory.

Keywords:	symmetry,	physical	equivalence,	invariance,	methodological/interpretive	conception,	classical	theory

1.	Introduction

My	topic	is	the	relation	between	two	notions,	that	of	a	symmetry	of	a	physical	theory	and	that	of	the	physical

equivalence	of	two	solutions	or	models	of	such	a	theory.	In	various	guises,	this	topic	has	been	widely	addressed

by	philosophers	in	recent	years.

As	I	intend	to	use	the	term	here,	a	symmetry	of	a	theory	is	a	map	or	transformation	that	leaves	invariant	the

structure	used	to	encode	the	laws	of	the	theory.	The	notion	of	physical	equivalence	that	I	have	in	mind	is	as

follows:	two	solutions	(models)	of	a	physical	theory	are	physically	equivalent	if	and	only	if,	for	each	possible

physical	situation,	the	two	are	equally	well-	or	ill-suited	to	represent	that	situation.	The	first	of	these	notions	is	a

formal	one,	in	the	sense	that	in	specifying	the	formalism	of	a	theory,	one	specifies	its	symmetries.	The	second	is	an

interpretative	notion:	two	solutions	that	are	physically	equivalent	according	to	one	interpretation	of	a	given

formalism	may	be	inequivalent	according	to	another.

Part	of	the	interest	in	these	notions	among	philosophers	derives	from	the	following	line	of	thought.	In	an	influential

discussion,	John	Earman	argued	that	in	the	special	case	of	spacetime	symmetries,	facts	about	symmetries	place

interesting	constraints	on	good	interpretative	practice. 	Consider	the	case	of	time	translation	by	b	temporal	units.	In

the	first	instance,	this	operation	is	a	map	that	takes	each	point	of	spacetime	to	a	point	of	spacetime	b	units	later

than	itself.	But	we	can	also	think	of	time	translation	as	acting	in	an	obvious	way	on	fields	living	on	spacetime.

Earman	observes	that	in	this	context,	a	transformation	like	time	translation	is	a	symmetry	of	a	theory	if	and	only	if	it

maps	solutions	of	the	theory	to	solutions	of	the	theory.	And	he	goes	on	to	argue	that	under	any	reasonable

interpretation,	a	transformation	of	this	kind	ought	to	be	a	symmetry	of	the	theory	if	and	only	if	it	is	a	symmetry	of	the

geometric	structure	of	spacetime. 	In	particular,	it	follows	from	Earman's	arguments	that	if	one	focuses	on	theories

in	which	spacetime	symmetries	are	the	only	relevant	symmetries,	then	under	any	reasonable	interpretation,

solutions	are	physically	equivalent	if	and	only	if	they	are	related	by	a	symmetry—in	this	way	formal	facts	place

interesting	constraints	on	(good)	interpretation.

It	is	natural	to	wonder	how	much	of	this	picture	carries	over	if	one	moves	beyond	spacetime	symmetries.	Much
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recent	philosophical	writing	on	symmetries	and	related	topics	seems	to	assume	that	the	answer	is:	all	of	it. 	For	the

following	two	doctrines	play	an	important	(if	often	implicit)	role	in	this	literature.

D1.	The	symmetries	of	a	classical	theory	are	those	transformations	that	map	solutions	of	the	theory's

equation	of	motion	to	solutions	of	the	theory's	equation	of	motion.

D2.	Two	solutions	of	a	classical	theory's	equation	of	motion	are	related	by	a	symmetry	if	and	only	if	they	are

physically	equivalent,	in	the	sense	that	they	are	equally	well-	or	ill-suited	to	represent	any	particular	physical

situation.

Here	D1	is	a	formal	condition,	D2	a	constraint	on	good	interpretative	practice.	Combined,	they	would	yield	a	strong

and	interesting	constraint	on	(good)	interpretation.

However,	it	is	not	difficult	to	see	that	the	combination	of	D1	and	D2	is	an	unhappy	one.	Consider	any	classical

theory.	Let	u 	and	u 	be	solutions	of	the	theory's	equation	of	motion.	Consider	the	transformation	T	on	the	space	of

solutions	that	maps	u 	to	u ,	u 	to	u ,	and	leaves	every	other	solution	where	it	is.	According	to	the	first	doctrine

above,	T	is	a	symmetry	of	the	theory.	The	second	doctrine	above	then	implies	that	u 	and	u 	are	physically

equivalent.	So	the	two	doctrines	jointly	imply	that	any	two	solutions	of	any	classical	theory	are	physically

equivalent—and	hence	that	each	classical	theory	is	more	or	less	useless	because	it	is	unable	to	discriminate

among	the	systems	for	which	it	provides	good	models.

There	are	many	strategies	for	encoding	the	laws	of	a	theory	in	a	mathematical	form—and	each	such	strategy	is

associated	with	a	formal	notion	of	symmetry.	D1	encapsulates	the	notion	of	symmetry	associated	with	the	most

spare	and	naïve	method	of	encoding	the	laws	of	a	theory.	It	is	natural	to	wonder	whether	some	more	sophisticated

relative	of	D1	might	form	a	fruitful	combination	with	D2.	There	has	been	some	recent	discussion	of	this	question

among	philosophers,	with	some	authors	adopting	an	optimistic	view,	arguing	or	assuming	that	some	more

sophisticated	relative	to	D1	will	do	the	trick,	and	some	authors	adopting	a	pessimistic	view,	according	to	which	the

notion	of	physical	equivalence	is	not	closely	linked	with	a	formal	notion	of	symmetry	(even	when	we	restrict	to	well-

behaved	interpretations).

My	project	here	is	to	examine	the	viability	of	D1	and	D2	and	to	say	a	bit	about	the	source	of	their	prima	facie

plausibility.	In	the	next	section,	I	briefly	sketch	the	framework	in	which	I	will	proceed.	Section	3	is	devoted	to	a

discussion	of	D1	and	its	inadequacies.	Sections	4	and	5	give	a	brief	overview	of	some	of	the	more	sophisticated

alternatives	to	D1.	Section	6	argues	that	none	of	the	notions	of	symmetry	considered	combine	satisfactorily	with

D2.	Section	7	presents	my	cautiously	pessimistic	conclusions.

2.	Stage-Setting

Consider	a	classical	theory	in	which	a	history	of	a	physical	system	is	represented	by	a	function	u	:	M	→	W;	here	M

is	the	manifold	parameterized	by	the	independent	variables	of	the	theory	and	W	is	the	manifold	parameterized	by

the	dependent	variables	of	the	theory. 	Thus	M	might	correspond	to	time	and	W	to	the	space	of	possible

configurations	of	some	system	of	particles.	Or	M	might	correspond	to	spacetime	and	W	to	the	space	of	values

available	to	some	field	at	each	point	of	spacetime.	The	laws	of	the	theory	are	given	by	an	equation,

where	Δ	is	a	(linear	or	nonlinear)	differential	operator. 	The	job	performed	by	such	an	equation	is	to	single	out	from

a	large	space	 	of	functions	that	represent	“kinematically	possible”	histories	of	the	system	those	that	represent

dynamically	possible	histories.	Typically,	 	is	specified	by	specifying	the	independent	and	dependent	variables	of

the	theory	and	the	degree	of	regularity	(smoothness	etc.)	of	candidate	functions,	as	well	as	any	(asymptotic)

boundary	conditions	that	they	must	satisfy.	We	call	the	subspace	 	consisting	of	those	u	that	satisfy	the

equation	of	the	theory	the	space	of	solutions.

3.	A	Recipe	for	Disaster

Here	is	a	recipe	for	arriving	at	the	characterization	of	symmetries	of	classical	theories	that	is	embodied	in	the

doctrine	D1	discussed	above:	begin	with	the	standard	abstract	notion	of	a	symmetry;	reflect	on	the	case	of

spacetime	symmetries;	extrapolate.
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Symmetries,	abstractly	speaking.	There	is	a	basic	notion	of	symmetry,	elaborated	in	various	ways	in	the	various

branches	of	mathematics.	Consider	a	structure—a	set	of	objects,	D,	equipped	with	some	relations,	R ,	…,	and

functions,	f ,….A	symmetry	of	this	structure	is	a	one-to-one	and	onto	map	F	:	D	→	D	that	preserves	all	of	the

relations	and	functions	between	the	objects.

Spacetime	symmetries.	Suppose	that	we	want	to	check	whether	a	given	field	theory	is	invariant	under	a	spacetime

transformation	such	as	time-translation.	Then	all	we	have	to	do	is	to	check	to	make	sure	that	whenever	u(x,	t)	is	a

solution	of	the	theory's	equation	of	motion,	so	is	u(x,	t	−	b),	for	any	real	number	b.	That	is,	we	define	in	the	obvious

way	an	operator	on	the	set	of	kinematically	possible	fields	that	implements	the	putative	symmetry,	then	check	to

see	whether	it	maps	solutions	to	solutions.

Generalization.	Suppose	that	we	think	of	a	classical	theory	as	a	structure	consisting	of	a	large	set	of	functions	

with	a	distinguished	subset	 .	Then	we	would	expect	the	symmetries	of	such	a	theory	to	be	those	one-to-one	and

onto	maps	from	 	to	itself	that	preserve	 .	Spacetime	symmetries	fit	this	pattern	exactly!	This	suggests	that	we

ought	to	think	of	classical	theories	in	the	way	just	outlined.

Something	has	gone	wrong.	Following	this	recipe	leads	to	the	following

Fruitless	Definition:	A	symmetry	of	a	differential	equation	Δ	is	a	one-to-one	and	onto	map	T:	

	that	preserves	the	space	of	solutions,	in	the	sense	that	 	if	and	only	if	

.

As	an	attempt	to	capture	the	ordinary	notion	of	a	symmetry	of	an	equation	(and	hence	of	a	theory),	this	is	a

disaster.	Ordinarily,	symmetries	of	theories	are	hard	to	come	by.	But	some	remarkable	theories	have	atypically

large	symmetry	groups	(relative	to	the	number	of	degrees	of	freedom	of	the	systems	that	they	treat).	The	definition

above	effaces	this	sort	of	distinction	between	theories.	For	if	we	allow	arbitrary	permutations	of	the	solutions	of	a

theory	to	count	as	symmetries,	then	the	size	of	a	theory's	group	of	symmetries	depends	only	on	the	size	of	its

space	of	solutions.

All	of	this	is	liable	to	strike	fans	of	the	Fruitless	Definition	as	cheap	and	misleading:	after	all,	since	the	spaces

involved	have	topological	and	differential	structure,	surely	one	should	restrict	attention	to	continuous	or	smooth

transformations	of	the	space	of	kinematic	possibilities?	This	is	fair	enough—but	it	would	not	make	much	difference.

At	best,	it	would	lead	us	to	identify	the	symmetries	of	a	theory	with	something	like	the	family	of	smooth	permutations

of	the	space	of	solutions,	rather	than	with	the	full	family	of	permutations	of	that	space. 	But	this	would	still	lead	us

to	the	conclusion	that	every	theory	had	an	enormous	group	of	symmetries	that	depended	only	on	relatively	coarse

features	of	its	space	of	solutions.

4.	Symmetries	of	Differential	Equations

Laws	of	classical	physics	are	given	by	differential	equations—and	there	are	a	number	of	ways	that	a	differential

equation	can	be	encoded	in	a	structure	whose	symmetries	can	be	investigated.	D1	corresponds	to	the	most	flat-

footed	of	these.	In	this	section	and	the	next	we	briefly	survey	some	more	sophisticated	alternatives:	the	focus	in

this	section	is	on	approaches	that	directly	encode	the	equation	of	motion	of	the	theory	in	a	structure	whose

symmetries	can	be	identified	with	the	symmetries	of	the	theory;	in	the	next	section,	we	consider	approaches	that

take	a	detour	via	a	Lagrangian	or	Hamiltonian	formulation	of	the	theory.

There	is	no	settled,	definitive	notion	of	a	symmetry	of	a	differential	equation—	rather	there	are	a	family	of	related

notions. 	Three	are	especially	important:	the	notion	of	a	classical	symmetry,	the	notion	of	a	generalized

symmetry,	and	the	notion	of	a	nonlocal	symmetry.	I	will	sketch	the	first	of	these	and	then	describe	how	the	other

two	are	related	to	it.	A	few	more	details	concerning	classical	symmetries	are	presented	in	an	appendix	below.

Let	us	focus	on	the	field-theoretic	case:	the	independent	variables	of	the	theory	parameterize	the	spacetime

manifold	M;	a	configuration	of	the	field	is	represented	by	a	function	u	:	M	→	W;	and	the	dynamical	laws	of	the

theory	are	encoded	in	a	k -order	partial	differential	equation	Δ.	Roughly	speaking,	the	classical	symmetries	of

such	a	theory	can	be	characterized	as	follows.	Let	E	be	the	manifold	M	×	W	that	is	parameterized	by	the

independent	and	dependent	variables	of	the	theory	taken	together.	Any	diffeomorphism	 	will	induce	a

transformation	d	from	the	space	of	kinematically	possible	fields	of	the	theory	to	itself	(this	claim	is	unpacked	in	the
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appendix	below).	A	map	d	that	arises	in	this	way	is	a	classical	symmetry	of	the	equation	if	and	only	if	it	maps

solutions	to	solutions. 	So	classical	symmetries	are,	roughly	speaking,	transformations	of	the	space	of

kinematically	possible	fields	that:	(a)	map	solutions	to	solutions;	and	(b)	are	suitably	local,	in	the	sense	that	they

arise	from	smooth	transformations	of	the	dependent	and	independent	variables	of	the	theory.	Classical	symmetries

are	also	known	as	Lie	symmetries	or	point	symmetries.	The	spacetime	symmetries	of	a	theory	are	those

classical	symmetries	that	arise	from	transformations	of	the	independent	variables	of	the	theory	that	leave	the

dependent	variables	untouched. 	(For	particle	theories	in	fixed	spacetime	backgrounds,	the	spacetime

symmetries	are	those	translation,	rotations,	boosts,	and	dilatations	that	map	solutions	to	solutions).

The	classical	symmetries	of	an	equation	form	a	family	much	more	restricted	than	that	picked	out	by	D1—and

typically	this	means	that	solutions	related	by	a	classical	symmetry	share	many	salient	features.	In	typical	cases,

the	classical	symmetries	of	a	theory	of	n	Newtonian	particles	are	just	the	spacetime	symmetries—so	solutions	are

related	by	a	symmetry	if	and	only	if	they	have	the	particles	instantiating	the	same	sequence	of	relative	distance

relations. 	In	the	case	of	general	relativity,	the	classical	symmetries	are	generated	by	spacetime	diffeomorphisms

and	by	scale	transformations—so	that,	roughly	speaking,	two	solutions	are	related	by	a	symmetry	if	and	only	if

they	agree	about	the	pattern	of	ratios	of	distances	instantiated.

The	notion	of	a	classical	symmetry	is	a	special	case	of	the	basic	mathematical	notion	of	symmetry:	the	classical

symmetries	of	a	differential	equation	are	the	structure-preserving	maps	for	a	certain	structure	associated	with	the

equation.	Here	is	the	story	in	briefest	outline	(a	few	more	details	are	provided	in	the	appendix	below). 	One

constructs	a	space,	J 	(E)	(the	k 	jet	bundle	over	E)	a	point	of	which	is	specified,	intuitively	speaking,	by

specifying	a	point	x	of	spacetime	and	the	values	of	the	field	and	its	partial	derivatives	through	order	k	at	x.	J 	(E)

comes	equipped	with	some	geometric	structure,	 	(the	Cartan	distribution),	that	ensures	that	the	specification	of

a	point	of	J 	(E)	lives	up	to	this	intuitive	picture.	Our	differential	equation	Δ	determines	a	submanifold	 	—

since	for	each	point	of	spacetime	Δ	imposes	a	constraint	on	the	values	of	the	fields	and	their	partial	derivatives	at

that	point.	So	we	have	a	structure	consisting	of	a	large	space,	J 	(E),	a	geometric	structure	 	on	J 	(E),	and	a

distinguished	subspace	 	of	J 	(E).	In	accord	with	our	template	for	defining	symmetries	of	structures,	we	take	a

symmetry	of	this	contraption	to	be	a	one-to-one	and	onto	map	F	:	J 	(E)	→	J 	(E)	that	respects	 	and	maps	points	of

	to	points	of	 .	It	turns	out	that	the	resulting	notion	coincides	with	the	notion	of	a	classical	symmetry	as

characterized	above.

In	order	to	characterize	generalized	and	nonlocal	symmetries,	it	is	helpful	(as	well	as	more	honest—see	fn.	60

below)	to	describe	the	relevant	notions	by	characterizing	their	infinitesimal	generators.

From	this	perspective,	classical	symmetries	(investigated	by	Sophus	Lie	and	others	in	the	late	nineteenth	century)

are,	roughly	speaking,	transformations	that	map	solutions	to	solutions	and	whose	infinitesimal	generators	depend

only	on	the	independent	and	dependent	variables	of	the	theory.

Emmy	Noether	introduced	a	substantially	more	general	notion	at	the	beginning	of	the	twentieth	century. 	Her

generalized	symmetries	(also	known	as	local	or	higher	symmetries	or	as	Lie–Bäcklund	transformations)	are,

roughly	speaking,	transformations	that	map	solutions	to	solutions	and	whose	infinitesimal	generators	depend	on

derivatives	of	the	fields,	as	well	as	on	the	independent	and	dependent	variables	of	the	theory. 	These	arise	as	the

symmetries	of	a	fancier	structure	that	can	be	used	to	encode	the	differential	equation	of	interest:	again	the

equation	is	represented	as	a	submanifold	of	an	ambient	space	equipped	with	a	Cartan	structure;	this	time	the

ambient	space	is	an	infinite	jet	bundle—the	specification	of	a	point	of	which	involves	specifying	a	point	of

spacetime	together	with	the	values	at	that	point	of	a	function	and	all	of	its	partial	derivatives.

Every	classical	symmetry	is	also	a	generalized	symmetry.	Some	equations	have	no	nonclassical	generalized

symmetries	(the	Einstein	field	equations	of	general	relativity	are	an	example). 	But	many	equations	have

generalized	symmetries	that	are	not	classical	symmetries.	Striking	examples	include:
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The

Kepler

Problem.

This	is	the	problem	of	determining	the	motion	of	Newtonian	massive	particle	moving	in	the

external	gravitational	field	of	a	fixed	massive	body. 	In	addition	to	the	“obvious”	conserved

quantities	for	this	system—energy	and	angular	momentum—there	is	a	“hidden”	one,	the	Lenz-

Runge	vector. 	Associated	with	this	hidden	conserved	quantity	is	a	nonclassical	generalized

symmetry	of	the	Kepler	problem	(more	on	this	below).

The	KdV

Equation.

The	Korteweg–de	Vries	equation	is	an	equation	used	to	model	waves	in	shallow	water.	We	can

think	of	it	as	an	equation	governing	a	field	u(x,	t)	on	a	two-dimensional	spacetime:

The	only	classical	symmetries	of	this	equation	are	spacetime	and	scaling	symmetries;	but	it	has

an	infinite-dimensional	family	of	generalized	symmetries.

Yet	more	general	are	the	nonlocal	symmetries	that	have	been	investigated	in	recent	decades. 	These	are,

roughly	speaking,	transformations	that	map	solution	to	solutions	and	whose	infinitesimal	generators	are	allowed	to

depend	on	nonlocal	functionals	(such	as	integrals)	of	the	fields,	as	well	as	on	their	derivatives	and	on	the

dependent	and	independent	variables	of	the	equation. 	They	arise	as	symmetries	of	a	structure	that	results	when

the	differential	equation	is	encoded	in	a	certain	extension	of	the	infinite	jet	bundle.	Many	examples	of	nonlocal

symmetries	are	known—even	the	Kepler	problem	admits	nonlocal	symmetries	that	are	not	generalized

symmetries.

5.	Variational	and	Hamiltonian	Symmetries

The	governing	equations	of	many	physical	theories	can	be	given	a	Lagrangian	or	Hamiltonian	treatment	(although

this	sometimes	requires	some	craft	or	flexibility).	For	such	theories,	it	is	natural	to	consider	the	symmetries	of	the

structures	employed	in	the	Lagrangian	or	Hamiltonian	treatment—which	need	not	coincide	with	the	symmetries	of

the	equation	itself.

5.1	Variational	Symmetries

There	are	two	main	styles	of	Lagrangian	formalism,	sometimes	called	the	dynamical	and	the	covariant

approaches,	which	coincide	for	theories	with	finitely	many	degrees	of	freedom	but	differ	for	field	theories.

Dynamical	approaches	are	quite	similar	in	spirit	to	the	Hamiltonian	approach	considered	below. 	Under	covariant

approaches,	which	are	our	concern	here,	the	basic	space	of	interest	is	a	jet	bundle	over	the	space	of	dependent

and	independent	variables	of	the	theory	(as	in	the	treatment	of	classical	symmetries	sketched	above)	and	the

Lagrangian	is	now	to	be	thought	of	as	an	object	that	when	fed	a	kinematically	possible	field	u	gives	in	return	a	d-

form	L[u]	on	the	spacetime	M	(here	d	=	dim	M). 	Each	such	Lagrangian	is	associated	with	a	differential	equation,

whose	solutions	correspond	to	those	fields	that	satisfy	a	certain	variational	principle	for	the	Lagrangian.	A

(classical	or	generalized)	symmetry	of	an	equation	arising	from	a	Lagrangian	is	called	a	variational	symmetry	if	it

leaves	the	Lagrangian	invariant.	Even	if	a	theory	admits	a	Lagrangian	formulation,	some	symmetries	of	the

underlying	equation	may	not	show	up	as	variational	symmetries—as	a	rule,	Galilean	boosts	and	scaling	symmetries

are	often	not	variational. 	Modulo	niceties	about	boundary	conditions,	Noether's	theorem	assures	us	that	each

one-parameter	family	of	variational	symmetries	is	associated	in	a	canonical	way	with	a	conservation	law.

5.2	Hamiltonian	Symmetries

Let	us	restrict	attention	to	the	ideal	case	in	which	specifying	an	initial	data	set	(=	a	possible	instantaneous

dynamical	state)	for	the	equation	of	the	theory	determines	a	unique	solution	defined	at	all	times.	Then,	speaking

roughly	and	heuristically,	a	Hamiltonian	treatment	amounts	to	the	following.	The	phase	space	of	the	theory	is	the

space,	 ,	of	all	initial	data	sets.	The	Hamiltonian,	H,	of	the	theory	is	the	real-valued	function	on	the	phase	space

that	assigns	to	each	point	of	the	phase	space	the	energy	of	the	corresponding	physical	state.	The	phase	space

can	be	equipped	with	a	geometric	structure,	ω,	with	the	following	marvelous	feature:	together	H	and	ω	determine	a
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family	of	curves	in	 ,	exactly	one	passing	through	each	point;	each	of	these	curves	corresponds	to	a	solution	of

the	theory's	equation	of	motion,	in	the	sense	that	the	two	objects	pick	out	the	same	sequence	of	instantaneous

dynamical	states;	and	for	any	such	solution	there	is	a	corresponding	curve	of	this	kind. 	So	the	structure	

	in	effect	encodes	the	differential	equation	of	the	theory.	It	is	natural	to	investigate	the	Hamiltonian

symmetries	of	the	theory:	those	one-to-one	and	onto	maps	from	 	to	itself	that	preserve	both	ω	and	H. 	The

Hamiltonian	version	of	Noether's	theorem	assures	us	(fussing	about	boundary	conditions	aside)	that	there	is	a

conserved	quantity	associated	with	each	one-parameter	family	of	Hamiltonian	symmetries	of	a	theory.

6.	Symmetry	and	Physical	Equivalence

Why	was	it	(in	hindsight,	in	one	sense)	a	mistake	for	Newton	to	postulate	absolute	space?	Because	he	thereby

postulated	more	spacetime	structure	than	was	required	for	his	dynamics—boosts	are	symmetries	of	his	laws	of

motion	but	not	of	the	spatiotemporal	structure	that	he	postulated.	Reflection	on	this	example	and	others	motivates

the	principle	that	sound	interpretative	practice	requires	that	the	spacetime	symmetries	of	one's	ontology	ought	to

include	the	spacetime	symmetries	of	one's	preferred	theory.	Conversely,	it	seems	like	something	has	gone	wrong	if

the	spacetime	symmetry	group	of	one's	equations	of	motion	is	more	restricted	than	the	spacetime	symmetry	group

of	one's	ontology—for	in	this	case,	one	would	be	shirking	one's	duty	by	in	effect	employing	geometrical	structure	in

one's	dynamical	theory	while	not	being	willing	to	pay	the	ontological	cost.

It	is	tempting	to	think	that	this	picture	ought	to	generalize:	Why	should	spacetime	symmetries	be	special?	At	the

level	of	slogans,	the	idea	is	easy	to	state—our	interpretative	practice	should	be	guided	by	the	principle	that	the

symmetries	of	a	theory's	laws	and	the	symmetries	of	its	ontology	should	coincide.	It	is	not	obvious	how	to	give	a

precise	and	general	formulation	of	the	idea.	But	one	thing	that	seems	clear	is	that	any	such	formulation	would	have

as	a	consequence	the	second	doctrine	discussed	in	the	opening	section	of	this	chapter:

D2.	Two	solutions	of	a	classical	theory's	equation	of	motion	are	related	by	a	symmetry	if	and	only	if	they

are	physically	equivalent,	in	the	sense	that	they	are	equally	well-	or	ill-suited	to	represent	any	particular

physical	situation.

We	have	seen	that	disaster	follows	if	this	doctrine	is	combined	with	the	notion	that	the	symmetries	of	a	classical

theory	are	the	maps	that	send	solutions	to	solutions.	But	having	set	aside	that	notion,	we	can	ask	whether	D2	can

be	safely	combined	with	one	of	the	more	nuanced	and	discriminating	notions	of	symmetry	on	offer.

Indeed,	one	can	give	various	plausibility	arguments	in	favor	of	theses	in	the	neighborhood	of	D2.

(a)	Intuitively	speaking,	two	solutions	are	related	by	a	symmetry	if	and	only	if	they	are	interchangeable	by	the

lights	of	the	theory's	formalism.	And	surely	if	everything	has	been	set	up	properly	(i.e.,	just	the	right

ingredients	have	been	built	into	the	formalism	of	the	theory),	two	solutions	that	are	formally	interchangeable

should	also	have	identical	representational	capacities—and	so	should	be	physically	equivalent	in	the	present

sense.

(b)	Further,	one	might	think	that	there	is	a	pretty	good	reason	for	thinking	that	two	solutions	related	by	a

classical	symmetry	of	a	theory	must	be	physically	equivalent.	For	such	symmetries	can	be	thought	of	as

smooth	transformations	of	the	dependent	and	independent	variables	of	the	theory	that	preserve	the	form	of

the	equations	of	the	theory.	How	could	our	representational	practices	reasonably	distinguish	between	two

solutions	of	a	theory	that	are	related	by	a	reparameterization	of	the	theory's	variables	to	which	the	equations

of	the	theory	are	themselves	indifferent?

(c)	That	this	is	the	right	way	to	go	is	also	suggested	by	consideration	of	familiar	cases.	No	one	denies	that

solutions	of	a	theory's	equations	are	physically	equivalent	if	they	are	related	by	a	spacetime	symmetry	of	the

theory	(i.e.,	by	a	symmetry	that	transforms	the	independent	variables	of	the	theory	without	affecting	the

dependent	variables). 	A	similar	consensus	exists	regarding	paradigm	cases	of	(global	and	local)	internal

symmetries	(that	involve	transformations	of	dependent	variables	of	the	theory	that	do	not	affect	the

independent	variables).	Thus,	if	one	has	a	theory	involving	a	complex	scalar	field	such	that	global	phase

transformations	of	the	form	φ(x)	↦	e 	φ(x)	(θ	a	constant)	are	symmetries,	then	one	regards	solutions	related

by	such	a	transformation	as	physically	equivalent.	Similarly,	one	regards	as	physically	equivalent	solutions	of

Maxwell's	equations	in	vector	potential	form	that	are	related	by	local	gauge	transformations	of	the	form	A 	(x)

↦	A 	(x)	+	dΛ(x)	(here	Λ	is	a	smooth	function	on	spacetime,	so	in	general	the	transformation	effected	on	the
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dependent	variables	varies	from	spacetime	point	to	spacetime	point).	Why	should	other	symmetries	be

different?

Unfortunately,	these	mutually	reinforcing	half-arguments	do	not	add	up	to	much:	each	of	the	general	notions	of

symmetry	that	we	have	considered	leads	to	unpalatable	consequences	when	plugged	into	D2.

Consider	first	the	notion	of	a	classical	symmetry	of	a	differential	equation.	As	noted	above,	most	equations	admit

relatively	few	such	symmetries,	so	that	solutions	related	by	a	classical	symmetry	share	a	great	deal	in	common.

But	there	exist	equations	whose	symmetry	groups	are	so	large	that	they	act	transitively	on	the	space	of	solutions

(i.e.,	for	any	two	solutions,	u 	and	u ,	there	is	a	classical	symmetry	of	the	equation	that	maps	u 	to	u ).	This	sort	of

shocking	behavior	can	be	found	in	some	of	the	most	basic	theories	of	classical	physics.

(i)	A	single	Newtonian	free	particle.	In	this	case,	the	spacetime	symmetries	of	the	theory	are	given	by	the

Galilei	group,	and	any	solution	can	be	mapped	onto	any	other	by	such	a	symmetry.

(ii)	The	harmonic	oscillator.	In	one	spatial	dimension,	an	arbitrary	solution	takes	the	form	q	=	A	cos	t	+	B	sin

t.	The	theory	admits	a	one-parameter	group	of	classical	symmetries	that	acts	on	solutions	by	changing	the

value	of	B,	and	another	such	group	that	changes	the	value	of	A—so	any	solution	can	be	mapped	to	any	other

by	a	symmetry	of	the	theory.

(iii)	Linear	homogeneous	partial	differential	equations—such	as	the	heat	equation,	the	wave	equation,	the

source-free	Maxwell	equations,	etc.	Corresponding	to	any	solution	u 	of	such	an	equation,	there	is	a	classical

symmetry	T 	:	u	↦	u	+	u . 	And,	of	course,	for	any	two	solutions	u 	and	u 	of	a	linear	equation,	there	is	a

solution	u 	such	that	u 	=	u 	+	u .	So	any	two	solutions	of	a	linear	homogeneous	partial	differential	equation

are	related	by	a	symmetry.

If	we	maintain	that	any	two	solutions	related	by	a	classical	symmetry	are	physically	equivalent,	then	each	of	these

theories	will	be	unable	to	discriminate	among	the	systems	it	provides	good	models	for—it	will	consider	them	to	have

the	same	physics.	That	is	presumably	the	right	verdict	in	the	case	of	the	theory	of	a	free	Newtonian	particle—if	we

follow	the	policy	of	regarding	solutions	related	by	a	spacetime	symmetry	as	physically	equivalent,	then	no	degrees

of	freedom	remain	in	this	theory	once	such	symmetries	are	factored	out.	But	the	other	examples	are	very	different:

under	any	ordinary	reading,	they	admit	solutions	that	represent	situations	in	which	nothing	is	happening	(the

oscillator	is	permanently	immobile	at	the	origin,	the	field	is	in	a	ground	state)	and	others	that	represent	situations	in

which	plenty	is	going	on	(the	oscillator	is	continually	sproinging	around,	energy	in	the	form	of	heat	or	waves	is

propagating).	An	approach	to	understanding	physical	theories	that	leaves	us	unable	to	see	these	distinctions	is	not

something	we	can	live	with.	So	D2	is	false	if	understood	as	a	thesis	concerning	classical	symmetries	of	differential

equations.

Further,	employing	generalized	or	nonlocal	symmetries	would	not	help:	the	problems	just	noted	would	remain,	and

new	ones	of	the	same	ilk	would	crop	up.

Nor	does	it	help	to	shift	attention	to	variational	or	Hamiltonian	symmetries.	Consider	first	variational

symmetries.Theclassof(classical	or	generalized)variational	symmetries	of	anequation	is	more	restrictive	than	the

class	of	(classical	or	generalized)	symmetries	of	an	equation.	And	that	has	some	benefits:	the	variational

symmetries	of	the	wave	equation	do	not	include	addition-of-an-arbitrary-solution	(and	do	not	act	transitively	on	the

space	of	solutions). 	But:	the	problem	with	the	harmonic	oscillator	remains—for	any	two	solutions,	there	is	a

variational	symmetry	that	maps	one	to	the	other. 	So	the	class	of	variational	symmetries	is	still	in	some	respects

too	generous	to	underwrite	D2.	It	is	also	in	some	respects	too	restrictive:	for	example,	neither	the	boost	symmetry

of	classical	mechanics	nor	the	scaling	symmetry	of	general	relativity	is	a	variational	symmetry. 	But	it	is	hard	to

deny	that	two	solutions	related	by	such	a	symmetry	are	physically	equivalent	in	the	relevant	sense.

Further,	recall	that	not	every	equation	of	motion	admits	a	Lagrangian	treatment. 	True,	with	some	ingenuity	one

can	often	find	surrogates	for	such	equations	that	do	admit	Lagrangian	treatment	(e.g.,	by	replacing	the	variables	of

the	original	theory	by	suitable	potentials,	or	by	introducing	nonphysical	fields). 	But	it	is	hard	to	see	why	one

should	have	to	take	such	detours	in	order	to	understand	the	connection	between	symmetry	and	physical

equivalence.

What	about	Hamiltonian	symmetries,	then?	This	class	is	again	too	restrictive	in	some	respects.	As	in	the	variational

case,	scaling	symmetries	are	typically	not	Hamiltonian	symmetries.	Galilean	boosts	cause	the	same	sort	of	trouble
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—since	they	typically	leave	the	potential	energy	of	a	system	invariant	while	altering	its	kinetic	energy,	they	fail	to

preserve	the	Hamiltonian.	So	if	one	took	solutions	to	be	physically	equivalent	only	if	related	by	a	Hamiltonian

symmetry,	then	one	would	have	to	violate	the	general	principle	that	solutions	of	classical	theories	are	physically

equivalent	if	related	by	a	spacetime	symmetry.

At	the	same	time,	the	class	of	Hamiltonian	symmetries	is	also	too	generous	in	some	respects.	In	the	Hamiltonian

setting	we	are	at	least	safe	from	the	threat	of	the	group	of	symmetries	of	a	theory	acting	transitively	on	the	space

of	states	(since	Hamiltonian	symmetries	preserve	the	Hamiltonian	and	theories	ordinarily	allow	states	of	differing

energy).	But	we	nonetheless	still	run	into	cases	in	which	we	are	unwilling	to	consider	states	or	solutions	related	by

Hamiltonian	symmetries	as	physically	equivalent.

Consider	the	Kepler	problem.	This	theory	has	a	number	of	Hamiltonian	symmetries,	some	of	which	are	spacetime

symmetries	and	some	of	which	are	not.	The	spacetime	symmetries	include	time	translation	(associated	with

conservation	of	momentum)	and	rotation	(associated	with	conservation	of	angular	momentum).	As	usual,	we	want

to	regard	solutions	related	by	spacetime	symmetries	as	physically	equivalent—in	the	present	case,	this	means	that

we	regard	solutions	as	physically	equivalent	if	the	corresponding	elliptical	orbits	are	of	the	same	shape	(i.e.,	have

the	same	eccentricity	and	have	equally	long	major	axes).	The	further	Hamiltonian	symmetries	of	the	Kepler

problem	are	associated	with	the	conservation	of	the	Lenz–	Runge	vector.	If	two	solutions	are	related	by	one	of

these	symmetries,	then	the	corresponding	ellipses	have	equally	long	major	axes,	but	(in	general)	have	different

eccentricities	and	different	orientations	in	space. 	The	upshot	is	that	if	we	take	being	related	by	a	Hamiltonian

symmetry	to	imply	physical	equivalence,	then	we	must	take	solutions	of	the	(negative	energy)	Kepler	problem	to	be

physically	equivalent	if	and	only	if	they	correspond	to	ellipses	with	equally	long	major	axes. 	But	we	do	not

normally	regard	highly	eccentric	orbits	and	perfectly	circular	orbits	as	being	physically	equivalent.

We	run	into	the	same	problem	with	the	harmonic	oscillator:	the	family	of	Hamiltonian	symmetries	acts	transitively	on

the	surfaces	of	constant	energy	in	the	space	of	initial	data—so	two	solutions	of	the	theory	are	related	by	a

Hamiltonian	symmetry	if	and	only	if	they	represent	the	system	as	having	the	same	total	energy. 	But	two	solutions

of	the	harmonic	oscillator	can	have	the	same	energy	while	corresponding	to	quite	different	motions—for	example,

in	the	two-dimensional	case,	one	might	have	the	particle	moving	back	and	forth	on	a	line	segment	while	the	other

has	it	executing	a	circular	motion.

Or,	again,	consider	the	Korteweg–de	Vries	equation.	This	equation	governs	a	real-valued	field	u	in	one	spatial

dimension.	Under	its	usual	interpretation,	this	field	describes	the	dynamics	of	a	shallow	body	of	water	with	one

horizontal	dimension,	with	u(x,t)	giving	the	depth	of	the	water	above	spatial	point	x	at	time	t.	Consider	a	particular

solution,	u .	How	large	is	the	family	of	solutions	physically	equivalent	to	u ?	Well,	it	surely	includes	solutions

related	to	u 	by	spacetime	symmetries,	and	perhaps	also	scaling	symmetries.	But	the	family	of	generalized

symmetries	of	the	equation	and	the	family	of	Hamiltonian	symmetries	are	both	infinite-dimensional—so	it	seems

clear	that	each	must	contain	many	symmetries	that	relate	physically	inequivalent	solutions.

7.	Outlook

Where	does	this	leave	us?	There	are	various	interesting	formal	notions	of	symmetry	applicable	to	classical

physical	theories.	But	none	of	the	standard	ones	are	suited	to	underwrite	a	principle	like	D2	that	makes	a	direct	link

between	the	being	related	by	a	symmetry	and	being	physically	equivalent.

I	leave	it	as	a	challenge	to	the	reader	to	identify	a	general	and	interesting	formal	notion	of	symmetry	that	renders

D2	true—or,	better,	to	identify	a	family	X	of	symmetries	such	that	two	solutions	of	a	theory	that	are	related	by	a

symmetry	are	physically	equivalent	if	and	only	if	they	are	related	by	a	symmetry	that	belongs	to	X.

Above	we	have	seen	that	we	ordinarily	take	spacetime	symmetries	to	belong	to	X.	Further,	we	have	seen	that	there

are	classical	symmetries,	generalized	symmetries,	nonlocal	symmetries,	variational	symmetries,	and	Hamiltonian

symmetries	that	are	not	in	X.	We	have	also	seen	that	X	contains	symmetries	that	fall	outside	of	the	classes	of

spacetime	symmetries,	variational	symmetries,	and	Hamiltonian	symmetries.

Perhaps	it	is	possible	to	find	some	formal	notion	of	symmetry	that	combines	well	with	D2.	But	it	is	hard	to	be

optimistic—certainly,	the	ways	of	encoding	the	content	of	laws	that	are	most	appealing	to	mathematicians	and
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physicists	appear	to	lead	to	notions	of	symmetry	that	are	coolly	indifferent	to	considerations	of	representational

equivalence.	So	it	appears	that	the	sort	of	constraint	that	knowledge	of	the	symmetries	of	a	theory	places	on	the

range	of	reasonable	interpretations	of	that	theory	may	well	be	more	modest	than	one	might	have	hoped.

Here	are	a	few	more	details	about	classical	symmetries	of	differential	equations.	Let	us	begin	by	describing	J (E).

For	present	purposes,	it	is	easiest	to	work	in	terms	of	coordinates.

A	point	y	in	M	is	specified	by	specifying	a	d-tuple	of	real	numbers,	(y ,…,y )	(the	coordinates	of	y).

A	point	(y,v)	in	E	is	specified	by	specifying	a	(d	+	m)-tuple	of	real	numbers,	(y ,…,y ;v ,…,v )	(the

coordinates	in	M	of	y	plus	the	coordinates	in	W	of	u(y),	the	value	of	the	field	u	at	spacetime	point	y).

A	point	(y,v,p)	in	J (E)	is	specified	by	specifying	a	 -tuple	of	real	numbers,	(y ,…,y ;v ,

…,v ;p ,…,p ),	where	the	p 	are	just	numerous	enough	to	be	regarded	as	a	list	of	the	values	of	the	partial

derivatives	(from	order	one	through	k)	of	u	by	the	spacetime	coordinates.

When	we	think	of	J (E)	in	this	way,	it	provides	a	natural	way	to	encode	the	content	of	any	k 	order	partial

differential	equation	whose	dependent	and	independent	variables	parameterize	E.	For	think	what	such	a	differential

equation	does:	for	each	point	x	of	spacetime,	the	equation	imposes	a	constraint	on	the	values	of	the	field	and	its

partial	derivatives	through	order	k	when	evaluated	at	x.	But,	roughly	speaking,	that	is	to	say	that	such	a	differential

equation	determines	a	submanifold	of	 	and	that	the	content	of	the	equation	is	exhausted	by	the

structure	of	E	as	a	submanifold	of	J (E).

Now	we	are	getting	somewhere:	we	can	identify	symmetries	as	one-to-one	and	onto	maps	from	J 	(E)	to	itself	that

preserve	E	and	all	relevant	structure	of	the	ambient	space	J 	(E).	But	what	does	this	structure	amount	to?

We	know	that	J 	(E)	is	a	manifold	and	that	we	are	working	in	a	setting	in	which	everything	is	at	least	a	bit	smooth—

so	it	is	natural	to	require	our	symmetries	to	be	appropriately	smooth	diffeomorphisms	from	J 	(E)	to	itself.

There	is	one	further	kind	of	structure	on	J 	(E)	that	matters	in	the	present	context.	Recall	that	we	have	said	that,

intuitively,	the	extra	variables	that	we	add	in	moving	from	E	to	J 	(E)	are	supposed	to	correspond	to	the	values	of

the	partial	derivatives	of	the	field	with	respect	to	the	spacetime	coordinates.	We	need	to	put	some	structure	on	J

(E)	in	order	to	enforce	this	intuitive	demand.

In	order	to	get	a	feeling	for	what	is	required	here,	consider	the	following	line	of	thought.	Let	u	:	M	→	W	be	a

kinematically	possible	field.	The	content	of	u	is	encoded	in	its	graph,	Γ ,	the	subset	of	E	consisting	of	pairs	for	the

form	(x,	u(x)),	for	x	ε	M.	Of	course,	the	map	x	ε	M	↦	(x,	u(x))	ε	Γ 	is	a	diffeomorphism.	Further,	a	sufficiently	smooth

submanifold	Γ	⊂	E	corresponds	to	a	kinematically	possible	u	in	this	way	if	and	only	if	the	projection	map	

	is	a	diffeomorphism	from	Γ	onto	M.

Now,	each	kinematically	possible	u	also	determines	a	diffeomorphism	from	M	to	J 	(E).	We	define	the	k-jet	of	u	to	be

the	map	j[u]:	x	ε	M	→	(x,u(x),p)	ε	J (E),	where	p	=	(p ,…,	p )	encodes	the	values	at	x	of	the	partial	derivatives	of	u

through	order	k.	The	k-jet	of	u	is	a	diffeomorphism	onto	its	image	J .	There	is	of	course	a	projection	map	π:	(x,v,p)	ε

J (E)	↦	x	ε	M,	whose	restriction	to	J 	is	the	inverse	of	the	jet	j[u].

It	may	be	tempting	to	suppose	that	any	sufficiently	smooth	submanifold	K	⊂	J 	(E)	such	that	π	:	K	→	M	is	a

diffeomorphism	onto	its	image	arises	as	the	J 	for	some	kinematically	possible	u.	But	this	is	false.	For	consider	such

a	K.	For	each	spacetime	point	x	ε	M,	K	includes	exactly	one	point	(x,v,p).	So,	questions	of	boundary	conditions

aside,	K	does	determine	a	kinematically	possible	u—for	each	spacetime	point	x	just	set	u(x)	=	v,	where	(x,v,p)	is

the	unique	point	in	K	that	π	sends	to	x.	But	there	is	no	guarantee	that	J 	=	K,	precisely	because	we	have	not	yet

built	into	the	structure	of	J 	(E)	any	connection	between	the	p 	and	the	partial	derivatives	of	the	field—so	in	general,

if	(x,	v,p)	is	a	point	in	K	and	u	is	the	kinematically	possible	field	determined	by	K,	there	is	no	reason	to	expect	that

the	values	of	the	partial	derivatives	of	u	at	x	are	given	by	p	(that	is,	in	general	one	expects	that	j[u](x)	≠	(x,v,p)	so

that	J 	≠	K).

There	is	an	elegant	solution	to	this	problem.	One	imposes	on	J 	(E)	some	geometric	structure,	in	the	form	of	the

Cartan	distribution,	 ,	which	singles	out	at	each	point	of	J 	(E)	a	distinguished	subspace	of	dimension	

56

k 57

58

1 d

1 d 1 m

k [d + m( )]d + k

k
1 d 1

m 1 n i

k th

E ⊂ (E)J k

k

k

k

k

k

k

k

k

u

u

: (x,v) ∈ Γ ↦ x ∈ Mπ̄

k

k
1 n

u

k
u

k

u

u

k
i

u

k

C k

[d + m( )] [d + m( )]

PDF Compressor Free Version 



Symmetry and Equivalence

Page 10 of 17

	in	the	 -dimensional	tangent	space	at	that	point.	The	Cartan	distribution

has	the	following	beautiful	feature:	a	submanifold	K	of	J (E)	that	is	diffeomorphic	to	M	via	the	natural	projection	map

π	:	(x,v,p)	→	x	is	of	the	form	J 	for	some	kinematically	possible	u	if	and	only	at	any	point	of	K,	all	tangent	vectors

pointing	along	K	lie	in	the	privileged	subspace	picked	out	at	that	point	by	 .	That	is:	the	Cartan	distribution

encodes	our	intuitive	constraint	that	the	p 	should	correspond	to	the	values	of	the	partial	derivatives	of	fields.

Putting	all	of	this	together:	a	symmetry	(in	the	present	sense)	of	our	equation	is	a	diffeomorphism	from	J 	(E)	to	itself

that	preserves:	(i)	the	submanifold	 	that	encodes	the	equation;	and	(ii)	the	Cartan	distribution	 .	It	now

turns	out	that	(except	in	the	special	case	where	m	=	1)	the	only	such	diffeomorphisms	arise	via	diffeomorphisms

from	E	to	itself	(this	claim	will	be	unpacked	in	the	next	paragraph).	And	of	course,	since	each	kinematically	possible

field	u	can	be	identified	with	the	submanifold	j[u](M)	⊂	J 	(E),	any	diffeomorphism	from	J 	(E)	to	itself	acts	in	a

natural	way	on	the	space	of	kinematically	possible	fields—and	(subtleties	aside)	any	diffeomorphism	from	J 	(E)	to

itself	that	preserves	 	maps	solutions	to	solutions.	So:	the	symmetries	(in	the	present	sense)	of	a	differential

equation	are	the	transformations	of	the	space	of	kinematically	possible	solutions	that	map	solutions	to	solutions	and

that	are	suitably	local,	in	the	sense	of	depending	only	on	the	independent	and	dependent	variables	of	the	theory.

There	are	two	unfinished	bits	of	business.	The	first	is	to	unpack	the	notion	of	a	diffeomorphism	from	J 	(E)	to	itself

arising	via	a	diffeomorphism	from	E	to	itself.	Let	 	be	a	diffeomorphism.	We	seek	to	define	a

corresponding	diffeomorphism	d	:	J 	(E)	→	J 	(E).	We	proceed	by	selecting	an	arbitrary	(x,	v,p)	ε	J 	(E)	and	showing

how	to	find	d(x,v,p).	Let	u	be	a	kinematically	possible	field	such	that	u(x)	=	v	and	j[u](x)	=	(x,v,p)	(i.e.,	(x,v,p)

gives	the	value	of	u	and	its	partial	derivatives	at	x).	Let	Γ 	be	the	graph	of	u	in	E	(i.e.,	the	set	of	points	of	E	of	the

form	(x,u(x)),	for	all	x	ε	M).	Γ 	is	a	smooth	submanifold	of	E	that	projects	diffeomorphically	to	M	under	the	map	

	Now,	since	 	is	a	diffeomorphism	from	E	to	itself,	the	set	 	is	also	a	smooth	submanifold	of	E.

Sadly,	 	need	not	project	diffeomorphically	to	M.	But	let	us	ignore	that	detail,	and	pretend	that	it	does—and

hence	corresponds	to	a	kinematically	possible	u . 	Then	we	can	define	d(x,v,p)	:=	j[u ](x′),	where	

.	The	resulting	map	d:	J 	(E)	→	J 	(E)	is	a	well-defined	diffeomorphism	(in	particular,	it	is

independent	of	the	choices	we	made	along	the	way).

The	final	piece	of	unfinished	business	is	to	note	that	one	typically	works	with	fields	that	have	well-defined

transformations	laws	under	changes	of	coordinates	on	spacetime:	so	a	spacetime	diffeomorphism	

induces	in	a	natural	way	a	diffeomorphism	 . 	The	corresponding	transformation	 	is

determined	as	above.	And	we	find,	as	expected,	that	D	is	a	classical	symmetry	if	and	only	if	it	maps	solutions	to

solutions.
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Notes:

(1)	See,	e.g.,	Baker	(2010),	Brading	and	Castellani	(2007),	Dasgupta	(2010),	Debs	and	Redhead	(2007),	Healey

(2009),	Ismael	and	van	Fraassen	(2003),	North	(2010),	and	Roberts	(2008).

(2)	See	Earman	(1989,	§3.4).

(3)	If	spacetime	geometry	fails	to	be	invariant	under	some	such	transformation	that	is	a	symmetry	of	the	laws,	then

one	is	positing	unnecessary	geometric	structure	(think	of	Newton	on	absolute	space).	Conversely,	if	one's

spacetime	structure	is	invariant	under	transformations	that	are	not	symmetries	of	the	laws,	then	one	is	cheating

somehow	or	other,	employing	some	structure	in	one's	formalism	to	break	a	spacetime	symmetry	without	being

willing	to	pay	the	ontological	price	(think	of	someone	whose	theory	has	a	point	mass	sproinging	back	and	forth

about	the	origin	in	the	Cartesian	plane,	but	who	is	unwilling	to	posit	a	privileged	point	of	space	or	any	physical

structure—matter,	field,	force,	etc.—other	than	the	single	moving	point-particle).

(4)	I	won't	do	anything	to	substantiate	this	claim	here	(let	us	not	descend	into	recriminations	at	this	time!),	beyond

saying	that,	like	many	a	rant,	this	one	is	directed	in	part	at	earlier	versions	of	its	author.

(5)	Our	world	contains	many	systems	that	can	be	treated	(for	all	practical	purposes)	as	being	isolated.	It	follows

from	the	conjunction	of	D1	and	D2	that	if	a	theory	provides	equally	good	models	of	two	isolated	systems,	then	any

model	of	the	theory	must	provide	equally	good	representations	of	each	of	these	systems—which	is	to	say	that	the

theory	is	just	about	useless	in	application.

(6)	Since	none	of	the	authors	I	have	in	mind	address	the	topic	in	quite	the	same	terms	employed	here	(or	in	quite

the	same	terms	as	one	another),	the	following	attributions	should	perhaps	be	taken	with	a	grain	of	salt.	On	the
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optimistic	side:	Baker	(2010,	§1)	conjectures	that	D2	is	true	relative	to	some	generalization	of	the	Hamiltonian

approach	discussed	in	§5	below;	Brading	and	Castellani	(2007,	§4.1	and	8.2)	claim	that	D2	is	true	relative	to	the

notion	of	a	classical	symmetry	discussed	in	§4	below;	Roberts	(2008,	fn.	3)	holds	that	D2	is	true	for	the	sort	of

version	of	D1	discussed	in	fn.	11	below.	On	the	pessimistic	side:	Ismael	and	van	Fraassen	(2003)	take	D1	to	be	the

only	philosophically	salient	notion	of	symmetry—and	thus	think	that	in	order	to	get	around	the	sort	of	problems

noted	above,	one	should	take	models	to	be	physically	equivalent	if	and	only	if	they	are	related	by	a	symmetry	and

agree	in	(roughly	speaking)	their	directly	perceivable	features;	Healey	(2009)	likewise	notes	some	of	the	problems

surrounding	D1,	mentions	that	there	are	other	formal	notions	of	symmetry	available,	then	pursues	an	approach	that

builds	physical	equivalence	into	its	notion	of	symmetry;	Dasgupta	(2010)	argues	that	a	notion	of	symmetry

appropriate	to	D2	must	involve	notions	like	that	of	a	mental	state.

(7)	More	generally,	here	and	throughout,	one	could	take	histories	to	be	represented	by	sections	of	a	fiber	bundle	E

→	M	with	typical	fiber	W.	Almost	any	classical	field	can	be	thought	of	this	way.	For	example,	a	gauge	field,

standardly	represented	by	a	connection	one-form	on	a	principle	bundle	P	→	M,	can	be	represented	instead	by	a

section	of	a	certain	affine	bundle	J 	(P)/G	→	M	associated	with	P;	see,	e.g.,	Kolář,	Michor,	and	Slovák	(1993,	§17.4).

(8)	So	the	left-hand	side	of	this	equation	is	the	function	on	M	that	results	from	applying	Δ	to	u	and	the	right-hand

side	is	the	zero	function.

(9)	I.e.,	R(x ,…,x )	if	and	only	if	R(F(x ),…,F(x ));	and	f(x ,…,x )	=	y	if	and	only	if	f(F(x ),…,F(x ))	=	F(y).

(10)	Don't	mathematicians	sometimes	offer	up	characterizations	of	symmetries	along	these	lines?	Yes—but	only

when	speaking	loosely	and	heuristically.	Thus	in	the	introduction	to	Olver's	influential	textbook	on	symmetries	of

differential	equations,	we	are	told	that:	“Roughly	speaking,	a	symmetry	group	of	a	system	of	differential	equations

is	a	group	which	transforms	solutions	of	the	system	to	other	solutions”	Olver	(1993,	xviii)—see	also,	e.g.,	Bluman

and	Anco	(2002,	2)	and	Klainerman	(2008,	457).	But	on	the	next	page	we	are	told	that	once	“one	has	determined

the	symmetry	group	of	a	system	of	differential	equations,	a	number	of	applications	become	available.	To	start	with,

one	can	directly	use	the	defining	property	of	such	a	group	and	construct	new	solutions	to	the	system	from	known

ones.”	Of	course,	one	cannot	do	this	if	one's	notion	of	a	symmetry	is	given	by	the	Fruitless	Definition—one	needs

to	be	working	with	one	of	the	more	specialized	notions	that	are	the	focus	of	Olver's	book,	some	of	which	are

described	below.	And	likewise	for	the	other	applications	on	Olver's	list.

(11)	Roughly	speaking:	for	non-freaky	Δ,	one	expects	 	to	sit	inside	 	as	(something	like)	a	submanifold;	if	ϕ1

and	ϕ2	are	(generic)	points	in	 	then	there	will	be	a	diffeomorphism	 	with	ϕ2	=	F(ϕ	 );	and	one

expects	to	be	able	to	extend	F	to	a	diffeomorphism	 .	(Slightly	more	carefully:	one	expects	that	any

obstructions	to	extending	F	in	this	way	are	going	to	be	technical	in	nature,	and	not	detract	from	the	main	point.)

(12)	Consider,	by	way	of	illustration,	the	Newtonian	theory	of	three	gravitating	point	particles	of	distinct	masses.

Here	a	point	in	the	space	of	kinematically	possible	fields,	 ,	essentially	assigns	each	of	the	particles	a	worldline	in

spacetime	(without	worrying	about	whether	these	worldlines	jointly	satisfy	the	Newtonian	laws	of	motion).	The

space	of	solutions,	 ,	is	the	18-dimensional	submanifold	of	 	consisting	of	points	corresponding	to	particle

motions	obeying	Newton's	laws.	So	one	expects	that	any	diffeomorphism	from	 	itself	can	be	extended	to	a

suitably	nice	map	from	 	to	itself.	But	for	any	solutions	 ,	we	can	find	a	diffeomorphism	from	 	to	itself

that	maps	u 	to	u ,	so	we	again	find	that	arbitrary	pairs	of	solutions	are	related	by	symmetries.	This	seems

unacceptable,	since	we	ordinarily	think	of	this	theory	as	having	a	relatively	small	symmetry	group	(consisting	just

of	spacetime	symmetries).

(13)	For	an	historical	overview	and	references,	see	Olver	(1993,	172ff.	and	374ff.).	There	is	of	course	a	trade-off	to

be	made	between	fecundity	and	generality.	In	practice,	the	notions	that	mathematicians	and	physicists	find

interesting	are	far	more	restrictive	than	the	fruitless	notion	considered	above.	But	there	would	appear	to	be	no

feeling	that	there	is	a	correct	notion	of	a	symmetry	of	a	differential	equation—plausibly,	for	every	interesting	such

notion,	there	is	a	yet	more	general	one	that	is	still	interesting.

(14)	Two	subtleties	are	glossed	over	in	the	text.	(i)	In	general	d	may	map	a	kinematically	possible	field	to	an	object

that	is	a	sort	of	partially-defined	multiply-valued	field	rather	than	a	kinematically	possible	field	(see	fn.	60	below).	(ii)

The	story	is	(yet)	more	complicated	in	the	important	special	case	where	dim	W	=	1.
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(15)	Note,	in	particular,	that	we	make	no	appeal	here	to	metric	tensors	and	the	like—we	just	look	for	transformations

of	the	independent	variables	that	leave	invariant	the	equations	of	motion.	(Some	subtleties	arise	at	this	point	for

certain	types	of	fields;	see,	e.g.,	Kolár?,	Michor,	and	Slovák	(1993)	on	gauge	natural	bundles.)

(16)	Hydon	(2000,	example	4.4).

(17)	See	Anderson	and	Torre	(1996).

(18)	For	what	follows,	see,	e.g.,	Krasil'shchik	and	Vinogradov	(1999,	ch.	3).

(19)	Unfortunately,	discrete	symmetries	threaten	to	go	missing	when	one	adopts	this	perspective.	For	one

approach	to	this	problem,	see	Hydon	(2000,	ch.	11).

(20)	See,	e.g.,	Olver	(1993,	ch.	5)	or	Krasil'shchik	and	Vinogradov	(1999,	ch.	4).

(21)	To	get	a	feeling	for	what	this	means,	consider	the	sort	of	gauge	transformations	that	normally	arise	in

presentations	of	Maxwell's	theory:	if	we	take	the	vector	potential	A(x)	as	our	field,	then	the	theory	is	invariant

under	infinitesimal	transformations	of	the	form	A	↦	A	+	εdΛ	where	Λ(x)	is	a	real-valued	function	on	spacetime.	Now

suppose	that	A	is	a	map	then	when	fed	a	kinematically	possible	A	returns	a	real-valued	function	Λ	[A]	on

spacetime.	If	for	each	spacetime	point	x	and	each	A,	the	value	of	Λ	[A]	at	x	depends	only	on	x	and	on	A(x),	then

the	infinitesimal	transformation	A	↦	A	+	εd	Λ[A]	corresponds	to	a	classical	symmetry	of	Maxwell's	theory;	if	the

value	of	Λ	[A]	(x)	depends	also	on	a	finite	number	of	derivatives	of	A	at	x,	then	this	map	is	a	generalized	symmetry

of	Maxwell's	theory	See	the	discussion	of	generalized	gauge	symmetries	in	Pohjanpelto	(1995)	and	in	Torre	(1995).

For	a	thoroughly	worked-out	example	involving	only	finitely	many	degrees	of	freedom,	see	Cantwell	(2002,

§14.4.1).

(22)	See	Anderson	and	Torre	(1996).

(23)	Note	that	the	Kepler	problem	contains	all	of	the	dynamics	of	the	honest	Newtonian	two-body	problem.	See,

e.g.,	Goldstein,	Poole,	and	Safko	(2002,	§3.1).

(24)	The	Lenz–Runge	vector	is	 ,	were	q	is	the	position	of	the	moving	particle,	p	is	its

momentum,	and	μ	is	a	constant	that	depends	on	the	masses.

(25)	For	the	generalized	symmetry	of	the	Kepler	problem,	see	Lévy–Leblond	(1971,	§5.B).	Note	that	this	system	also

admits	a	classical	symmetry	that	is	in	a	sense	associated	with	the	Lenz–Runge	vector;	see	Prince	and	Eliezer

(1981).

(26)	For	the	classical	and	generalized	symmetries	of	the	Korteweg–de	Vries	equation,	see	Olver	(1993,	125ff.	and

312ff).

(27)	See,	e.g,	Krasil'shchik	and	Vinogradov	(1999,	ch.	6).

(28)	For	a	thoroughly	worked-out	example	in	which	an	infinitesimal	symmetry	and	the	corresponding	finite

symmetry	both	depend	on	an	integral	over	space	of	the	dependent	variable	of	the	theory,	see	Cantwell	(2002,

§16.2.2.1).

(29)	See,	e.g.,	Leach,	Andriopoulos,	and	Nucci	(2003).

(30)	For	these	labels	and	for	an	investigation	of	the	relation	between	the	two	approaches,	see	Castrillón	López	and

Marsden	(2008).	For	introductions	to	the	two	approaches,	see	Abraham	and	Marsden	(1985,	§3.5ff.	and	Example

5.5.9).

(31)	Under	such	approaches,	one	works	with	a	space	of	instantaneous	states	(which	will	be	infinite-dimensional	in

the	field-theoretic	case),	equips	this	space	with	a	real-valued	function,	L	(the	Lagrangian),	and	employs	a

variational	principle	to	find	those	curves	in	the	space	of	states	that	correspond	to	dynamically	possible	histories	of

the	system.

(32)	For	instances	of	this	styles	of	approach,	see,	e.g.,	Castrillón	López	and	Marsden	(2008)	and	Krasil'shchik	and
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Vinogradov	(1999,	ch.	5).

(33)	On	scale	transformations,	see	Olver	(1993,	255).	A	standard	remedy	is	to	introduce	the	notion	of	a	divergence

symmetry,	a	transformation	that	leaves	the	Lagrangian	invariant	up	to	a	total	divergence;	many	interesting

symmetries	are	divergence	symmetries	but	not	variational	symmetries,	including	boosts	of	Newtonian	systems	and

the	conformal	symmetries	of	the	wave	equation;	see	Olver	(1993,	278–281).	Scaling	symmetries	are	more	subtle.

Scale	transformations	are	symmetries	of	general	relativity,	but	are	neither	variational	nor	divergence	symmetries;

see	Anderson	and	Torre	(1996,	§2.B).	Rescaling	of	space	and	time	is	a	symmetry	of	the	wave	equation	that	is

neither	a	variational	nor	a	divergence	symmetry,	although	there	is	a	related	scale	transformation	that	acts	on	the

dependent	variables,	as	well	as	the	independent	variables,	which	is	a	divergence	symmetry	(but	not	a	variational

symmetry);	see	Olver	(1993,	Examples	2.43,	4.15,	and	4.36).

(34)	But:	certain	types	of	variational	(or	divergence)	symmetries	of	theories	whose	initial	value	problems	are	ill-

posed	are	associated	with	so-called	trivial	conservation	laws;	see	Olver	(1993,	342–346)	on	Noether's	second

theorem.	And:	there	exist	techniques	for	associating	conservation	laws	with	symmetries	that	do	not	rely	on

Noether's	theorem;	see,	e.g.,	Bluman	(2005).

(35)	ω	is	a	symplectic	form—a	closed,	nondegenerate	two-form.	ω	and	H	determine	a	vector	field	X 	on	 :	X 	is

the	vector	field	that	when	contracted	with	ω	yields	the	one-form	dH.	Integrating	this	vector	field	gives	the	curves

mentioned	in	the	text.	Note	that	there	is	a	canonical	recipe	for	constructing	 ,	H,	and	ω	given	a	Lagrangian

treatment	of	the	theory.

(36)	Note	that	the	symplectic	space	 	has	a	vast	family	of	symmetries.	Suppose	that	we	are	interested	in	a

Newtonian	theory	of	finitely	many	particles.	Then	 	is	finite-dimensional,	but	the	family	of	smooth	permutations	of	

	that	preserve	ω	is	infinite-dimensional—it	is	only	when	we	restrict	attention	to	transformations	that	also	preserve

H	that	we	end	up	with	something	like	what	we	want.	Something	similar	is	of	course	true	in	ordinary	quantum

mechanics:	while	the	family	of	unitary	transformations	of	a	Hilbert	space	will	be	very	large,	the	family	of	such

transformations	that	preserve	a	given	Hamiltonian	will	be	quite	small—and	only	the	latter	is	a	good	candidate	for

the	symmetry	group	of	a	theory.	The	situation	is	more	perplexing	in	the	case	of	fancier	quantum	theories.	On	the

one	hand,	an	arbitrary	C 	-algebra	automorphism	is	pretty	clearly	the	analogue	of	an	arbitrary	symplectic	or

unitary	transformation	and	so	is	not	a	good	candidate	to	be	a	symmetry	of	a	theory:	indeed,	in	many	cases	of

interest	any	two	states	are	related	by	such	an	automorphism;	see	Kishimoto,	Ozawa,	and	Sakai	(2003).	On	the

other	hand,	in	some	contexts	it	is	not	possible	to	identify	symmetries	of	a	theory	with	those	C 	-algebra

automorphisms	that	preserve	the	Hamiltonian	because	there	is	no	Hamiltonian	operator	available	at	the	C 	-algebra

level;	on	this	point,	see	Ruetsche	(2011,	§12.3).

(37)	In	truth,	in	order	to	formulate	a	plausible	doctrine	in	the	neighborhood	of	D2,	one	should	probably	work	with

infinitesimal	symmetries—otherwise	it	is	easy	to	concoct	counterexamples	by	deleting	points	from	a	theory's	space

of	solutions.

(38)	There	is	disagreement	over	the	question	whether	there	are	distinct	physical	possibilities	related	by	shifts	and

the	like.	But	that	is	a	different	question.

(39)	In	fact,	the	classical	symmetries	for	this	theory	are	not	exhausted	by	the	Galilei	symmetries—already	in	two

spacetime	dimensions,	where	the	Galilei	group	is	three-dimensional,	the	classical	symmetry	group	for	the	free

particle	is	eight-dimensional.	See,	e.g.,	Duarte,	Duarte,	and	Moreira	(1987).

(40)	See,	e.g.,	Lutzky	(1978,	§3).	Note	that	the	complete	classical	symmetry	group	of	the	one-dimensional

oscillator	is	eight-dimensional,	and	so	outstrips	the	group	of	spacetime	symmetries.	Note	also	that	all	of	these

results	carry	over,	mutatis	mutandis,	to	the	case	of	a	time-dependent	oscillator	in	n	spatial	dimensions;	see	Prince

and	Eliezer	(1980).

(41)	See,	e.g.,	Hydon	(2000,	145).	For	the	classical	symmetries	of	the	heat	equation	and	the	wave	equation,	see,

e.g.,	Olver	(1993,	Examples	2.41	and	2.43).	For	symmetries	of	the	source-free	Maxwell	equations,	see	Anco	and

Pohjanpelto	(2008).

(42)	E.g.,	the	group	of	nonlocal	symmetries	of	the	Kepler	problem	acts	transitively	on	solutions;	see	Leach,
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Andriopoulos,	and	Nucci	(2003).

(43)	See	Olver	(1993,	Example	4.15).

(44)	See	Lutzky	(1978)	and	Prince	and	Eliezer	(1980).

(45)	What	happens	if	in	place	of	variational	symmetries,	we	consider	divergence	symmetries?	Some	problems	go

away,	others	reappear.	Good	news:	Galilean	boosts	and	certain	types	of	scaling	transformations	count	as

symmetries	(see	fn.	33	above).	Bad	news:	addition-of-an-arbitrary	solution	is	a	divergence	symmetry	of	the	wave

equation;	Olver	(1993,	Example	4.36).	So	if	we	count	solutions	related	by	a	divergence	symmetry	as	physically

equivalent,	we	have	to	view	every	pair	of	solutions	of	the	wave	equation	as	being	physically	equivalent.

(46)	In	the	case	of	general	relativity,	denying	that	solutions	g	and	c	·	g	(c	a	positive	constant)	related	by	a	scale

transformation	are	physically	equivalent	is	especially	difficult	for	those	who	deny	that	there	are	possible	worlds	that

agree	about	distance	ratios	but	disagree	about	matters	of	absolute	distance—for	according	to	such	philosophers

there	is	only	one	world	that	is	adequately	represented	by	g	and	c	·	g	taken	together,	and	it	is	not	easy	to	see	how

one	of	the	two	solutions	could	have	a	better	claim	than	the	other	to	represent	that	world.

(47)	The	problem	of	identifying	those	which	do	so	is	known	as	the	inverse	problem	of	the	calculus	of	variations	or

as	Helmholtz's	problem.	For	an	introductory	survey,	see	Prince	(2000).

(48)	See,	e.g.,	Ibragimov	and	Kolsrud	(2004),	Olver	(1993,	Exercises	5.35,	5.36,	and	5.46),	Rosen	(1966),	and

Sorkin	(2002).

(49)	Just	as	one	might	move	from	variational	symmetries	to	divergence	symmetries	(see	fn.	33	above),	one	might

consider	transformations	of	a	system's	phase	space	that	leave	invariant	the	set	of	Hamiltonian	trajectories	without

worrying	about	whether	they	also	leave	the	Hamiltonian	itself	invariant.	Suitably	interpreted,	this	should	manage	to

capture	Galilean	boosts	in	Newtonian	mechanics	and	the	scaling	symmetry	of	the	Kepler	problem;	see	Abraham

and	Marsden	(1985,	446	f.)	and	Prince	and	Eliezer	(1981,	§5).	Of	course,	it	also	includes	the	various	undesirable

characters	that	already	count	as	Hamiltonian	symmetries	(see	below).

(50)	See	Morehead	(2005).	This	symmetry	corresponds	to	a	generalized	symmetry	of	the	equations	of	motion.

(51)	For	the	negative	energy	Kepler	problem,	the	length	of	the	major	axis	determines	the	energy	of	a	solution,	so

any	Hamiltonian	symmetry	leaves	this	quantity	invariant;	see,	e.g.,	Goldstein,	Poole,	and	Safko	(2002,	§3.7).

(52)	(1)	One	might	think	that	we	would	do	so	if	scaling	transformations	were	up	for	grabs,	since	one	can	indeed

transform	a	circular	orbit	into	an	eccentric	orbit	by	rescaling	one	coordinate	axis	while	leaving	the	others	invariant.

But	this	sort	of	rescaling	does	not	preserve	the	Hamiltonian	of	the	Kepler	problem	(because	it	changes	the	length	of

the	major	axis	of	some	solutions).	(2)	The	discussion	above	glosses	over	an	interesting	subtlety.	At	the	infinitesimal

level,	one	does	indeed	find	a	large	set	of	symmetries	of	the	Kepler	problem.	But	the	space	of	initial	data	features	a

singular	set	of	points	(corresponding	to	situations	in	which	the	two	particles	collide).	And	the	existence	of	this

singular	set	provides	an	obstruction	to	integrating	the	infinitesimal	symmetries	into	a	group	action;	see	Cushman

and	Bates	(1997,	74).	However,	there	exist	ways	of	regularizing	the	singularities	of	the	Kepler	problem—and	these

constructions	lead	to	a	family	of	finite	symmetries	that	act	transitively	on	surfaces	of	constant	energy.	For

discussion	and	references,	see	Cushman	and	Bates	(1997,	ch.	2)	or	Guillemin	and	Sternberg	(1990,	§2.7).	(3)	Note

that	the	fact	that	the	Hamiltonian	symmetry	group	of	the	Kepler	problem	is	larger	than	its	spacetime	symmetry

group	plays	an	important	role	in	the	quantum	theory	of	the	hydrogen	atom;	see	Jauch	and	Hill	(1940)	or	Guillemin

and	Sternberg	(1990,	§7).

(53)	Consider	the	two-dimensional	case.	There	are	four	conserved	quantities,	corresponding	to	four	independent

Hamiltonian	symmetries.	A	surface	of	constant	energy	is	a	three-sphere	in	the	phase	space	and	the	group	of

Hamiltonian	symmetries	is	the	group	U(2),	which	acts	transitively	on	the	energy	surfaces.	For	details,	see,	e.g.,

Goldstein,	Poole,	and	Safko	(2002,	§9.8),	Cushman	and	Rod	(1982),	or	Cushman	and	Bates	(1997,	ch.	2).

(54)	Again,	the	fact	that	the	symmetry	group	of	the	classical	system	is	U(2)	rather	than	just	the	spacetime

symmetry	group	plays	an	important	role	in	the	quantum	theory;	see	Jauch	and	Hill	(1940).

(55)	In	the	examples	just	considered,	it	is	pretty	clear	that	one	does	not	want	to	count	every	pair	of	solutions
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related	by	a	generalized	symmetry	as	being	physically	equivalent.	Does	one	ever	want	to	count	solutions	as

physically	equivalent	that	are	related	by	a	generalized	symmetry	that	is	not	a	classical	symmetry?	Yes—for

instance,	when	the	solutions	in	question	are	also	related	by	a	respectable	classical	symmetry.	Consider,	e.g.,	the

generalized	gauge	transformations	described	in	fn.	21	above—if	two	solutions	are	related	by	such	a	symmetry,

then	they	are	also	related	by	an	ordinary	gauge	transformation.

Are	there	pairs	of	solutions	related	by	a	generalized	symmetry	(but	not	by	any	classical	symmetry)	that	one	would

want	to	consider	physically	equivalent?	That	appears	to	be	a	more	difficult	question.	Part	of	the	difficulty	lies	in	the

fact	that	what	one	has	in	practice	are	the	infinitesimal	generators	of	generalized	symmetries:	it	is	in	general	a

nontrivial	task	to	find	the	corresponding	group	actions;	see,	e.g.,	Olver	(1993,	297ff.).	Further,	even	in	cases

where	the	corresponding	groups	of	transformations	can	be	determined,	their	physical	interpretation	can	be

obscure;	see,	e.g.,	Olver	(1984,	136f.).

(56)	Of	course,	some	interesting	weaker	relative	of	D2	might	be	true.	E.g.,	for	all	that	has	been	said	here,	being

related	by	a	Hamiltonian	symmetry	that	corresponds	to	a	classical	symmetry	of	their	equation	of	motion	may	be	a

sufficient	condition	for	two	solutions	to	be	physically	equivalent.

(57)	For	what	follows,	see,	e.g.,	Krasil'shchik	and	Vinogradov	(1999,	ch.	3).

(58)	But	note	that	everything	described	below	can	be	done	in	a	respectable	global	and	coordinate-independent

fashion.	See,	e.g.,	Saunders	(2008).

(59)	The	space	of	vectors	picked	out	by	 	at	a	point	of	J 	(E)	coincides	with	the	vectors	annihilated	by	the	family	of

one-forms	on	J 	(E)	that	enforce	the	differential	relations	that	require	the	p 	to	be	the	derivatives	of	the	components

of	u	with	respect	to	the	x .

(60)	To	do	everything	honestly,	we	would	need	to:	(i)	introduce	a	generalized	notion	of	a	solution;	(ii)	work	locally;

or	(iii)	shift	our	focus	to	the	infinitesimal	symmetries.

(61)	This	is	one	point	at	which	the	story	can	become	more	complicated	for	fields	that	are	not	given	by	tensors.

See,	e.g.,	Kolár?,	Michor,	and	Slovák	(1993)	on	gauge	natural	bundles.
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Abstract	and	Keywords

This	chapter	analyzes	permutation	symmetry,	focusing	on	the	proper	understanding	of	pchapter	indistinguishability

in	classical	statistical	mechanics	and	in	quantum	theory.	It	shows	that	it	is	possible	to	treat	the	statistical

mechanical	statistics	for	classical	pchapters	as	invariant	under	permutation	symmetry	and	argues	that	while	the

concept	of	indistinguishable,	permutation	invariant,	classical	pchapters	is	coherent,	it	is	in	contradiction	with	many

claims	found	in	the	literature.	The	chapter	also	contends	that	the	concept	of	permutation	symmetry	should	be

considered	in	the	same	level	as	other	symmetries	and	invariances	of	physical	theories.

Keywords:	permutation	symmetry,	pchapter	indistinguishability,	statistical	mechanics,	quantum	theory,	mechanical	statistics,	classical	pchapters,

physical	theories

By	the	end	of	the	nineteenth	century	the	concept	of	particle	indistinguishability	had	entered	physics	in	two

apparently	quite	independent	ways:	in	statistical	mechanics,	where,	according	to	Gibbs,	it	was	needed	in	order	to

define	an	extensive	entropy	function;	and	in	the	theory	of	black-body	radiation,	where,	according	to	Planck,	it	was

needed	to	interpolate	between	the	high	frequency	(Wien	law)	limit	of	thermal	radiative	equilibrium,	and	the	low

frequency	(Rayleigh-Jeans)	limit.	The	latter,	of	course,	also	required	the	quantization	of	energy,	and	the

introduction	of	Planck's	constant:	the	birth	of	quantum	mechanics.

It	was	not	only	quantum	mechanics.	Planck's	work,	and	later	that	of	Einstein	and	Debye,	foreshadowed	the	first

quantum	field	theory	as	written	down	by	Dirac	in	1927.	Indistinguishability	is	essential	to	the	interpretation	of

quantum	fields	in	terms	of	particles	(Fock	space	representations),	and	thereby	to	the	entire	framework	of	high-

energy	particle	physics	as	a	theory	of	local	interacting	fields.

In	this	chapter,	however,	we	confine	ourselves	to	particle	indistinguishability	in	low-energy	theories,	in	quantum

and	classical	statistical	mechanics	describing	ordinary	matter.	We	are	also	interested	in	indistinguishability	as	a

symmetry,	to	be	treated	in	a	uniform	way	with	other	symmetries	of	physical	theories,	especially	with	spacetime

symmetries.	That	adds	to	the	need	to	study	permutation	symmetry	in	classical	theory—and	returns	us	to	Gibbs	and

the	derivation	of	the	entropy	function.

The	concept	of	particle	indistinguishability	thus	construed	faces	some	obvious	challenges.	It	remains	controversial,

now	for	more	than	a	century,	whether	classical	particles	can	be	treated	as	indistinguishable;	or	if	they	can,

whether	the	puzzles	raised	by	Gibbs	are	thereby	solved	or	alleviated;	and	if	so,	how	the	differences	between

quantum	and	classical	statistics	are	to	be	explained.	The	bulk	of	this	chapter	is	about	these	questions.	In	part	they

are	philosophical.	As	Quine	remarked:

Those	results	[in	quantum	statistics]	seem	to	show	that	there	is	no	difference	even	in	principle	between

saying	of	two	elementary	particles	of	a	given	kind	that	they	are	in	the	respective	places	a	and	b	and	that

they	are	oppositely	placed,	in	b	and	a.	It	would	seem	then	not	merely	that	elementary	particles	are	unlike

PDF Compressor Free Version 



Indistinguishability

Page 2 of 31

bodies;	it	would	seem	that	there	are	no	such	denizens	of	spacetime	at	all,	and	that	we	should	speak	of

places	a	and	b	merely	as	being	in	certain	states,	indeed	the	same	state,	rather	than	as	being	occupied	by

two	things.	(Quine	1990,	35)

He	was	speaking	of	indistinguishable	particles	in	quantum	mechanics,	but	if	particles	in	classical	theory	are	treated

the	same	way,	the	same	questions	arise.

This	chapter	is	organized	in	three	sections.	The	first	is	about	the	Gibbs	paradox	and	is	largely	expository.	The

second	is	on	particle	indistinguishability,	and	the	explanation	of	quantum	statistics	granted	that	classical	particles

just	like	quantum	particles	can	be	treated	as	permutable.	The	third	is	about	the	more	philosophical	questions	raised

by	sections	1	and	2,	and	the	question	posed	by	Quine.	There	is	a	special	difficulty	in	matters	of	ontology	in

quantum	mechanics,	if	only	because	of	the	measurement	problem. 	I	shall,	so	far	as	is	possible,	be	neutral	on	this.

My	conclusions	apply	to	most	realist	solutions	of	the	measurement	problem,	and	even	some	nonrealist	ones.

1.	The	Gibbs	Paradox

1.1	Indistinguishability	and	the	Quantum

Quantum	theory	began	with	a	puzzle	over	the	statistical	equilibrium	of	radiation	with	matter.	Specifically,	Planck

was	led	to	a	certain	combinatorial	problem:	For	each	frequency	υ ,	what	is	the	number	of	ways	of	distributing	an

integral	number	N 	of	“energy	elements”	over	a	system	of	C 	states	(or	“resonators”)?

The	distribution	of	energy	over	each	type	of	resonator	must	now	be	considered,	first,	the	distribution	of	the

energy	E 	over	the	C 	resonators	with	frequency	υ .	If	E 	is	regarded	as	infinitely	divisible,	an	infinite

number	of	different	distributions	is	possible.	We,	however,	consider—and	this	is	the	essential	point—E 	to

be	composed	of	a	determinate	number	of	equal	finite	parts	and	employ	in	their	determination	the	natural

constant	h	=	6.55	×	10 	erg	sec.	This	constant,	multiplied	by	the	frequency,	u ,	of	the	resonator	yields

the	energy	element	Δε 	in	ergs,	and	dividing	E 	by	hυ ,	we	obtain	the	number	N ,	of	energy	elements	to	be

distributed	over	the	C 	resonators.	(Planck	1900,	239)

Thus	was	made	what	is	quite	possibly	the	most	successful	single	conjecture	in	the	entire	history	of	physics:	the

existence	of	Planck's	constant	h,	postulated	in	1900	in	the	role	of	energy	quantization.

The	number	of	distributions	Z ,	or	microstates	as	we	shall	call	them,	as	a	function	of	frequency,	was	sought	by

Planck	in	an	effort	to	apply	Boltzmann's	statistical	method	to	calculate	the	energy-density	 	of	radiative

equilibrium	as	a	function	of	temperature	T	and	of	Z .	To	obtain	agreement	with	experiment	he	found	(1)

The	expression	has	a	ready	interpretation:	it	is	the	number	of	ways	of	distributing	N 	indistinguishable	elements

over	C 	distinguishable	cells—of	noting	only	how	many	elements	are	in	which	cell,	not	which	element	is	in	which

cell. 	Equivalently,	the	microstates	are	distributions	invariant	under	permutations.	When	this	condition	is	met,	we

call	the	elements	permutable. 	Following	standard	physics	terminology,	they	are	identical	if	these	elements,

independent	of	their	microstates,	have	exactly	the	same	properties	(like	charge,	mass,	and	spin).

Planck's	“energy	elements”	at	a	given	frequency	were	certainly	identical;	but	whether	it	followed	that	they	should

be	considered	permutable	was	hotly	disputed.	Once	interpreted	as	particles	(“light	quanta”),	as	Einstein	proposed,

there	was	a	natural	alternative:	Why	not	count	microstates	as	distinct	if	they	differ	in	which	particle	is	located	in

which	cell,	as	had	Boltzmann	in	the	case	of	material	particles?	On	that	count	the	number	of	distinct	microstates

should	be:	(2)

Considered	in	probabilistic	terms,	again	as	Einstein	proposed,	if	each	of	the	N 	elements	is	assigned	one	of	the	C

cells	at	random,	independent	of	each	other,	the	number	of	such	assignments	will	be	given	by	(2),	each	of	them

equiprobable.
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But	while	(2)	gave	the	correct	behavior	for	 	in	the	high-frequency	limit	(Wien's	law),	it	departed	sharply	from	the

Planck	distribution	at	low	frequencies.	Eq.(1)	was	empirically	correct,	not	(2).	The	implication	was	that	if	light	was

made	of	particles	labeled	by	frequency,	they	were	particles	that	could	not	be	considered	as	independent	of	each

other	at	low	frequencies.

Eq.(1)	is	true	of	bosons;	bosons	are	represented	by	totally	symmetrized	states	in	quantum	mechanics	and

quantum	field	theory;	totally	symmetrized	states	are	entangled	states.	There	is	no	doubt	that	Einstein,	and	later

Schrödinger,	were	puzzled	by	the	lack	of	independence	of	light-quanta	at	low	frequencies.	They	were	also

puzzled	by	quantum	nonlocality	and	entanglement.	It	is	tempting	to	view	all	these	puzzles	as	related. 	Others

concluded	that	light	could	not	after	all	be	made	of	particles,	or	that	it	is	made	up	of	both	particles	and	waves,	or	it	is

made	up	of	a	special	category	of	entities	that	are	not	really	objects	at	all. 	We	shall	come	back	to	these	questions

separately.

For	Planck's	own	views	on	the	matter,	they	were	perhaps	closest	to	Gibbs's. 	Gibbs	had	arrived	at	the	concept	of

particle	indistinguishability	quite	independent	of	quantum	theory.	To	understand	this	development,	however,

considerably	more	stage-setting	is	needed,	in	both	classical	statistical	mechanics	and	thermodynamics,	the

business	of	sections	1.2	to	1.4.	(Those	familiar	with	the	Gibbs	paradox	may	skip	directly	to	section	1.5.)

1.2	The	Gibbs	Paradox	in	Thermodynamics

Consider	the	entropy	of	a	volume	V	of	gas	composed	of	N 	molecules	of	kind	A	and	N 	molecules	of	kind	B. 	It

differs	from	the	entropy	of	a	gas	at	the	same	temperature	and	pressure	when	A	and	B	are	identical.	The	difference

is:	(3)

where	k	is	Boltzmann's	constant,	k	=	1.38	×	10 	erg	K .	The	expression	(3)	is	unchanged	no	matter	how	similar

A	and	B	are,	even	when	in	practice	the	two	gases	cannot	be	distinguished;	but	it	must	vanish	when	A	and	B	are

the	same.	This	is	the	Gibbs	paradox	in	thermodynamics.

It	is	not	clear	that	the	puzzle	as	stated	is	really	paradoxical,	but	it	certainly	bears	on	the	notion	of	identity—and	on

whether	identity	admits	of	degrees.	Thus,	Denbigh	and	Redhead	argue:

The	entropy	of	mixing	has	the	same	value	…	however	alike	are	the	two	substances,	but	suddenly

collapses	to	zero	when	they	are	the	same.	It	is	the	absence	of	any	“warning”	of	the	impending

catastrophe,	as	the	substances	are	made	more	and	more	similar,	which	is	the	truly	paradoxical	feature.

(Denbigh	and	Redhead	1989,	284)

The	difficulty	is	more	severe	for	those	who	see	thermodynamics	as	founded	on	operational	concepts.	Identity,	as

distinct	from	similarity	under	all	practical	measurements,	seems	to	outstrip	any	possible	experimental

determination.

To	see	how	experiment	does	bear	on	the	matter,	recall	that	the	classical	thermodynamic	entropy	is	an	extensive

function	of	the	mass	(or	particle	number)	and	volume.	That	is	to	say,	for	real	numbers	ƛ,	the	thermodynamic

entropy	S	as	a	function	of	N	and	V	scales	linearly:

By	contrast	the	pressure	and	temperature	are	intensive	variables	that	do	not	scale	with	mass	and	volume.	The

thermodynamic	entropy	function	for	an	ideal	gas	is:	(4)

where	c	is	an	arbitrary	constant.	It	is	extensive	by	inspection.

The	extensivity	of	the	entropy	allows	one	to	define	the	analogue	of	a	density—entropy	per	unit	mass	or	unit	volume

—important	to	nonequilibrium	thermodynamics,	but	the	concept	clearly	has	its	limits:	for	example,	it	is	hardly

expected	to	apply	to	gravitating	systems,	and	more	generally	ignores	surface	effects	and	other	sources	of

inhomogeneity	It	is	to	be	sharply	distinguished	from	additivity	of	the	entropy,	needed	to	define	a	total	entropy	for	a

collection	of	equilibrium	systems	each	separately	described—typically,	as	(at	least	initially)	physically	isolated
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systems.	The	assumption	of	additivity	is	that	a	total	entropy	can	be	defined	as	their	sum:

It	is	doubtful	that	any	general	statement	of	the	second	law	would	be	possible	without	additivity.	Thus,	collect

together	a	dozen	equilibrium	systems,	some	samples	of	gas,	homogeneous	fluids	or	material	bodies,	initially

isolated,	and	determine	the	entropy	of	each	as	a	function	of	its	temperature,	volume,	and	mass.	Energetically

isolate	them	from	external	influences,	but	allow	them	to	interact	with	each	other	in	any	way	you	like	(mechanical,

thermal,	chemical,	nuclear),	so	long	as	the	result	is	a	new	collection	of	equilibrium	systems.	Then	the	second	law

can	be	expressed	as	follows:	the	sum	of	the	entropies	of	the	latter	systems	is	equal	to	or	greater	than	the	sum	of

the	entropies	of	the	former	systems.

Now	for	the	connection	with	the	Gibbs	paradox.	The	thermodynamic	entropy	difference	between	states	1	and	2	is

defined	as	the	integral,	over	any	reversible	process 	that	links	the	two	states,	of	dQ/T,	that	is	as	the	quantity:

where	dQ	is	the	heat	transfer.	If	the	insertion	or	removal	of	a	partition	between	A	and	B	is	to	count	as	a	reversible

process,	then	from	additivity	and	given	that	negligible	work	is	done	on	the	partition	it	follows	there	will	be	no

change	in	entropy,	so	no	entropy	of	mixing.	This	implies	the	entropy	must	be	extensive.	Conversely	extensivity,

under	the	same	presupposition,	and	again	given	additivity,	implies	there	is	no	entropy	of	mixing.

Whether	the	removal	of	a	partition	between	A	and	B	should	count	as	a	reversible	process	is	another	matter:	surely

not	if	means	are	available	to	tell	the	two	gases	apart.	Thus,	if	a	membrane	is	opaque	to	A,	transparent	to	B,	under

compression	work	P dV	must	be	done	against	the	partial	pressure	P 	in	voiding	one	part	of	the	cylinder	of	gas	A

(and	similarly	for	B),	where:

The	work	dW	required	to	separate	the	two	gases	isothermally	at	temperature	T	is	related	to	the	entropy	change

and	the	heat	transfer	by:

Using	the	equation	of	state	for	the	ideal	gas	to	determine	dW	=	PdV

where	N	=	N 	+	N ,	the	result	is	the	entropy	of	mixing,	Eq.(3).	However,	there	can	be	no	such	semi-permeable

membrane	when	the	two	gases	are	identical, 	so	in	this	case	the	entropy	of	mixing	is	zero.

Would	it	matter	to	the	latter	conclusion	if	the	differences	between	the	two	gases	were	sufficiently	small	(were

ignored	or	remained	undiscovered)?	But	as	van	Kampen	argues,	it	is	hard	to	see	how	the	chemist	will	be	led	into

any	practical	error	in	ignoring	an	entropy	of	mixing,	if	he	cannot	take	mechanical	advantage	of	it.	Most

thermodynamic	substances,	in	practice,	are	composites	of	two	or	more	substances	(typically,	different	isotopes),

but	such	mixtures	are	usually	treated	as	homogeneous.	In	thermodynamics,	as	a	science	based	on	operational

concepts,	the	meaning	of	the	entropy	function	does	not	extend	beyond	the	competencies	of	the	experimenter:

Thus,	whether	such	a	process	is	reversible	or	not	depends	on	how	discriminating	the	observer	is.	The

expression	for	the	entropy	depends	on	whether	or	not	he	is	able	and	willing	to	distinguish	between	the

molecules	A	and	B.	This	is	a	paradox	only	for	those	who	attach	more	physical	reality	to	the	entropy	than	is

implied	by	its	definition.	(Van	Kampen	1984,	307)

A	similar	resolution	of	the	Gibbs	paradox	was	given	by	Jaynes	(1992).	It	appears,	on	this	reading,	that	the	entropy

is	not	a	real	physical	property	of	a	thermodynamic	system,	independent	of	our	knowledge	of	it.	According	to	Van

Kampen,	it	is	attributed	to	a	system	on	the	basis	of	a	system	of	conventions—on	whether	the	removal	of	a	partition

is	to	be	counted	as	a	reversible	process,	and	on	whether	the	entropy	function	for	the	two	samples	of	gas	is

counted	as	extensive.	That	explains	why	the	entropy	of	mixing	is	an	all-or-nothing	affair.

1.3	The	Gibbs	Paradox	in	Statistical	Mechanics
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Thermodynamics	is	the	one	fundamental	theory	of	physics	that	might	lay	claim	to	being	based	on	operational

concepts	and	definitions.	The	situation	is	different	in	statistical	mechanics,	where	the	concept	of	entropy	is	not

limited	to	equilibrium	states,	nor	bound	to	the	concept	of	reversibility.

There	is	an	immediate	difficulty,	however;	for	the	classical	derivations	of	the	entropy	in	statistical	mechanics	yield

a	function	that	is	not	extensive,	even	as	an	idealization.	That	is,	classically,	there	is	always	an	entropy	of	mixing,

even	for	samples	of	the	same	gas.	If	the	original	Gibbs	paradox	was	that	there	was	no	entropy	of	mixing	in	the	limit

of	identity,	the	new	paradox	is	that	there	is.

To	see	the	nature	of	the	problem,	it	will	suffice	to	consider	the	ideal	gas,	using	the	Boltzmann	definition	of	entropy,

so-called. 	The	state	of	a	system	of	N	particles	is	represented	by	a	set	of	N	points	in	the	6-dimensional	one-

particle	phase	space	(or	μ-space),	or	equivalently,	by	a	single	point	in	the	total	6N-dimensional	phase	space	Γ .	A

fine-graining	of	Γ 	is	a	division	of	this	space	into	cells	of	equal	volume	τ 	(corresponding	to	a	division	of	μ-space

into	cells	of	volume	τ,	where	τ	has	dimensions	of	[momentum] [length] ).	A	coarse-graining	is	a	division	of	Γ 	into

regions	with	a	given	range	of	energy.	For	weakly	interacting	particles	these	regions	can	be	parameterized	by	the

one-particle	energies	ε ,	with	N 	the	number	of	particles	with	energy	in	the	range	[ε ,	ε 	+	Δε ],	and	the	coarse-

graining	extended	to	μ-space	as	well.	These	numbers	must	satisfy:	(5)

where	E	is	the	total	energy.	Thus,	for	any	fine-grained	description	(microstate)	of	the	gas,	which	specifies	how,	for

each	s,	N 	particles	are	distributed	over	the	fine-graining,	there	is	a	definite	coarse-grained	description

(macrostate)	which	only	specifies	the	number	in	each	energy	range.	Each	macrostate	corresponds	to	a	definite

volume	of	phase	space.

We	can	now	define	the	Boltzmann	entropy	of	a	gas	of	N	particles	in	a	given	microstate:	it	is	proportional	to	the

logarithm	of	the	volume,	in	Γ ,	of	the	corresponding	macrostate.	In	this	the	choice	of	τ	only	effects	an	additive

constant,	irrelevant	to	entropy	differences.

This	entropy	is	computed	as	follows.	For	each	s,	let	there	be	C 	cells	in	μ-space	of	volume	τ	bounded	by	the

energies	ε ,	ε 	+	Δε,	containing	N 	particles.	Counting	microstates	as	distinct	if	they	differ	in	which	particles	are	in

which	cells,	we	use	(2)	for	the	number	of	microstates,	each	with	the	same	phase	space	volume	 ,	yielding	the

volume:	(6)

The	product	of	these	quantities	(over	s)	is	the	N-particle	phase-space	volume	of	the	macrostate	N ,	N ,…,N ,.	for

just	one	way	of	partitioning	the	N	particles	among	the	various	one-particle	energies.	There	are	(7)

partitionings	in	all.	The	total	phase	space	volume	W 	(“B”	is	for	Boltzmann)	of	the	macrostate	N ,	N ,	…,	N ,.	is	the

product	of	terms	(6)	(over	s)	and	(7):	(8)

and	the	entropy	is:

From	the	Stirling	approximation	for	x	large,	logx!	≍	xlog	x	−	x:	(9)

By	inspection,	this	entropy	function	is	not	extensive.	When	the	spatial	volume	and	particle	number	are	doubled,	the

second	and	third	expressions	on	the	RHS	scale	properly,	but	not	the	first.	This	picks	up	a	term	kN	log	2,

corresponding	to	the	2 	choices	as	to	which	of	the	two	sub-volumes	contains	which	particle.
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One	way	to	obtain	an	extensive	entropy	function	is	to	simply	subtract	the	term	kN	log	N.	In	the	Stirling

approximation	(up	to	a	constant	scaling	with	N	and	V)	that	is	equivalent	to	dividing	the	volume	(8)	by	N!.	But	with

what	justification?	If,	after	all,	permutations	of	particles	did	not	yield	distinct	fine-grained	distributions,	the	factor	(7)

would	not	be	divided	by	N!;	it	would	be	set	equal	to	unity.	Call	this	the	N!	problem.	This	is	itself	sometimes	called

the	Gibbs	paradox,	but	is	clearly	only	a	fragment	of	it.	It	is	the	main	topic	of	sections	1.5	and	2.1.

1.4	The	Equilibrium	Entropy

Although	not	needed	in	the	sequel,	for	completeness	we	obtain	the	equilibrium	entropy,	thus	making	the

connection	with	observable	quantities.

A	system	is	in	equilibrium	when	the	entropy	of	its	coarse-grained	distribution	is	a	maximum;	that	is,	when	the

entropy	is	stationary	under	variation	of	the	numbers	N 	→	N 	+	δN ,	consistent	with	(5),	that	is	from	(9):	(10)

where	(11)

If	the	variations	δN 	were	entirely	independent,	each	term	in	the	summand	(10)	would	have	to	vanish.	Instead

introduce	Lagrange	multipliers	a,	β	for	the	respective	constraint	equations	(11).	Conclude	for	each	s:

Rearranging:	(12)

Substituting	in	(9)	and	using	(5)	gives	the	equilibrium	entropy	 :	(13)

The	values	of	α	and	β	are	fixed	by	(5)	and	(12).	Replacing	the	schematic	label	s	by	coordinates	on	phase	space

for	a	monatomic	gas	 ,	with	ε 	the	kinetic	energy	 ,	the	sum	over	N 	in	the	first	equation	of	(5)	becomes:

The	spatial	integral	gives	the	volume	V;	the	momentum	integral	gives	(2π	m/β) ,	so

From	the	analogous	normalization	condition	on	the	total	energy	(the	second	constraint	(5)),	substituting	(12)	and

given	that	for	an	ideal	monatomic	gas	 ,	deduce	that	 .	Substituting	in	(13),	the	equilibrium	entropy

is:

It	is	clearly	not	extensive.	Compare	Eq.(4),	which	using	the	equation	of	state	for	the	ideal	gas	takes	the	form	(the

Sackur-Tetrode	equation):

where	c	is	an	arbitrary	constant.	They	differ	by	the	term	Nk	logN,	as	already	noted.

1.5	The	N!	Puzzle
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The	N!	puzzle	is	this:	What	justifies	the	subtraction	of	the	term	Nklog	N	from	the	entropy?	Or	equivalently,	what

justifies	the	division	of	the	phase	space	volume	Eq.(8)	by	N	!?	In	fact	it	has	a	fairly	obvious	answer	(see	section

2.1):	classical	particles,	if	identical,	should	be	treated	as	permutable,	just	like	identical	quantum	particles.	But	this

suggestion	has	rarely	been	taken	seriously.

Much	more	widely	favored	is	the	view	that	quantum	theory	is	needed.	Classical	statistical	mechanics	is	not	after	all

a	correct	theory;	quantum	statistical	mechanics	(Eq.(1)),	in	the	dilute	limit	C 	≫	N ,	gives:

yielding	the	required	correction	to	(6)	(setting	(7)	to	unity).	Call	this	the	orthodox	solution	to	the	N!	puzzle.

This	reasoning,	so	far	as	it	goes,	is	perfectly	sound,	but	it	does	not	go	very	far.	It	says	nothing	about	why	particles

in	quantum	theory	but	not	classical	theory	are	permutable.	If	rationale	is	offered,	it	is	that	classical	particles	are

localized	in	space	and	hence	are	distinguishable	(we	shall	consider	this	in	more	detail	in	the	next	section);	and

along	with	that,	that	the	quantum	state	for	identical	particles	is	unchanged	by	permutations. 	But	how	the	two	are

connected	is	rarely	explained.

Erwin	Schrödinger,	in	his	book	Statistical	Thermodynamics,	did	give	an	analysis:

It	was	a	famous	paradox	pointed	out	for	the	first	time	by	W.	Gibbs,	that	the	same	increase	of	entropy	must

not	be	taken	into	account,	when	the	two	molecules	are	of	the	same	gas,	although	(according	to	naive	gas-

theoretical	views)	diffusion	takes	place	then	too,	but	unnoticeably	to	us,	because	all	the	particles	are	alike.

The	modern	view	[of	quantum	mechanics]	solves	this	paradox	by	declaring	that	in	the	second	case	there

is	no	real	diffusion,	because	exchange	between	like	particles	is	not	a	real	event—if	it	were,	we	should

have	to	take	account	of	it	statistically.	It	has	always	been	believed	that	Gibbs's	paradox	embodied

profound	thought.	That	it	was	intimately	linked	up	with	something	so	important	and	entirely	new	[as

quantum	mechanics]	could	hardly	be	foreseen.	(Schrödinger	1946,	61)

Evidently,	by	“exchange	between	like	particles”	Schrödinger	meant	the	sort	of	thing	that	happens	when	gases	of

classical	molecules	diffuse—the	trajectories	of	individual	molecules	are	twisted	around	one	another—in	contrast	to

the	behavior	of	quantum	particles,	which	do	not	have	trajectories,	and	so	do	not	diffuse	in	this	way.	But	why	the

exchange	of	quantum	particles	“is	not	a	real	event”	(whereas	it	is	classically)	is	lost	in	the	even	more	obscure

question	of	what	quantum	particles	really	are.

Schrödinger	elsewhere	said	something	more.	He	wrote	of	indistinguishable	particles	as	“losing	their	identity,”	as

“non-individuals,”	in	the	way	of	units	of	money	in	the	bank	(they	are	“fungible”).	That	fitted	with	Planck's	original

idea	of	indistinguishable	quanta	as	elements	of	energy,	rather	than	material	things—so,	again,	quite	unlike	classical

particles.

On	this	point	there	seems	to	have	been	wide	agreement.	Schrödinger's	claims	about	the	Gibbs	paradox	came

under	plenty	of	criticism,	for	example,	by	Otto	Stern,	but	Stern	remarked	at	the	end:

In	conclusion,	it	should	be	emphasized	that	in	the	foregoing	remarks	classical	statistics	is	considered	in

principle	as	a	part	of	classical	mechanics	which	deals	with	individuals	(Boltzmann).	The	conception	of

atoms	as	particles	losing	their	identity	cannot	be	introduced	into	the	classical	theory	without	contradiction.

(Stern	1949,	534)

This	comment	or	similar	can	be	found	scattered	throughout	the	literature	on	the	foundations	of	quantum	statistics.

There	is	a	second	solution	to	the	N!	puzzle	that	goes	in	the	diametrically-opposite	direction:	it	appeals	only	to

classical	theory,	precisely	assuming	particle	distinguishability.	Call	this	the	classical	solution	to	the	puzzle.

Its	origins	lie	in	a	treatment	by	Ehrenfest	and	Trkal	(1920)	of	the	equilibrium	conditions	for	molecules	subject	to

disassociation	into	a	total	of	N 	atoms.	This	number	is	conserved,	but	the	number	of	molecules	N ,	N ,	…	formed	of

these	atoms,	of	various	types	A,	B,…	may	vary.	The	dependence	of	the	entropy	function	on	N 	is	not	needed	since

this	number	never	changes:	it	is	the	dependence	on	N ,	N ,	…	that	is	relevant	to	the	extensivity	of	the	entropy	for

molecules	of	type	A,	B,	…,	which	can	be	measured.	By	similar	considerations	as	in	section	1.3,	the	number	of	ways
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the	N 	atoms	can	be	partitioned	among	N 	molecules	of	type	A,N 	molecules	of	type	B,	…	is	the	factor	N !/N !N !

….	This	multiplies	the	product	of	all	the	phase	space	volumes	for	each	type	of	molecule,	delivering	the	required

division	by	N !	for	molecules	of	type	A,	by	N !	for	molecules	of	type	B,	and	so	on	(with	the	dependence	on	N

absorbed	into	an	overall	constant).

A	similar	argument	was	given	by	van	Kampen	(1984),	but	using	Gibbs's	methods.	The	canonical	ensemble	for	a

gas	of	N 	particles	has	the	probability	distribution:

Here	(q,	p)	are	coordinates	on	the	6 	-dimensional	phase	space	for	the	N 	particles,	which	we	suppose	are

confined	to	a	volume	V ,	H	is	the	Hamiltonian,	and	f	is	a	normalization	constant.	Let	us	determine	the	probability	of

finding	N	particles	with	total	energy	E	in	the	sub-volume	V	(so	N′	=	N 	−	N	are	in	volume	V′	=	V 	−	V).	If	the

interaction	energy	between	particles	in	V′	and	V	is	small,	the	Hamiltonian	H *	of	the	total	system	can	be

approximately	written	as	the	sum	H 	+	H ′	of	the	Hamiltonians	for	the	two	subsystems.	The	probability	density	W(N,

q,	p)	for	N	particles	as	a	function	of	 	where	 	is	then	the	marginal	on

integrating	out	the	remaining	N′	particles	in	V′,	multiplied	by	the	number	of	ways	of	selecting	N	particles	from	N

particles.	The	latter	is	given	by	the	binomial	function:

The	result	is:

In	the	limit	N 	≫	N,	the	binomial	is	to	a	good	approximation:

The	volume	integral	yields	V′ .	For	noninteracting	particles,	for	constant	density	ρ	=	V′/N′	in	the	large	volume

limit	V′	≫	V	we	obtain:

where	z	is	a	function	of	ρ	and	β.	It	has	the	required	division	by	N!

Evidently	this	solution	to	the	N!	puzzle	is	the	same	as	in	Ehrenfest	and	Trkal's	derivation:	extensivity	of	the	entropy

can	only	be	obtained	for	an	open	system,	that	is,	for	a	proper	subsystem	of	a	closed	system,	never	for	a	closed

one—and	it	follows	precisely	because	the	particles	are	nonpermutable.	The	tables	are	thus	neatly	turned.

Which	of	the	two,	the	orthodox	or	the	classical,	is	the	“correct”	solution	to	the	N!	puzzle?	It	is	tempting	to	say	that

both	are	correct,	but	as	answers	to	different	questions:	the	orthodox	solution	is	about	the	thermodynamics	of	real

gases,	governed	by	quantum	mechanics,	and	the	classical	solution	is	about	the	consistency	of	a	hypothetical

classical	system	of	thermodynamics	that	in	reality	does	not	exist.	But	on	either	line	of	reasoning,	identical	quantum

particles	are	treated	as	radically	unlike	identical	classical	particles	(only	the	former	are	permutable).	This	fits	with

the	standard	account	of	the	departures	of	quantum	from	classical	statistics:	they	are	explained	by	permutability.

These	are	the	claims	challenged	in	Part	2.

2.	Indistinguishability	as	a	Uniform	Symmetry

2.1	Gibbs'	Solution

There	is	another	answer	as	to	which	of	the	two	solutions	to	the	N!	puzzle	is	correct:	neither.	The	N!	puzzle	arises

in	both	classical	and	quantum	theories	and	is	solved	in	exactly	the	same	way:	by	passing	to	the	quotient	space	(of

phase	space	and	Hilbert	space,	respectively).	This	is	not	to	deny	that	atoms	really	are	quantum	mechanical,	or
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that	measurements	of	the	dependence	of	the	entropy	on	particle	number	are	made	in	the	way	that	Ehrenfest	et	al.

envisaged;	it	is	to	deny	that	the	combinatorics	factors	thus	introduced	are,	except	in	special	cases,	either	justified

or	needed.

Gibbs,	in	his	Elementary	Principles	in	Statistical	Mechanics,	put	the	matter	as	follows:

If	two	phases	differ	only	in	that	certain	entirely	similar	particles	have	changed	places	with	one	another,	are

they	to	be	regarded	as	identical	or	different	phases?	If	the	particles	are	regarded	as	indistinguishable,	it

seems	in	accordance	with	the	spirit	of	the	statistical	method	to	regard	the	phases	as	identical.	(Gibbs

1902,	187)

He	proposed	that	the	phase	of	an	N-particle	system	be	unaltered	“by	the	exchange	of	places	between	similar

particles.”	Phases	(points	in	phase	space)	like	this	he	called	generic	(and	those	that	are	altered,	specific).	The

state	space	of	generic	phases	is	the	reduced	phase	space	Γ /Π ,	the	quotient	space	under	the	permutation	group

Π 	of	N	elements.	In	this	space	points	of	Γ 	related	by	permutations	are	identified.

The	suggestion	is	that	even	classically,	the	expressions	(6)	and	(7)	are	wrong.	(7)	is	replaced	by	unity	(as	already

noted):	there	is	just	one	way	of	partitioning	N	permutable	particles	among	the	various	states	so	as	to	give	N

particles	to	each	state.	But	(6)	is	wrong	too:	it	should	be	replaced	by	the	volume	of	reduced	phase	space

corresponding	to	the	macrostate	(for	s),	the	volume

For	the	macrostate	N ,	N ,	…,	N ,.	the	total	reduced	volume,	denote	W 	is:	(14)

The	derivation	does	not	depend	on	the	limiting	behavior	of	Eq.(1),	or	on	the	assumption	of	equiprobability	or

equality	of	volume	of	each	fine-grained	distribution	(and	is	in	fact	in	contradiction	with	that	assumption,	as	we	shall

see).

Given	(14),	there	is	no	entropy	of	mixing.	Consider	a	system	of	particles	all	with	the	same	energy	ε .	The	total

entropy	before	mixing	is,	from	additivity:	(15)

After	mixing,	if	A	and	B	are	identical:	(16)

If	the	pressure	of	the	two	samples	is	initially	the	same	(so	C /N 	=	C /N ),	the	quantities	(15),	(16)	should	be

approximately	equal —as	can	easily	be	verified	in	the	Stirling	approximation.	But	if	A	and	B	are	not	identical,	and

permutations	of	A	particles	with	B	particles	is	not	a	symmetry,	we	pass	to	the	quotient	spaces	under	 	and	

separately	and	take	their	product,	and	the	denominator	in	(16)	should	be	N !N !.	With	that	S 	+	S 	and	S 	are

no	longer	even	approximately	the	same.

Gibbs	concluded	his	discussion	of	whether	to	use	generic	or	specific	phases	with	the	words,	“The	question	is	one

to	be	decided	in	accordance	with	the	requirements	of	practical	convenience	in	the	discussion	of	the	problems	with

which	we	are	engaged”	(Gibbs	1902,	188).	Practically	speaking,	if	we	are	interested	in	defining	an	extensive

classical	entropy	function	(even	for	closed	systems),	use	of	the	generic	phase	(permutability)	is	clearly	desirable.

On	the	other	hand,	integral	and	differential	calculus	is	simple	on	manifolds	homeomorphic	to	ℝ ,	like	Γ ;	the

reduced	phase	space	Γ /Π 	has	by	contrast	a	much	more	complex	topology	(a	point	made	by	Gibbs).	If	the

needed	correction,	division	by	N!,	can	be	simply	made	at	the	end	of	a	calculation,	the	second	consideration	will

surely	trump	the	first.

N
N

N
N

s

1 2 s
red

s

A A B B

18

ΠNA
ΠNB

A B A B A+B

6N N

N
N

PDF Compressor Free Version 



Indistinguishability

Page 10 of 31

2.2	Arguments	against	Classical	Indistinguishability

Are	there	principled	arguments	against	permutability	thus	treated	uniformly,	the	same	in	the	classical	as	in	the

quantum	case?	The	concept	of	permutability	can	certainly	be	misrepresented.	Thus,	classically,	of	course,	it

makes	sense	to	move	atoms	about	so	as	to	interchange	one	with	another,	for	particles	have	definite	trajectories;	in

that	sense	an	“exchange	of	places”	must	make	for	a	real	physical	difference,	and	in	that	sense

“indistinguishability”	cannot	apply	to	classical	particles.

But	that	is	not	what	is	meant	by	“interchange”—Schrödinger	was	just	misleading	on	this	point.	It	is	interchange	of

points	in	phase	space	whose	significance	is	denied,	not	in	configuration	space	over	time.	Points	in	phase-space

are	in	1:1	correspondence	with	the	dynamically	allowed	trajectories.	A	system	of	N	particles	whose	trajectories	in

μ-space	swirl	about	one	another,	leading	to	an	exchange	of	two	or	more	of	them	in	their	places	in	space	at	two

different	times,	is	described	by	each	of	N\	points	in	the	6N-dimensional	phase	space	Γ ,	each	faithfully

representing	the	same	swirl	of	trajectories	in	μ-space	(but	assigning	different	labels	to	each	trajectory).	In	passing

to	points	of	the	quotient	space	Γ /Π 	there	is	therefore	no	risk	of	descriptive	inadequacy	in	representing	particle

interchange	in	Schrödinger's	sense.

Another	and	more	obscure	muddle	is	to	suppose	that	points	of	phase	space	can	only	be	identified	insofar	as	they

are	all	traversed	by	one	and	the	same	trajectory.	That	appears	to	be	the	principle	underlying	van	Kampen's

argument:

One	could	add,	as	an	aside,	that	the	energy	surface	can	be	partitioned	in	N!	equivalent	parts,	which	differ

from	one	another	only	by	a	permutation	of	the	molecules.	The	trajectory,	however,	does	not	recognize	this

equivalence	because	it	cannot	jump	from	one	point	to	an	equivalent	one.	There	can	be	no	good	reason	for

identifying	the	Z-star	[the	region	of	phase	space	picked	out	by	given	macroscopic	conditions]	with	only

one	of	these	equivalent	parts.	(Van	Kampen	1984,	307)

But	if	the	whole	reason	to	consider	the	phase-space	volumes	of	macrostates	in	deriving	thermodynamic	behavior

is	because	(say	by	ergodicity)	they	are	proportional	to	the	amount	of	time	the	system	spends	in	the	associated

macrostates,	then,	just	because	the	trajectory	cannot	jump	from	one	point	to	an	equivalent	one,	it	should	be

enough	to	consider	only	one	of	the	equivalent	parts	of	the	Z-star.	We	should	draw	precisely	the	opposite

conclusion	to	van	Kampen.

However	van	Kampen	put	the	matter	somewhat	differently—in	terms,	only,	of	probability:

Gibbs	argued	that,	since	the	observer	cannot	distinguish	between	different	molecules,	“it	seems	in

accordance	with	the	spirit	of	the	statistical	method”	to	count	all	microscopic	states	that	differ	only	by	a

permutation	as	a	single	one.	Actually	it	is	exactly	opposite	to	the	basic	idea	of	statistical	mechanics,

namely	that	the	probability	of	a	macrostate	is	given	by	the	measure	of	the	Z-star,	i.e.	the	number	of

corresponding,	macroscopically	indistinguishable	microstates.	As	mentioned	…	it	is	impossible	to	justify

the	N!	as	long	as	one	restricts	oneself	to	a	single	closed	system.	(van	Kampen	1984,	309,	emphasis

added).

Moreover,	he	speaks	of	probabilities	of	macroscopically	indistinguishable	microstates,	whereas	the	contentious

question	concerns	microscopically	indistinguishable	microstates.	The	contentious	question	is	whether	microstates

that	differ	only	by	particle	permutations,	with	all	physical	properties	unchanged—which	are	in	this	sense

indistinguishable—should	be	identified.

Alexander	Bach	in	his	book	Classical	Particle	Indistinguishability	defended	the	concept	of	permutability	of	states

in	classical	statistical	mechanics,	understood	as	the	requirement	that	probability	distributions	over	microstates	be

invariant	under	permutations.	But	what	he	meant	by	this	is	the	invariance	of	functions	on	Γ 	As	such,	as	probability

measures,	they	could	never	provide	complete	descriptions	of	the	particles	(unless	all	their	coordinates	coincide)—

they	could	not	be	concentrated	on	individual	trajectories.	He	called	this	the	“deterministic	setting.”	In	his	own

words:

Indistinguishable	Classical	Particles	Have	No	Trajectories.	The	unconventional	role	of

indistinguishable	classical	particles	is	best	expressed	by	the	fact	that	in	a	deterministic	setting	no

N
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indistinguishable	particles	exist,	or—equivalently—that	indistinguishable	classical	particles	have	no

trajectories.	Before	I	give	a	formal	proof	I	argue	as	follows.	Suppose	they	have	trajectories,	then	the

particles	can	be	identified	by	them	and	are,	therefore,	not	indistinguishable.	(Bach	1997,	7)

His	formal	argument	was	as	follows.	Consider	the	coordinates	of	two	particles	at	a	given	time.	in	one	dimension,	as

an	extremal	of	the	set	of	probability	measures	 	on	ℝ 	(a	2-dimensional	configuration	space),	from	which,

assuming	the	two	particles	are	impenetrable,	the	diagonal	D	=	{〈	x,	x	〉	∊	ℝ ,	x	∊	ℝ}	has	been	removed.	Since

indistinguishable,	the	state	of	the	two	particles	must	be	unchanged	under	permutations	(permutability),	so	it	must

be	in	 ,	the	space	of	symmetrized	measures.	It	consists	of	sums	of	delta	functions	of	the	form:

But	no	such	state	is	an	extremal	of	 .

As	already	remarked,	the	argument	presupposes	that	the	coordinates	of	the	two	particles	defines	a	point	in	

,	the	unreduced	space,	rather	than	in	 ,	the	space	of	probability	measures	over	the

reduced	space	ℝ /Π .	In	the	latter	case,	since	 	is	isomorphic	to	 ,	there	is	no	difficulty

Bach's	informal	argument	above	is	more	instructive.	Why	not	use	the	trajectory	of	a	particle	to	identify	it,	by	the

way	it	twists	and	turns	in	space?	Why	not	indeed:	if	that	is	all	there	is	to	being	a	particle,	you	have	already	passed

to	a	trajectory	in	the	quotient	space	Γ /Π ,	for	those	related	by	permutations	twist	and	turn	in	exactly	the	same

way.	The	concept	of	particle	distinguishability	is	not	about	the	trajectory	or	the	one-particle	state:	it	is	about	the

label	of	the	trajectory	or	the	one-particle	state,	or	equivalently,	the	question	of	which	particle	has	that	trajectory,

that	state.

2.3	Haecceitism

Gibbs's	suggestion	was	called	“fundamentally	idealistic”	by	Rosenfeld,	“mystical”	by	van	Kampen,	“inconsistent”

by	Bach;	they	were	none	of	them	prepared	to	see	in	indistinguishability	the	rejection	of	what	is	on	first	sight	a

purely	metaphysical	doctrine—that	after	every	describable	characteristic	of	a	thing	has	been	accounted	for,	there

still	remains	the	question	of	which	thing	has	those	characteristics.

The	key	word	is	“every”;	describe	a	thing	only	partly,	and	the	question	of	which	it	is	of	several	more	precisely

described	things	is	obviously	physically	meaningful.	But	microstates,	we	take	it,	are	maximal,	complete

descriptions.	If	there	is	a	more	complete	level	of	description	it	is	the	microstate	as	given	by	another	theory,	or	at	a

deeper	level	of	description	by	the	same	theory,	and	to	the	latter	our	considerations	apply.

The	doctrine,	now	that	we	have	understood	it	correctly,	has	a	suitably	technical	name	in	philosophy.	It	is	called

haecceitism.	Its	origins	are	medieval	if	not	ancient,	and	it	was	in	play,	one	way	or	another,	in	a	connected	line	of

argument	from	Newton	and	Clarke	to	Leibniz	and	Kant.	That	centered	on	the	need,	given	symmetries,	including

permutations,	not	just	for	symmetry-breaking	in	the	choice	of	initial	conditions, 	but	for	a	choice	among

haecceistic	differences—in	the	case	of	continuous	symmetries,	among	values	of	absolute	positions,	absolute

directions,	and	absolute	velocities.	All	parties	to	this	debate	agreed	on	haecceitism.	These	choices	were	acts	of

God,	with	their	consequences	visible	only	to	God	(Newton,	Clarke);	or	they	were	humanly	visible	too,	but	in	ways

that	could	not	be	put	into	words—that	could	only	be	grasped	by	“intuition”	(Kant);	or	they	involved	choices	not

even	available	to	God,	who	can	only	choose	on	the	basis	of	reason;	so	there	could	be	no	created	things	such	as

indistinguishable	atoms	or	points	of	a	featureless	space	(Leibniz).

So	much	philosophical	baggage	raises	a	worry	in	its	own	right.	If	it	is	the	truth	or	falsity	of	haecceitism	that	is	at

issue,	it	seems	unlikely	that	it	can	be	settled	by	any	empirical	finding.	If	that	is	what	the	extensivity	of	the	entropy	is

about,	perhaps	extensivity	has	no	real	physical	meaning	after	all.	It	is,	perhaps,	itself	metaphysical—	or

conventional.	This	was	the	view	advocated	by	Nick	Huggett	when	he	first	drew	the	comparison	between

Boltzmann's	combinatorics	and	haecceitism.
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But	this	point	of	view	is	only	remotely	tenable	if	haecceitism	is	similarly	irrelevant	to	empirical	questions	in	quantum

statistics.	And	on	the	face	of	it	that	cannot	be	correct.	Planck	was,	after	all,	led	by	experiment	to	Eq.	(1).	Use	of	the

unreduced	state	space	in	quantum	mechanics	rather	than	the	reduced	(symmetrized)	space	surely	has	direct

empirical	consequences.

Against	this	two	objections	can	be	made.	The	first,	following	Reichenbach	(1956),	is	that	the	important	difference

between	quantum	and	classical	systems	is	the	absence	in	quantum	theory	of	a	criterion	for	the	re-identification	of

identical	particles	over	time.	They	are,	for	this	reason,	“non-individuals”	(this	links	with	Schrödinger's	writings ).

This,	rather	than	any	failure	of	haecceitism,	is	what	is	responsible	for	the	departures	from	classical	statistics. 	The

second,	following	Post	(1963)	and	French	and	Redhead	(1988),	is	that	haecceitism	must	be	consistent	with

quantum	statistics	(including	Planck's	formula)	because	particles,	even	given	the	symmetrization	of	the	state,	may

nevertheless	possess	“transcendental”	individuality,	and	symmetrization	of	the	state	can	itself	be	understood	as	a

dynamical	constraint	on	the	state,	rather	than	in	terms	of	permutability.

Of	these	the	second	need	not	detain	us.	Perhaps	metaphysical	claims	can	be	isolated	from	any	possible	impact	on

physics,	but	better,	surely,	is	to	link	them	with	physics	where	such	links	are	possible.	Or	perhaps	we	were	wrong	to

think	that	haecceitism	is	a	metaphysical	doctrine:	it	just	means	nonpermutability,	it	is	to	break	the	permutation

symmetry.	The	converse	view	is	to	respect	this	symmetry.

As	for	the	first,	it	is	simply	not	true	that	indistinguishable	quantum	particles	can	never	be	reidentified	over	time.

Such	identifications	are	only	exact	in	the	kinematic	limit,	to	be	sure,	and	even	then	only	for	a	certain	class	of

states;	but	the	ideal	gas	is	commonly	treated	in	just	such	a	kinematic	limit,	and	the	restriction	in	states	applies	just

as	much	to	the	reidentification	of	identical	quantum	particles	that	are	not	indistinguishable—that	are	not	permutable

—but	that	are	otherwise	entangled.

This	point	needs	some	elaboration.	Consider	first	the	case	of	nonpermutable	identical	particles.	The	N	particle	state

space	is	then	 ,	the	N-fold	tensor	product	of	the	one-particle	state	space	 .	Consider

states	of	the	form:	(17)

where	the	one-particle	states	are	members	of	some	orthonormal	basis	(we	allow	for	repetitions).	The	k -particle	is

then	in	the	one-particle	state	|π ).	The	ordering	of	the	tensor-product	breaks	the	permutation	symmetry.	If	the

particles	are	only	weakly	interacting,	and	the	state	remains	a	product	state,	the	k -particle	can	also	be	assigned	a

one-particle	state	at	later	times,	namely	the	unitary	evolute	of	|φ 〉.	Even	if	more	than	one	particle	has	the	initial

state	|φ ),	still	it	will	be	the	case	that	each	particle	in	that	state	has	a	definite	orbit	under	the	unitary	evolution.	It	is

true	that	in	those	circumstances	it	would	seem	impossible	to	tell	the	two	orbits	apart,	but	the	same	will	be	true	of

two	classical	particles	with	exactly	the	same	representative	points	in	μ-space.

Now	notice	the	limitation	of	this	way	of	speaking	of	particles	as	one-particle	states	that	are	(at	least	conceptually)

identifiable	over	time:	it	does	not	in	general	apply	to	superpositions	of	states	of	the	form	(17)—as	will	naturally	arise

if	the	particles	are	interacting,	even	starting	from	(17).	In	general,	given	superpositions	of	product	states,	there	is

no	single	collection	of	N	one-particle	states,	or	orbits	of	one-particle	states,	sufficient	for	the	description	of	the	N

particles	over	time.	In	these	circumstances	no	definite	histories,	no	orbits	of	one-particle	states,	can	be	attributed

to	identical	but	distinguishable	particles.

Now	consider	identical	permutable	quantum	particles	(indistinguishable	quantum	particles).	The	state	must	now	be

invariant	under	permutations,	so	(for	vector	states):	(18)

for	every	π	∈	Γ ,	where	U	:π	→	U 	is	a	unitary	representation	of	the	permutation	group	Γ .	Given	(18),	|Φ〉	must	be

of	the	form:	(19)

and	superpositions	thereof.	Here	c	is	a	normalization	constant,	π	∈	Γ 	is	a	permutation	of	the	N	symbols	{a,b,
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…,c,.d}	(which,	again,	may	have	repetitions),	and	as	before,	the	one-particle	states	are	drawn	from	some

orthonormal	set	in	 .	If	noninteracting,	and	initially	in	the	state	(19),	the	particle	in	the	state	|φ 〉	can	still	be

reidentified	over	time—as	the	particle	in	the	state	which	is	the	unitary	evolute	of	|φ 〉. 	That	is	to	say,	for

entanglements	like	this,	one-particle	states	can	still	be	tracked	over	time.	It	is	true	that	we	can	no	longer	refer	to

the	state	as	that	of	the	k 	particle,	in	contrast	to	states	of	the	form	(17),	but	that	labeling—unless	shorthand	for

something	else,	say	the	lattice	position	of	an	atom	in	a	crystal—never	had	any	physical	meaning.	As	for	more

entangled	states—for	superpositions	of	states	of	the	form	(19)—there	is	of	course	a	difficulty;	but	it	is	the	same

difficulty	as	we	encountered	for	identical	but	distinguishable	particles.

Reichenbach	was	therefore	right	to	say	that	quantum	theory	poses	special	problems	for	the	reidentification	of

identical	particles	over	time,	and	that	these	problems	derive	from	entanglement;	but	not	from	the	“mild” 	form	of

entanglement	required	by	symmetrization	itself	(as	involved	in	states	of	the	form	(19)),	of	the	sort	that	explains

quantum	statistics.	On	the	other	hand,	this	much	is	also	true:	permutability	does	rule	out	appeal	to	the	reduced

density	matrix	to	distinguish	each	particle	in	time	(defined,	for	the	k 	particle,	by	taking	the	partial	trace	of	the	state

over	the	Hilbert	space	of	all	the	particles	save	the	k ).	Given	(anti)symmetrization,	the	reduced	density	matrices

will	all	be	the	same.	But	it	is	hard	to	see	how	the	reduced	density	matrix	can	provide	an	operational	as	opposed	to

a	conceptual	criterion	for	the	reidentification	of	one	among	N	identical	particles	over	time.

What	would	an	operational	criterion	look	like?	Here	is	a	simple	example:	a	helium	atom	in	the	canister	of	gas	by	the

laboratory	door	is	thereby	distinguished	from	one	in	the	high-vacuum	chamber	in	the	corner,	a	criterion	that	is

preserved	over	time.	This	means:	the	one-particle	state	localized	in	the	canister	is	distinguished	from	the	one	in

the	vacuum	chamber.

We	shall	encounter	this	idea	of	reference	and	reidentification	by	location	(or	more	generally	by	properties)	again,

so	let	us	give	it	a	name:	call	it	individuating	reference,	and	the	properties	concerned	individuating	properties.	In

quantum	mechanics	the	latter	can	be	represented	in	the	usual	way	by	projection	operators.	Thus	if	P 	is	the

projector	onto	the	region	of	space	Δ 	occupied	by	the	canister,	and	P 	onto	the	region	Δ 	occupied	by	the

vacuum	chamber,	and	if	|χ 〉,	|χ 〉	are	localized	in	Δ 	(and	similarly	|ψ 〉,	|ψ 〉	in	Δ ),	then	even	in	the

superposition	(where	|c | +	|	c | 	=	1)

one	can	still	say	there	is	a	state	in	which	one	particle	is	in	region	Δ 	and	one	in	Δ 	(but	we	cannot	say	which);

still	we	have:	(20)

If	the	canister	and	vacuum	chamber	are	well-sealed,	this	condition	will	be	preserved	over	time.	Individuating

properties	can	be	defined	in	this	way	just	as	well	for	permutable	as	for	nonpermutable	identical	particles.

It	is	time	to	take	stock.	We	asked	whether	the	notion	of	permutability	can	be	applied	to	classical	statistical

mechanics.	We	found	that	it	can,	in	a	way	that	yields	the	desired	properties	of	the	statistical	mechanical	entropy

function,	bringing	it	in	line	with	the	classical	thermodynamic	entropy.	We	saw	that	arguments	for	the	unintelligibility

of	classical	permutability	in	the	literature	are	invalid	or	unsound,	amounting,	at	best,	to	appeal	to	the	philosophical

doctrine	of	haecceitism.	We	knew	from	the	beginning	that	state-descriptions	in	the	quantum	case	should	be

invariant	under	permutations,	and	that	this	has	empirical	consequences,	so	on	the	most	straightforward	reading	of

haecceitism	the	doctrine	is	false	in	that	context.	Unless	it	is	emasculated	from	all	relevance	to	physics,	haecceitism

cannot	be	true	a	priori.	We	wondered	if	it	was	required	or	implied	if	particles	are	to	be	reidentified	over	time,	and

found	the	answer	was	no	to	both,	in	the	quantum	as	in	the	classical	case.	We	conclude:	permutation	symmetry

holds	of	identical	classical	particles	just	as	it	does	of	identical	quantum	particles,	and	may	be	treated	in	the	same

way,	by	passing	to	the	quotient	space.

Yet	an	important	lacuna	remains,	for	among	the	desirable	consequences	of	permutation	symmetry	in	the	case	of

quantum	particles	are	the	departures	from	classical	statistics—statistics	that	are	unchanged	in	the	case	of

classical	particles.	Why	is	there	this	difference?
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2.4	The	Explanation	of	Quantum	Statistics

Consider	again	the	classical	reduced	phase-space	volume	for	the	macrostate	N ,	N ,	…,	N ,.,	as	given	by	Eq.(14):

(21)

In	effect,	Planck	replaced	the	one-particle	phase-space	volume	element	τ,	hitherto	arbitrary,	by	h ,	and	changed

the	factor	Z 	by	which	it	was	multiplied	to	obtain:	(22)

Continuing	from	this	point,	using	the	method	of	sections	1.3	and	1.4	one	is	led	to	the	equilibrium	entropy	function

and	equation	of	state	for	the	ideal	Bose-Einstein	gas.	The	entire	difference	between	this	and	the	classical	ideal	gas

is	that	for	each	s,	the	integer	 	is	replaced	by	(N 	+	C 	−	1)!/(C 	−	1)!	What	is	the	rational	for	this?	It	does	not

come	from	particle	indistinguishability	(permutability);	that	has	already	been	taken	into	account	in	(21).

Let	us	focus	on	just	one	value	of	s,	that	is,	on	N 	particles	distributed	over	C 	cells,	all	of	the	same	energy	(and

hereinafter	drop	the	subscript	s).	At	the	level	of	the	fine-grained	description,	in	terms	of	how	many

(indistinguishable)	particles	are	in	each	(distinguishable)	cell,	a	microstate	is	specified	by	a	sequence	of	fine-

grained	occupation	numbers	〈	n ,	n ,	…,	n 	〉,	where	 ;	there	are	many	such	corresponding	to	the

coarse-grained	description	(N,	C)	(for	a	single	value	of	s).

Their	sum	is	(23)

as	before.	But	here	is	another	mathematical	identity: 	(24)

In	other	words,	the	difference	between	the	two	expressions	(21)	and	(22),	apart	from	the	replacement	of	the	unit	τ

by	h ,	is	that	in	quantum	mechanics	every	microstate	〈	n ,	n ,	…,	n 	〉	has	equal	weight,	whereas	in	classical

mechanics	each	is	weighted	by	the	factor	(n !…n !) .

Because	of	this	weighting,	a	classical	fine-grained	distribution	where	the	N	particles	are	evenly	distributed	over	the

C	cells	has	a	much	greater	weight	than	one	where	most	of	the	particles	are	concentrated	in	a	small	handful.	In

contrast,	in	quantum	mechanics,	the	weights	are	always	the	same.	Given	that	“weight,”	one	way	or	another,

translates	into	statistics,	particles	weighted	classically	thus	tend	to	repel,	in	comparison	to	their	quantum

mechanical	counterparts;	or	put	the	other	way,	quantum	particles	tend	to	bunch	together,	in	comparison	to	their

classical	counterparts.

That	is	what	the	weighting	does,	but	why	is	it	there?	Consider	figure	10.1a,	for	N	=	2,	C	=	4.	Suppose,	for

concreteness,	we	are	modeling	two	classical,	non-permutable	identical	coins,	such	that	the	first	two	cells

correspond	to	one	of	the	coins	landing	heads	(H),	and	the	remainder	to	that	coin	landing	tails	(T)	(and	similarly	for

the	other	coin). 	The	cells	along	the	diagonal	correspond	not	just	to	both	coins	landing	heads	or	both	landing	tails

—they	are	cells	in	which	the	two	coins	have	all	their	fine-grained	properties	the	same.	For	any	cell	away	from	the

diagonal,	there	is	a	corresponding	cell	that	differs	only	in	which	coin	has	which	fine-grained	property	(its	reflection

in	the	diagonal).	Their	combined	volume	in	phase	space	is	therefore	twice	that	of	any	cell	on	the	diagonal.
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Figure	10.1 	Phase	space	and	reduced	phase	space	for	two	particles

The	same	is	true	in	the	reduced	phase	space,	figure	10.1b.	For	N	=	3	there	are	three	such	diagonals;	cells	along

these	have	one	half	the	volume	of	the	others.	And	there	is	an	additional	boundary,	where	all	three	particles	have

the	same	fine-grained	properties,	each	with	one	sixth	their	volume.	The	weights	in	Eq.(24)	follow	from	the	struc-

ture of	reduced	phase	space,	as	faithfully	preserving	ratios	of	volumes	of	microstates	in	the	unreduced	space.	As

explained	by	Huggett	(1999a),	two	classical	identical	coins,	if	permutable,	still	yield	a	weight	for	{H,	T}	twice	that	

of the	weight	for	{H,H}	or	{T,T},	just	as	for	nonpermutable	coins,	that	is	with	probabilities	one-half,	one-quarter,	

and one-quarter	respectively.

Contrast	quantum	mechanics,	where	subspaces	of	Hilbert	space	replace	regions	of	phase	space,	and	subspace

dimension	replaces	volume	measure.	Phase	space	structure,	insofar	as	it	can	be	defined	in	quantum	theory,	is

derivative	and	emergent.	Since	the	only	measure	available	is	subspace	dimension,	each	of	a	set	of	orthogonal

directions	in	each	subspace	is	weighted	precisely	the	same—yielding,	for	the	symmetrized	Hilbert	space,	Eq.(23)

instead.30
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Figure	10.2 	Discrete	measures	for	Hilbert	

space

But	there	are	two	cases	when	subspace	dimension	and	volume	measure	are	proportional	to	one	another—or

rather,	for	we	take	quantum	theory	as	fundamental,	for	when	phase-space	structure,	complete	with	volume

measure,	emerges	from	quantum	theory. 	One	is	in	the	limit	C	≫	N,	when	the	contribution	from	the	states	along

the	diagonals	is	negligible	in	comparison	to	the	total	(figure	10.2b),	and	the	other	is	when	the	full	Hilbert	space	for

nonpermutable	particles	is	used.	That	is	why	permutability	makes	a	difference	to	statistics	in	the	quantum	case	but

not	the	classical:	for	N	≍	C,	as	in	figure	10.2a,	the	dimensionality	measure	departs	significantly	from	the	volume

measure	(in	figure	10.2a,	as	five-eighths	to	one-half).	For	N	=	2,	C	=	2	there	are	just	three	orthogonal	microstates,

each	of	equal	weight.	Take	two	two-state	quantum	particles	(qubits)	as	quantum	coins,	and	the	probabilities	{H,H},

{T,	T},	{H,	T}	are	all	one-third.

Is	there	a	remaining	puzzle	about	quantum	statistics—say,	the	nonindependence	of	permutable	quantum	particles,

as	noted	by	Einstein?	Statistical	independence	fails,	in	that	the	state	cannot	be	specified	for	N	−	1	particles,

independent	of	the	state	of	the	N ,	 but	 that	 is	 true	 of	 classical	 states	 on	 reduced	 phase	 space	 too	

(or,	 indeed,	 for permutation-invariant	states	on	the	unreduced	phase	space;	see	Bach	1997).	Find	a	way	to	

impose	a	discretemeasure	on	a	classical	permutable	system,	and	one	can	hope	to	reproduce	quantum	statistics	

as	well	(Gottesmann 2005).	Quantum	holism	has	some	role	to	play	in	the	explanation	of	quantum	statistics,	but	like	

entanglement	and identity	over	time,	less	than	meets	the	eye.

2.5	Fermions

We	have	made	almost	no	mention	so	far	of	fermions.	In	fact	most	of	our	discussion	applies	to	fermions	too,	but

there	are	some	differences.

Why	are	there	fermions	at	all?	The	reason	is	that	microstates	in	quantum	theory	are	actually	rays,	not	vector	states

|ϕ 〉,	 that	 is,	 they	 are	 1-dimensional	 subspaces	 of	 Hilbert	 space.	 As	 such	 they	 are	 invariant	 under	

multiplication	 by complex	numbers	of	unit	norm.	If	only	the	ray	need	be	invariant	under	permutations,	there	is	an	

alternative	to	Eq.

(18),	namely:	(25)
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where	θ	∊	[0,	2π].	Since	any	permutation	can	be	decomposed	as	a	product	of	permutations	π 	(that	interchange	i

and	j),	even	or	odd	in	number,	and	since	 ,	it	follows	that	(18)	need	not	be	obeyed	after	all:	there	is	the

new	possibility	that	θ	=	0	or	π	for	even	and	odd	permutations,	respectively.	Such	states	are	antisymmetrized,	that

is,	of	the	form:	(26)

where	sgn(π)=	1	(−1)	for	even	(odd)	permutations,	and	superpositions	thereof.

An	immediate	consequence	is	that,	unlike	in	(19),	every	one-particle	state	in	(26)	must	now	be	orthogonal	to	every

other:	repetitions	would	automatically	cancel,	leaving	no	contribution	to	|Ψ ).	Since	superpositions	of	states	(19)

with	(26)	satisfy	neither	(18)	nor	(25),	permutable	particles	in	quantum	mechanics	must	be	of	one	kind	or	the

other.

The	connection	between	phase	space	structure	and	antisymmetrization	of	the	state	is	made	by	the	Pauli	exclusion

principle—the	principle	that	no	two	fermions	can	share	the	same	complete	set	of	quantum	numbers,	or

equivalently,	have	the	same	one-particle	state.	In	view	of	the	effective	identification	of	elementary	phase	space

cells	of	volume	h 	with	rays	in	Hilbert	space,	fermions	will	be	constrained	so	that	no	two	occupy	the	same

elementary	volume.	In	other	words,	in	terms	of	microstates	in	phase	space,	the	n 's	are	all	zeros	or	ones.	In	place

of	Eq.(23),	we	obtain	for	the	number	of	microstates	for	the	coarse-grained	distribution	〈C,N〉	(as	before,	for	a	single

energy	level	s):	(27)

Use	of	(27)	in	place	of	(1)	yields	the	entropy	and	equation	of	state	for	the	Fermi-Dirac	ideal	gas.	It	is,	of	course,

extensive.	A	classical	phase	space	structure	emerges	from	this	theory	in	the	same	limit	C	≫	N	(for	each	s)	as	for

the	Bose-Einstein	gas,	when	the	classical	weights	for	cells	along	the	diagonals	are	small	in	comparison	to	the	total.

Away	from	this	limit,	whereas	for	bosons	their	weight	is	too	small	(as	suppressed	by	the	factor	(n !…n ,) ),for

fermions	their	weight	is	too	large	(as	not	suppressed	enough;	they	should	be	set	equal	to	zero).	Thus	fermions

tend	to	repel,	in	comparison	to	non-permutable	particles.

3.	Ontology

The	explanation	of	quantum	statistics	completes	the	main	argument	of	this	chapter:	permutation	symmetry	falls	in

place	as	with	any	other	exact	symmetry	in	physics,	and	applies	just	as	much	to	classical	systems	of	equations	that

display	it	as	to	quantum	systems. 	In	both	cases	only	quantities	invariant	under	permutations	are	physically

real.	This	is	the	sense	in	which	“exchange	between	like	particles	is	not	a	real	event”;	it	has	nothing	to	do	with	the

swirling	of	particles	around	each	other,	it	has	only	to	do	with	haecceistic	redundancies	in	the	mathematical

description	of	such	particles,	swirling	or	otherwise.	Similar	comments	apply	to	other	symmetries	in	physics,	where

instead	of	haecceistic	differences	one	usually	speaks	of	coordinate-dependent	distinctions.

In	both	classical	and	quantum	theory	state-spaces	can	be	defined	in	terms	only	of	invariant	quantities.	In	quantum

mechanics	particle	labels	need	never	be	introduced	at	all	(the	so-called	“occupation	number	formalism”)—a

formulation	recommended	by	Teller	(1995).	Why	introduce	quantities	(particle	labels)	only	to	deprive	them	of

physical	significance?	What	is	their	point	if	they	are	permutable?	We	come	back	to	Quine's	question	and	to

eliminativism.

There	are	two	sides	to	this	question.	One	is	whether,	or	how,	permutable	particles	can	be	adequate	as	ontology

(section	3.1),	and	link	in	a	reasonable	way	with	philosophical	theories	of	ontology	(sections	3.2	and	3.3).	The	other

question	is	whether	some	other	way	of	talking	might	not	be	preferable,	in	which	permutability	as	a	symmetry	does

not	even	arise	(section	3.4).

3.1	The	Gibbs	Paradox,	Again
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A	first	pass	at	the	question	of	whether	permutable	entities	are	really	objects	is	to	ask	how	they	may	give	rise	to

nonpermutable	objects.	That	returns	us	to	the	Gibbs	paradox	in	the	sense	of	section	1.2:	How	similar	do	objects

have	to	be	to	count	as	identical?

On	this	problem	(as	opposed	to	the	N!	problem)	section	2	may	seem	a	disappointment.	It	focused	on

indistinguishability	as	a	symmetry,	but	the	existence	of	a	symmetry	(or	otherwise)	seems	just	as	much	an	all-or-

nothing	affair	as	identity.	But	section	2	did	more	than	that:	it	offered	a	microscopic	dynamical	analysis	of	the

process	of	mixing	of	two	gasses.

In	fact,	not	even	the	N!	problem	is	entirely	solved,	for	we	would	still	like	to	have	an	extensive	entropy	function

even	where	particles	are	obviously	non-identical,	say	in	the	statistical	behavior	of	large	objects	(like	stars),	and	of

small	but	complex	objects	like	fatty	molecules	in	colloids. 	In	these	cases	we	can	appeal	to	the	Ehrenfest-Trkal-

van	Kampen	approach,	but	only	given	that	we	can	arrive	at	a	description	of	such	objects	as	distinguishable:	How

do	we	do	that,	exactly?

The	two	problems	are	related,	and	an	answer	to	both	lies	in	the	idea	of	individuating	properties,	already	introduced,

and	the	idea	of	phase-space	structure	as	emergent,	already	mentioned.	For	if	particles	(or	bound	states	of

particles)	acquire	some	dynamically	stable	properties,	there	is	no	reason	that	they	should	not	play	much	the	same

role,	in	the	definition	of	effective	phase-space	structure,	as	do	intrinsic	ones.	Thus	two	or	more	nonidentical	gases

may	arise,	even	though	their	elementary	constituents	are	identical	and	permutable,	if	all	the	molecules	of	one	gas

have	some	characteristic	arrangement,	different	from	those	of	the	other.	The	two	gases	will	be	nonidentical	only	at

an	effective,	emergent	level	of	description	to	be	sure,	and	permutation	symmetries	will	still	apply	at	the	level	of	the

full	phase-space.	The	effective	theory	will	have	only	approximate	validity,	in	regimes	where	those	individuating

properties	are	stable	in	time.	Similar	comments	apply	to	Hilbert-space	structures.

Figure	10.3 	Individuating	properties	as	particle	labels

In	illustration,	consider	again	figure	10.1b	for	two	classical	permutable	coins.	Suppose	that	the	dynamics	is	such

that	one	of	the	coins	always	rotates	about	its	axis	of	symmetry	in	the	opposite	direction	to	the	other.	This	fact	is

recorded	in	the	microstate:	each	coin	not	only	lands	either	heads	(H)	or	tails	(T),	but	lands	rotating	one	way	(A)	or

the	other	(B).	It	follows	that	certain	regions	of	the	reduced	phase	space	are	no	longer	accessible,	among	them	the

cells	on	the	diagonal	for	which	all	the	properties	of	the	two	coins	are	the	same	(shaded,	figure	10.3a).	By in-

spection,	the	available	phase	space	has	the	effective	structure	of	an	unreduced	phase	space	for	distinguishable

coins,	the	A	coin	and	the	B	coin	(figure	10.3b).	It	is	tempting	to	add	“even	if	there	is	no	fact	of	the	matter	as	to

which	of	the	coins	is	the	A	coin,	and	which	is	the	B	coin,”	but	there	is	another	way	of	putting	it:	the	coin	that	is	the

A	coin	is	the	one	rotating	one	way,	the	B	coin	is	the	one	rotating	the	other	way.

The	elimination	of	the	diagonals	makes	no	difference	to	particle	statistics	(since	this	is	classical	theory),	but

analogous	reasoning	applies	to	the	quantum	case,	where	it	does.	Two	quantum	coins,	thus	dynamically

distinguished,	will	land	one	head	and	one	tail	with	probability	one	half,	not	one	third.

The	argument	carries	over	unchanged	in	the	language	of	Feynman	diagrams.	Thus,	the	two	scattering	processes

depicted	in	figure	10.4	cannot	(normally)	be	dynamically	distinguished	if	the	particles	are	permutable.

Correspondingly,	there	is	an	interference	effect	that	leads	to	a	difference	in	the	probability	distributions	for

scattering	processes	involving	permutable	particles	from	those	for	distinguishable	particles.	But	if	dynamical

distinctions	A	and	B	can	be	made	between	the	two	particles,	stable	over	time	(in	our	terms,	if	A	and	B	are

individuating	properties),	the	interference	terms	will	vanish,	and	the	scattering	amplitudes	will	be	the	same	as	for

distinguishable	particles.
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The	same	procedure	can	be	applied	to	N	=	N 	+	N 	coins,	N 	of	which	rotate	one	way	and	N 	the	other.	The	result

for	large	N ,	N 	is	an	effective	phase	space	representation	for	two	nonidentical	gases	A	and	B,	each	separately

permutable,	each	with	an	extensive	entropy	function,	with	an	entropy	of	mixing	as	given	by	(3).	And	it	is	clear	this

representation	admits	of	degrees:	it	is	an	effective	representation,	more	or	less	accurate,	more	or	less	adequate	to

practical	purposes.

Figure	10.4 	Feynman	diagrams	for	particle	scattering

But	by	these	means	we	are	a	long	way	from	arriving	at	an	effective	phase	space	theory	of	N	distinguishable

particles.	That	would	require,	at	a	minimum,	N	distinct	individuating	properties	of	the	kind	we	have	described—at

which	point,	if	used	in	an	effective	phase	space	representation,	the	original	permutation	symmetry	will	have

completely	disappeared.	But	it	is	hardly	plausible	(for	microscopic	systems),	when	N	is	large,	that	a	representation

like	this	can	be	dynamically	defined.	Even	where	there	are	such	individuating	properties,	it	is	hard	to	see	what

purposes	their	introduction	would	serve—their	dynamical	definition—unless	it	is	to	model	explicitly	a	Maxwell

demon. 	It	may	be	no	harm	is	done	by	starting	ab	initio	with	a	system	of	distinguishable	particles.	On	this	point	we

are	in	agreement	with	van	Kampen.	But	it	must	be	added:	we	should	recognize	that	the	use	of	unreduced	phase

space,	and	the	structure	ℝ 	underlying	it,	is	in	general	a	mathematical	simplification,	introducing	distinctions	in

thought	that	are	not	instantiated	in	the	dynamics.

That	seems	to	be	exactly	what	Gibbs	thought	on	the	matter.	He	had,	recall,	an	epistemological	argument	for

passing	to	reduced	phase	space—that	nothing	but	similarity	in	qualities	could	be	used	to	identify	particles	across

members	of	an	ensemble	of	gasses—but	he	immediately	went	on	to	say:

And	this	would	be	true,	if	the	ensemble	of	systems	had	a	simultaneous	objective	existence.	But	it	hardly

applies	to	the	creations	of	the	imagination.	In	the	cases	which	we	have	been	considering	….	it	is	not	only

possible	to	conceive	of	the	motion	of	an	ensemble	of	similar	systems	simply	as	possible	cases	of	the

motion	of	a	single	system,	but	it	is	actually	in	large	measure	for	the	sake	of	representing	more	clearly	the

possible	cases	of	the	motion	of	a	single	system	that	we	use	the	conception	of	an	ensemble	of	systems.

The	perfect	similarity	of	several	particles	of	a	system	will	not	in	the	least	interfere	with	the	identification	of	a

particular	particle	in	one	case	with	a	particular	particle	in	another.	(Gibbs	1902,	188,	emphasis	added)

If	pressed,	it	may	be	added	that	a	mathematician	can	always	construct	a	domain	of	objects	in	set	theory,	or	in	one-

to-one	correspondence	with	the	real	numbers,	each	number	uniquely	represented. 	Likewise	for	reference	to

elements	of	nonrigid	structures,	which	admit	nontrivial	symmetries—for	example,	to	a	particular	one	of	the	two

roots	of	−1	in	the	complex	number	field,	or	to	a	particular	orientation	on	3-dimensional	Euclidean	space,	the	left-

handed	orientation	rather	than	the	right-handed	one. 	But	it	is	another	matter	entirely	as	to	whether	reference	like

this,	in	the	absence	of	individuating	properties,	can	carry	over	to	physical	objects.	The	whole	of	this	chapter	can

be	seen	as	an	investigation	of	whether	it	can	in	the	case	of	the	concept	of	particle;	our	conclusion	is	negative.

The	lesson	may	well	be	more	general.	It	may	be	objects	in	mathematics	are	always	objects	of	singular	thought,

involving,	perhaps,	an	irreducible	indexical	element.	If,	as	structuralists	like	Russell	and	Ramsey	argued,	the	most

one	can	hope	for	in	representation	of	physical	objects	is	structural	isomorphisms	with	objects	of	direct

acquaintance,	these	indexical	elements	can	be	of	no	use	to	physics.	It	is	the	opposite	conclusion	to	Kant's.

3.2	Philosophical	Logic
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A	second	pass	at	our	question	of	whether	permutable	entities	can	be	considered	as	objects	is	to	ask	whether	they

can	be	quantified	over	in	standard	logical	terms.	Posed	in	this	way,	the	question	takes	us	to	language	and	objects

as	values	of	bound	variables.	Arguably,	the	notion	of	object	has	no	other	home;	physical	theories	are	not	directly

about	objects,	properties,	and	identity	in	the	logical	sense	(namely	equality).

But	if	we	are	to	introduce	a	formal	language,	we	should	be	clear	on	its	limits.	We	are	not	trying	to	reproduce	the

mathematical	workings	of	a	physical	theory	in	formal	terms.	That	would	be	an	ambitious,	but	hardly	novel

undertaking;	it	is	the	one	proposed	by	Hilbert	and	Russell,	that	so	inspired	Carnap	and	others	in	the	early	days	of

logical	empiricism.	Our	proposal	is	more	modest.	The	suggestion	is	that	by	formalization	we	gain	clarity	on	the

ontology	of	a	physical	theory,	not	rigor	or	clarity	of	deduction—or	even	of	explanation.	But	it	is	ontology	subject	to

symmetries:	in	our	case,	permutability.	We	earlier	saw	how	invariant	descriptions	and	invariant	states	(under	the

permutation	group)	suffice	for	statistical	mechanics,	suffice	even	for	the	description	of	individual	trajectories;	we

should	now	see	how	this	invariance	is	to	be	cashed	out	in	formal,	logical	terms.

Permutability	of	objects,	as	a	symmetry,	has	a	simple	formal	expression:	predicates	should	be	invariant	(have	the

same	truth	value)	under	permutations	of	values	of	variables.	Call	such	a	predicate	totally	symmetric.

Restriction	to	predicates	like	these	certainly	seems	onerous.	Thus	take	the	simple	case	where	there	are	only	two

things,	whereupon	it	is	enough	for	a	predicate	to	be	totally	symmetric	that	it	be	symmetric	in	the	usual	sense.	When

we	say:

(i)	Buckbeak	the	hippogriff	can	fly	higher	than	Pegasus	the	winged	horse

the	sentence	is	clearly	informative,	at	least	for	readers	of	literature	on	mythical	beasts;	but	“flies	higher”	is	not	a

symmetric	predicate.	How	can	we	convey	(i)	without	this	asymmetry?

Like	this:	by	omitting	use	of	proper	names.	Let	us	suppose	our	language	has	the	resources	to	replace	them	with

Russellean	descriptions,	say	with	“Buckbeak-shaped”	and	“Pegasus-shaped”	as	predicates	(individuating

predicates).	We	can	then	say	in	place	of	(i)

(ii)	x	is	Buckbeak-shaped	and	y	is	Pegasus-shaped	and	x	can	fly	higher	than	y.

But	now	(ii)	gives	over	to	the	equally	informative	totally	symmetric	complex	predicate:

(iii)	x	is	Buckbeak-shaped	and	y	is	Pegasus-shaped	and	x	can	fly	higher	than	y,	or	y	is	Buckbeak-shaped

and	x	is	Pegasus-shaped	and	y	can	fly	higher	than	x.

The	latter	is	invariant	under	permutation	of	x	and	y.	Prefacing	by	existential	quantifiers,	it	says	what	(i)	says

(modulo	uniqueness),	leaving	open	only	the	question	of	which	of	the	two	objects	is	the	one	that	is	Buckbeak-

shaped,	rather	than	Pegasus-shaped,	and	vice	versa.	But	continuing	in	this	way—adding	further	definition	to	the

individuating	predicate-the	question	that	is	left	open	is	increasingly	empty.	If	no	further	specification	is	available,

one	loses	nothing	in	referring	to	that	which	is	Buckbeak-shaped,	that	which	is	Pegasus-shaped	(given	that	there

are	just	the	two);	or	to	using	“Buckbeak”	and	“Pegasus”	as	mass	terms,	like	“butter”	or	“soil.”	We	then	have	from

(iii):

(iv)	There	is	Buckbeak	and	there	is	Pegasus	and	Buckbeak	can	fly	higher	than	Pegasus,	or	there	is	Buckbeak

and	there	is	Pegasus	and	Buckbeak	can	fly	higher	than	Pegasus.

With	“Pegasus”	and	“Buckbeak”	in	object	position,	(iv)	is	not	permutable;	it	now	says	the	same	thing	twice.	We

have	recovered	(i).

How	does	this	work	when	there	are	several	other	objects?	Consider	the	treatment	of	properties	as	projectors	in

quantum	mechanics.	For	a	one-particle	projector	P	there	corresponds	the	N-fold	symmetrized	projector:

where	there	are	N	factors	in	each	term	of	the	summation,	of	which	there	are	 .	For	a	two-particle

projector	of	the	form	P	⊗	Q	(where	P	and	Q	are	either	the	same	or	orthogonal),	the	symmetrized	projector	is

likewise	a	sum	over	products	of	projectors	and	their	complements	(N	factors	in	each),	but	now	there	will	be	

( ) = N
N

1

PDF Compressor Free Version 



Indistinguishability

Page 21 of 31

	summands.	And	so	on.	The	obvious	way	to	mimic	these	constructions	in	the	predicate

calculus,	for	the	case	of	N	objects,	is	to	define,	for	each	one-place	predicate	A,	the	totally	symmetric	N-ary

predicate:

The	truth	of	(v)	(if	it	is	true)	will	not	be	affected	by	permutations	of	values	of	the	N	variables.	It	says	only	that

exactly	one	particle,	or	object,	satisfies	A,	not	which	particle	or	object	does	so.	The	construction	starting	with	a

two-place	predicate	follows	similar	lines;	and	so	on	for	any	n-ary	predicate	for	n	≤	N.	Disjuncts	of	these	can	be

formed	as	well.

Do	these	constructions	tell	us	all	that	we	need	to	know?	Indeed	they	must,	given	our	assumption	that	the	N	objects

are	adequately	described	in	the	predicate	calculus	without	use	of	proper	names,	for	we	have:

Theorem	1	Let	 	be	a	first-order	language	with	equality,	without	any	proper	names.	Let	S	be	any	 —

sentence	true	only	in	models	of	cardinality	N.	Then	there	is	a	totally	symmetric	N-ary	predicate	 	such

that	Ǝx 	…	Ǝx 	Gx 	…	x 	is	logically	equivalent	to	S.

(For	the	proof	see	Saunders	2006a.)	Given	that	there	is	some	finite	number	of	objects	N,	anything	that	can	be	said

of	them	without	using	proper	names	(with	no	restriction	on	predicates)	can	be	said	of	them	using	a	totally

symmetric	N-ary	predicate.

On	the	strength	of	this,	it	follows	we	can	handle	uniqueness	of	reference	in	the	sense	of	the	“that	which”

construction,	as	well,	“the	unique	x	which	is	Ax.”	In	Peano's	notation	it	is	the	object	ιxAx.	Following	Russell,	it	is

contextually	defined	by	sentences	of	the	form:

(vi)	the	x	that	is	an	A	is	a	B

or	B(ı	x)Ax,	which	is	cashed	out	as:

(vii)	Ǝx(Ax	⋀	∀y(Ay	→	y	=	x)	⋀	Bx).

From	Theorem	1	it	follows	that	(vii),	supplemented	by	information	on	just	how	many	objects	there	are,	is	logically

equivalent	to	a	sentence	that	existentially	quantifies	over	a	totally	symmetric	predicate.	It	says	that	a	thing	which	is

A	is	a	B,	that	something	is	an	A,	and	that	there	are	no	two	distinct	things	that	are	both	A,	without	ever	saying	which

of	N	things	is	the	thing	which	is	A.	(v)	shows	how.

How	much	of	this	will	apply	to	quantum	particles?	All	of	it.	Of	course	definite	descriptions	of	objects	of	definite

number	are	rarely	needed	in	talk	of	atoms,	and	rarely	available.	Individuating	properties	at	the	macroscopic	level

normally	provide	indefinite	descriptions	of	one	of	an	indeterminate	number	of	particles.	So	it	was	earlier;	I	was

talking	of	any	old	helium	atom	in	the	canister	by	the	door,	any	old	helium	atom	in	the	vacuum	chamber,	out	of	an

indeterminate	number	in	each	case.	But	sometimes	numbers	matter:	a	handful	of	atoms	of	plutonium	in	the	wrong

part	of	the	human	body	might	be	very	bad	news	indeed.	Even	one	might	be	too	many.

Nor	need	we	stop	with	Russellean	descriptions,	definite	or	otherwise.	There	are	plenty	of	other	referential	devices

in	ordinary	language	that	may	be	significant.	It	is	a	virtue	of	passing	from	the	object	level,	from	objects	themselves

(the	“material	mode,”	to	use	Carnap's	term),	to	talk	of	objects	(the	“formal	mode”),	that	the	door	is	open	to

linguistic	investigations	of	quite	broad	scope.	Still,	in	agreement	with	Carnap	and	with	Quine,	our	litmus	test	is

compatibility	with	elementary	logic	and	quantification	theory.

To	conclude:	in	the	light	of	Theorem	1,	and	the	use	of	individuating	properties	to	replace	proper	names,	nothing	is

lost	in	passing	from	nonpermutable	objects	to	permutable	ones.	There	is	no	loss	of	expressive	content	in	talking	of

N	permutable	things,	over	and	above	what	is	lost	in	restricting	oneself	to	the	predicate	calculus	and	abjuring	the

use	of	names.	That	should	dissipate	most	philosophical	worries	about	permutability.

There	remains	one	possible	bugbear,	however,	namely	identity	in	the	logical	sense	(what	we	are	calling	equality).

Quantum	objects	have	long	been	thought	problematic	on	the	grounds	that	they	pose	insuperable	difficulties	to	any

reasonable	account	of	logical	equality—for	example,	in	terms	of	the	principle	of	identity	of	indiscernibles	(see

( ) = N(N − 1)/2
N

2
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below).	To	this	one	can	reply,	too	bad	for	an	account	of	equality; 	the	equality	sign	can	be	taken	as	primitive,	as

is	usual	in	formal	logic.	(That	is	to	say,	in	any	model	of	 ,	if	a	language	with	equality,	the	equals	sign	goes	over	to

equality	in	the	set-theoretic	sense.)	But	here	too	one	might	do	better.

3.3	Identity	Conditions

If	physical	theories	were	(among	other	things)	directly	about	identity	in	the	logical	sense,	an	account	of	it	would	be

available	from	them.	It	is	just	because	physical	theories	are	not	like	this	(although	that	could	change)	that	I	am

suggesting	the	notion	of	object	should	be	formalized	in	linguistic	terms.	It	is	not	spelled	out	for	us	directly	in	any

physical	theory.

But	by	an	“account	of	equality”	I	do	not	mean	a	theory	of	logical	equality	in	full	generality.	I	mean	a	theory	of

equality	only	of	physical	objects,	and	specific	to	a	scientific	language.	It	may	better	be	called	an	account	of

identity	conditions,	contextualized	to	a	physical	theory.

Given	our	linguistic	methods,	there	is	an	obvious	candidate:	exhaustion	of	predicates.	That	is,	if	F…s…	if	and	only

if	F…t…,	for	every	predicate	in	 	and	for	every	predicate	position	of	F,	then	s	and	t	are	equal.	Call	this	

-equality,	denote	“ .”	It	is	clearly	a	version	of	Leibniz's	famous	“principle	of	identity	of	indiscernibles”.	This

is	often	paraphrased	as	the	principle	that	objects	which	share	the	same	properties,	or	even	the	same	relational

properties,	are	the	same,	but	this	parsing	is	unsatisfactory	in	an	important	respect.	It	suggests	that	conjuctions	of

conditions	of	the	form	(28)

are	sufficient	to	imply	that	x	and	y	are	equal,	but	more	than	this	is	required	for	exhaustion	of	predicates.	The	latter

also	requires	the	truth	of	sentences	of	the	form:	(29)

These	are	the	key	to	demonstrating	the	nonequality	of	many	supposed	counterexamples	to	Leibniz's	principle	(see

Saunders	2003).

-equality	is	the	only	defined	notion	of	equality	(in	first-order	languages)	that	has	been	taken	seriously	by

logicians. 	It	satisfies	Gödel's	axioms	for	the	sign	“=,”	used	in	his	celebrated	completeness	proof	for	the	predicate

calculus	with	equality,	namely	the	axiom	scheme:

together	with	the	scheme	s	=	s.	Since	one	has	completeness,	anything	true	in	 	equipped	with	the	sign	“=”

remains	true	in	 	equipped	with	the	sign	“ .”	The	difference	between	 -equality	and	primitive	equality

cannot	be	stated	in	 .

But	the	notion	that	we	are	interested	in	is	not	 -equality,	sameness	with	respect	to	every	predicate	in	 ,	but

sameness	with	respect	to	invariant	predicates	constructible	in	 ,	denote	“ ”.	Call	equality	defined	in	this	way

physical	equality,	denote	“ .”	With	that	completeness	is	no	longer	guaranteed,	but	our	concern	is	with

ontology,	not	with	deduction.

In	summary,	we	have:

and,	as	a	necessary	condition	for	physical	objects	(the	identity	of	physical	indiscernibles):

If	 ,	we	shall	say	s	and	t	are	(physically)	discernible;	otherwise	(physically)	indiscernible.

There	are	certain	logical	distinctions	(first	pointed	out	by	Quine)	for	equality	in	our	defined	sense	that	will	prove

useful.	Call	s	and	t	strongly	discernible	if	for	an	open	sentence	F	in	one	free	variable,	Fs	and	not	Ft;	call	s	and	t

weakly	discernible	(respectively	relatively	discernible)	if	for	an	open	sentence	F	in	two	free	variables	Fst	but	not

Fss	(respectively,	but	not	Fts).	Objects	that	are	only	weakly	or	relatively	discernible	are	discerned	by	failure	of

conditions	of	the	form	(29),	not	(28).
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Of	these,	as	already	mentioned,	weak	discernibility	is	of	greater	interest	from	both	a	logical	and	physical	point	of

view.	Satisfaction	of	any	symmetric	but	irreflexive	relation	is	enough	for	weak	discernibility:	≠	and	 	are

prime	examples.	And	many	simple	invariant	physical	relations	are	symmetric	and	irreflexive:	for	example,	having

nonzero	relative	distance	in	a	Euclidean	space	(a	relation	invariant	under	translations	and	rotations).	Thus,	take

Max	Black's	famous	example	of	identical	iron	spheres	s,	t,	one	mile	apart,	in	an	otherwise	empty	Euclidean	space.

The	spheres	are	weakly	discerned	by	the	relation	D	of	being	one	mile	apart,	for	if	Dst	is	true,	it	is	not	the	case	that

Dxs	↔	Dxt	for	any	x,	since	Dst	but	not	Dss	(or	Dtt),	so	 .	And,	fairly	obviously,	if	 	contains	only	totally

symmetric	predicates,	physical	objects	will	be	at	most	weakly	discernible.

Here	as	before	“s”	and	“t”	are	terms,	that	is	variables,	functions	of	variables,	or	proper	names.	What	difference	do

the	latter	make?	Names	are	important	to	discernibility	under	 -equality	Thus	if	it	is	established	that	s	and	t	are

weakly	 -discernible,	then,	if	“s”	or	“t”	are	proper	names,	they	are	absolutely	 -discernible.	In	the	example	just

given,	if	Dst	and	“s”	is	a	proper	name,	then	Dsx	is	true	of	t	but	not	s.	But	the	presence	of	names	in	 	makes	no

difference	to	 -discernibility	(discernibility	by	totally	symmetric	predicates).	Thus,	even	if	 ,	on

entering	a	proper	name	in	variable	position	one	does	not	obtain	a	one-place	predicate	in	 .	Permutable	objects

are	only	weakly	discernible,	if	discernible	at	all.	We	may	never	say	of	permutables	which	of	them	is	a	such-and-

such;	only	that	there	is	a	such-and-such.

It	remains	to	determine	whether	permutable	particles	are	discernible	at	all.	In	the	classical	case,	assuming	particles

are	impenetrable,	they	are	always	some	nonzero	distance	apart,	so	the	answer	is	positive.	Impenetrability	also

ensures	that	giving	up	permutability,	and	passing	to	a	description	of	things	that	are	particle	states	or	trajectories,

they	will	be	at	least	weakly	discernible.	Typically	they	will	be	strongly	discernible,	but	as	Black's	two	spheres

illustrate	(supposing	they	just	sit	there),	not	always.

It	is	the	quantum	case	that	presents	the	greater	challenge;	indistinguishable	quantum	particles	have	long	been

thought	to	violate	any	interesting	formulation	of	Leibniz's	principle	of	indiscernibles. 	But	in	fact	the	same	options

arise	as	in	the	classical	case.	One	can	speak	of	that	which	has	such-and-such	a	state,	or	orbit,	and	pass	to	states

and	orbits	of	states	as	things,	giving	up	permutability.	One-particle	states	or	their	orbits,	like	classical	trajectories,

will	in	general	be	absolutely	discernible,	but	sometimes	only	weakly	discernible—or	(failing	impenetrability)	not

even	that.	Or	retaining	permutability,	one	can	speak	of	particles	as	being	in	one	or	other	states,	and	of	N	particles

as	being	in	an	N-particle	state,	using	only	totally	symmetric	predicates,	and	satisfying	some	totally	irreflexive

relation.

On	both	strategies	there	is	a	real	difficulty	in	the	case	of	bosons,	at	least	for	elementary	bosons.	On	the	first

approach,	there	may	be	two	bosonic	one-particle	states,	each	exactly	the	same;	on	the	second,	there	seems	to	be

no	general	symmetric	and	irreflexive	relation	that	bosons	always	satisfy.	But	the	situation	is	different	when	it	comes

to	fermions.	On	the	first	approach,	given	only	the	mild	entanglement	required	by	antisymmetrization,	one	is

guaranteed	that	of	the	N	one-particle	states,	each	is	orthogonal	to	every	other,	so	objects	as	one-particle	states

are	always	absolutely	discernible;	and	on	the	second	approach,	again	following	from	antisymmetrization,	an

irreflexive	symmetric	relation	can	always	be	defined	(whatever	the	degree	of	entanglement).	Some	further

comments	on	each.

The	first	strategy	is	not	without	its	difficulties.	To	begin	with,	even	restricting	to	only	mildly	entangled	states,	which

one-particle	states	are	to	be	the	objects	replacing	particles	is	ambiguous.	The	problem	is	familiar	from	the	case	of

the	singlet	state	of	spin:	neglecting	spatial	degrees	of	freedom	the	antisymmetrized	state	is	(30)

where	 	are	eigenstates	of	spin	in	the	z	direction.	But	this	state	can	equally	be	expanded	in	terms	of

eigenstates	of	spin	in	the	y	direction,	or	of	the	z	direction:	Which	pair	of	absolutely	discernible	one-particle	states

is	present,	exactly?

The	problem	generalizes.	Thus,	for	arbitrary	orthogonal	one-particle	states	|φ ,	|φ 〉,	and	a	two-fermion	state	of	the

form:	(31)
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define	the	states	(the	first	is	just	a	change	of	notation):	(32)

They	yield	a	representation	of	the	rotation	group.	One	then	has,	just	as	for	components	of	spin:

and	an	ambiguity	in	attributing	one-particle	states	to	the	two	particles	arises	with	(31)	as	with	(30).	I	shall	come

back	to	this	in	section	3.4.

This	difficulty	can	be	sidestepped	at	the	level	of	permutable	particles,	however.	In	the	case	of	(30),	we	may	weakly

discern	the	particles	by	the	relation	“opposite	spin,”	with	respect	to	any	direction	in	space	(Saunders	2003,	2006b;

Muller	and	Saunders	2008).	Thus	if	σ ,	σ ,	σ 	are	the	Pauli	spin	matrices,	the	self-adjoint	operator	(33)

has	eigenvalue	−1	in	the	singlet	state	|Ψ 〉,	with	the	clear	interpretation	that	the	spins	are	anticorrelated	(with

respect	to	any	direction	in	space).	Asserting	this	relation	does	not	pick	out	any	direction	in	space,	no	more	than

saying	Black's	spheres	are	one	mile	apart	picks	out	any	position	in	space.

For	the	construction	in	the	generalized	sense	(32),	define	projection	operators	onto	the	states	

and	define	the	self-adjoint	operators:

Each	has	eigenvalue	−1	for	|Φ〉,	and	likewise	picks	out	no	“direction”	in	space	(i.e.	the	analogue	of	(33)	is

satisfied).	Moreover,	one	can	define	sums	of	such	in	the	case	of	finite	superpositions	of	states	of	the	form	(31),	by

means	of	which	fermions	can	be	weakly	discerned.

On	the	strength	of	this,	one	can	hope	to	weakly	discern	bosons	that	are	composites	of	fermions,	like	helium	atoms.

And	even	in	the	case	of	elementary	bosons,	self-adjoint	operators	representing	irreflexive,	symmetric	relations

required	of	any	pair	of	bosons	have	been	proposed. 	The	difficulty	of	reconciling	particle	indistinguishability	in

quantum	mechanics	with	the	IPI	looks	well	on	its	way	to	being	solved.

3.4	Eliminativism

We	are	finally	in	a	position	to	address	the	arguments	for	and	against	eliminativism—that	is,	for	and	against

renouncing	talk	of	permutable	objects	in	favor	of	nonpermutable	objects	defined	in	terms	of	individuating

properties,	whether	points	in	μ-space,	trajectories,	one-particle	states,	or	orbits	of	one-particle	states.	The	gain,

usually,	is	absolute	discernibility	On	the	other	hand,	we	have	found	that	quantification	over	permutable	objects

satisfies	every	conservative	guideline	we	have	been	able	to	extract	from	elementary	logic	(with	the	possible

exception	of	identity	conditions	for	elementary	bosons).	There	seems	to	be	nothing	wrong	with	the	logic	of	weak

discernibles.	And	there	remains	another	conservative	guideline:	we	should	maintain	standard	linguistic	usage

where	possible.

That	stacks	the	odds	against	eliminativism,	for	talk	of	particles,	and	not	just	of	one-particle	states,	is	everywhere	in

physics.	But	even	putting	this	to	one	side,	eliminativism	would	seem	to	fare	poorly,	for	(anti)symmetrized	states	are

generically	entangled,	whereupon	no	set	of	N	one-particle	states	will	suffice	for	the	description	of	N	particles.	And

as	we	have	seen	in	section	3.3,	where	such	a	set	is	available	it	may	be	non-unique.
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Against	this	there	are	two	objections.	The	first	is	that	we	anyway	know	the	particle	concept	is	stretched	to	breaking

point	in	strongly	interacting	regimes.	There	the	best	we	can	say	is	that	there	are	quantum	fields,	and,	perhaps,

superpositions	of	states	of	different	particle	number.	Where	the	latter	can	be	defined,	one	can	talk	of	modes	of

quantum	fields	instead.	In	the	free-field	limit,	or	as	defined	by	a	second-quantization	of	a	particle	theory, 	such

modes	are	in	one-to-one	correspondence	with	one-particle	states	(or,	in	terms	of	Fourier	expansions	of	the	fields,

in	correspondence	with	“generalized”	momentum	eigenstates).	The	elimination	of	particles	in	favor	of	fields	and

modes	of	fields	is	thus	independently	motivated.

The	second	objection	is	that	we	cannot	lightly	accept	indeterminateness	in	attributing	a	definite	set	of	N	one-

particle	states	to	an	N-particle	system,	for	it	applies	equally	to	particles	identified	by	individuating	properties.	That

is,	not	even	the	property	of	being	a	bound	electron	in	a	helium	atom	in	the	canister	by	the	corner,	and	being	one	in

the	vacuum	chamber	by	the	door,	hold	unambiguously.	The	construction	(32)	applies	just	as	much	to	(20).

But	this	difficulty	we	recognize	as	a	fragment	of	the	measurement	problem.	Specifically,	it	is	the	preferred	basis

problem:	Into	what	states	does	a	macroscopic	superposition	collapse	(if	there	is	any	collapse)?	Or,	if	macroscopic

superpositions	exist:	What	singles	out	the	basis	in	which	they	are	written?	Whatever	settles	this	question

(decoherence,	say)	will	dictate	the	choice	of	basis	used	to	express	the	state	in	terms	of	macroscopic	individuating

properties.

Whether	such	a	choice	of	basis—or	such	a	solution	to	the	preferred	basis	problem—can	extend	to	a	preferred

basis	at	the	microscopic	level	is	moot.	It	depends,	to	some	extent,	on	the	nature	of	the	solution	(decoherence	only

goes	down	so	far).	Of	course	it	is	standard	practice	in	quantum	theory	to	express	microscopic	states	in	terms	of	a

basis	associated	with	physically	interpreted	operators	(typically	generators	of	one-parameter	spacetime	symmetry

groups,	or	in	terms	of	the	dynamical	quantities	that	are	measured).	The	use	of	quantum	numbers	for	bound	states

of	electrons	in	the	atom,	for	energy,	orbital	angular	momentum,	and	components	of	angular	momentum	and	spin—

in	conventional	notation,	quadruples	of	numbers	〈n,l,m ,m 〉—is	a	case	in	point.	When	energy	degeneracies	are

completely	removed	(introducing	an	orientation	in	space)	one	can	assign	these	numbers	uniquely.	The	Pauli

exclusion	principle	then	dictates	that	every	electron	has	a	unique	set	of	quantum	numbers.	Use	such	quadruples

as	names	and	talk	of	permutable	particles	can	be	eliminated.

It	is	now	clearer	that	the	first	objection	adds	support	to	the	second.	Quadruples	of	quantum	numbers	provide	a

natural	replacement	for	particles	in	atoms;	modes	of	quantum	fields	(and	their	excitation	numbers)	provide	a

natural	replacement	for	particles	involved	in	scattering.	And	in	strongly	interacting	regimes,	even	modes	of

quantum	fields	give	out	(or	they	have	only	a	shadow	existence,	as	with	virtual	particles).	All	this	is	as	it	should	be.

Our	inquiry	was	never	about	fundamental	ontology	(a	question	we	can	leave	to	a	final	theory,	if	there	ever	is	one),

but	with	good-enough	ontology,	in	a	definite	regime.

In	the	regime	we	are	concerned	with,	stable	particles	of	ordinary	matter	whose	number	is	conserved	in	time,	there

is	the	equivalence	between	one-particle	states	and	modes	of	a	quantum	field	already	mentioned.	Let	us	settle	on	a

preferred	decomposition	of	the	field	(or	preferred	basis)	in	a	given	context.	But	suppose	that	context	involves

nontrivial	entanglement:	Can	entanglements	of	particles	be	understood	as	entanglements	of	modes	of	fields?

Surely	they	can—but	on	pain	of	introducing	many	more	modes	of	the	field	than	there	were	particles,	and	a	variable

number	to	boot.	As	with	one-particle	states	so	modes	of	the	field:	in	a	general	entanglement,	arbitrarily	many	such

modes	are	involved,	even	given	a	preferred	decomposition	of	the	field,	whereas	the	number	of	particles	is

determinate.	Just	where	the	particle	concept	is	the	most	stable,	in	the	regime	in	which	particle	number	is

conserved,	eliminativism	in	favor	of	fields	and	modes	of	fields	introduces	those	very	features	of	the	particle

concept	that	we	found	unsatisfactory	in	strongly	interacting	regimes.	That	speaks	against	eliminativism.

This	does	not,	of	course,	militate	against	the	reality	of	quantum	fields.	We	recognize	that	permutable	particles	are

emergent	from	quantum	fields,	just	as	nonpermutable	particles	are	emergent	from	permutable	ones.	Understood	in

this	way,	we	can	explain	a	remaining	fragment	of	the	Gibbs	paradox—the	fact	that	particle	identity,	and	with	it

permutation	symmetry,	can	ever	be	exact.	How	is	it	that	intrinsic	quantities,	like	charge	and	mass,	are	identically

the	same?	(their	values	are	real	numbers,	note).	The	answer	is	that	for	a	given	particles	species,	the	particles	are

one	and	all	excitations	of	a	single	quantum	field—whereupon	these	numerical	identities	are	forced,	and

permutation	symmetry	has	to	obtain.	The	existence	of	exact	permutation	symmetry,	in	regimes	in	which	particle

equations	are	approximately	valid,	is	therefore	explained,	and	with	it	particle	indistinguishability.
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Notes:

(1)	See	the	chapters	by	David	Wallace	and	Guido	Bacciagalluppi,	this	volume.

(2)	I	have	used	a	different	notation	from	Planck's	for	consistency	with	the	notation	in	the	sequel.

(3)	A	microstate	as	just	defined	can	be	specified	as	a	string	of	N 	symbols	“p”	and	C 	−	1	symbols	“|”	(thus,	for

example,	N 	=	3,	C 	=	4,	the	string	p||pp|	corresponds	to	one	particle	in	the	first	cell,	none	in	the	second,	two	in

the	third,	and	none	in	the	fourth).	The	number	of	distinct	strings	is	(N 	+	C 	−	1)!	divided	by	(C 	−	1)!N 	!,	because

permutations	of	the	symbol	“|”	among	themselves	or	the	symbol	“p”	among	themselves	give	the	same	string.	(This

derivation	of	(1)	was	given	by	Ehrenfest	in	1912.)

(4)	I	take	“indistinguishable”	and	“permutable”	to	mean	the	same.	But	others	take	“indistinguishable”	to	have	a

broader	meaning,	so	I	will	give	up	that	word	and	use	“permutable”	instead.

(5)	The	locus	classicus	for	this	story	is	Jammer	(1966),	but	see	also	Darrigol	(1991).

(6)	Or	as	at	bottom	the	same,	as	argued	most	prominently	by	Howard	(1990).

(7)	As	suggested	by	Quine.	See	French	and	Krause	(2006)	for	a	comprehensive	survey	of	debates	of	this	kind.

(8)	See	Planck	(1912,	1921)	and,	for	commentary,	Rosenfeld	(1959).

(9)	This	section	largely	follows	van	Kampen	(1984).

(10)	See,	e.g.,	Lieb	and	Yngvason	(1999)	for	a	statement	of	the	second	law	at	this	sort	of	level	of	generality.

(11)	Meaning	a	process	which	at	any	point	in	its	progress	can	be	reversed,	to	as	good	an	approximation	as	is

required.	Necessary	conditions	are	that	temperature	gradients	are	small	and	effects	due	to	friction	and	turbulence

are	small	(but	it	is	doubtful	these	are	sufficient).
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(12)	At	least	in	the	absence	of	Maxwell	demons:	see	section	3.1.

(13)	I	owe	this	turn	of	phrase	to	Jos	Uffink.

(14)	Boltzmann	defined	the	entropy	in	several	different	ways;	see	Bach	(1990).

(15)	For	a	textbook	derivation	using	our	notation,	see,	e.g.,	Hercus	(1950).

(16)	Statements	like	this	can	be	found	in	almost	any	textbook	on	statistical	mechanics.

(17)	For	another	variant	of	the	Ehrenfest-Trkal	approach,	see	Swendsen	(2002,	2006).	(However,	Swendsen	does

not	acknowledge	the	restriction	of	the	result	to	open	systems.	See	further	Nagle	(2004).)

(18)	Should	they	be	exactly	equal?	No,	because	it	is	an	additional	constraint	to	insist,	given	that	N 	+	N 	particles

are	in	volume	V	 	+	V ,	that	exactly	N 	are	in	V 	and	N 	in	V .

(19)	These	considerations	apply	to	quantum	particles	too,	when	described	in	terms	of	the	de	Broglie-Bohm	pilot-

wave	theory.	For	the	latter,	see	Bacciagaluppi,	this	volume.

(20)	As	in,	e.g.,	a	cigar-shaped	mass	distribution,	rather	than	a	sphere.	Of	course,	this	is	not	really	a	breaking	of

rotational	symmetry,	in	that	each	is	described	by	relative	angles	and	distances	between	masses,	invariant	under

rotations.

(21)	For	more	on	this	vein,	see	Saunders	(2003).	For	a	compilation	of	original	sources	and	commentary,	see

Huggett	(1999b).

(22)	See	Huggett	(1999a).	It	was	endorsed	shortly	after	by	David	Albert	in	his	book	Time	and	Chance	(Albert	2000,

47–48).

(23)	See	Schrödinger	(1984,	207–210).	The	word	“individual”	has	also	been	used	to	mean	an	object	answering	to

a	unique	description	at	a	single	time	(as	“absolutely	discernible”	in	the	terminology	of	Saunders	(2003,	2006b).

(24)	As	recently	endorsed	by	Pooley	(2006	section	8).

(25)	One	might	in	classical	mechanics	add	the	condition	that	the	particles	are	impenetrable;	but	one	can	also,	in

quantum	mechanics,	require	that	no	two	particles	occupy	the	same	one-particle	state	(the	Pauli	exclusion

principle).	See	sections	2.5,	3.3.

(26)	As	we	shall	see,	there	is	a	complication	in	the	case	of	fermions	(section	3.3),	although	it	does	not	affect	the

point	about	identity	over	time.

(27)	The	terminology	is	due	to	Penrose	(2004,	598).	See	Ghirardi	and	Marinatto	(2004)	and	Ghirardi,	Marinatto,	and

Weber	(2002)	for	the	claim	that	entanglement	due	to	(anti)symmetrization	is	not	really	entanglement	at	all.

(28)	A	special	case	of	the	multinomial	theorem	(see,	e.g.,	Rapp	1972,	49–50).

(29)	Of	course,	for	macroscopic	coins,	the	assumption	of	degeneracy	of	the	energy	is	wildly	unrealistic,	but	let	that

pass.

(30)	One	way	of	putting	this	is	that	in	the	quantum	case,	the	measure	on	phase	space	must	be	discrete,

concentrated	on	points	representing	each	unit	cell	of	“volume”	h .	For	early	arguments	to	this	effect,	see	Planck

(1912),	Poincaré	(1911,	1912).

(31)	See	Wallace,	this	volume.

(32)	This	is	to	rule	out	parastatistics—representations	of	the	permutation	group	that	are	not	one-dimensional	(see,

e.g.,	Greiner	and	Müller	1994).	This	would	be	desirable	(since	parastatistics	have	not	been	observed,	except	in	2-

dimensions,	where	special	considerations	apply),	but	I	doubt	that	it	has	really	been	explained.

(33)	The	situation	is	a	little	more	complicated,	as	antisymmetry	in	the	spin	partof	the	overall	state	forces	symmetry

in	the	spatial	part—which	can	lead	to	spatial	bunching	(this	is	the	origin	of	the	homopolar	bond	in	quantum
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A B A A B B

3

PDF Compressor Free Version 



Indistinguishability

Page 30 of 31

chemistry).

(34)	But	see	Gordon	Belot	(this	volume)	for	pitfalls	in	defining	such	symmetries.

(35)	This	problem	afflicts	the	orthodox	solution	to	the	Gibbs	paradox,	too	(and	was	raised	as	such	by	Swendsen

2006).

(36)	Further,	even	the	familiar	intrinsic	properties	of	particles	(like	charge,	spin,	and	mass)	may	be	state-

dependent:	string	theory	and	supersymmetric	theories	provide	obvious	examples.	See	Goldstein	et	al.	(2005a,b)

for	the	argument	that	all	particles	may	be	treated	as	permutable,	identical	or	otherwise.

(37)	For	further	discussion,	see	section	3.3.	Whether	the	A	coin	after	one	toss	is	the	same	as	the	A	coin	on	another

toss	(and	likewise	the	B	coin)	will	make	a	difference	to	the	effective	dynamics.

(38)	There	is,	however,	more	to	say	about	indistinguishability	and	path	integral	methods.	I	do	not	pretend	to	do

justice	to	this	topic	here.

(39)	The	memory	records	of	such	a	demon	in	effect	provide	a	system	of	individuating	properties	for	the	N	particles.

(40)	For	further	discussion,	see	Muller	and	Saunders	(2008).	(Set-theory,	of	course,	yields	rigid	structures	par

excellence.)

(41)	This	was	also,	of	course,	a	key	problem	for	Kant.	For	further	discussion,	and	an	analysis	of	the	status	of	mirror

symmetry	given	parity	violation	in	weak-interaction	physics,	see	Saunders	(2007).

(42)	This	construction	was	overlooked	by	Dieks	and	Lubberdink	(2011)	in	their	criticisms	of	the	concept	of

classical	indistinguishable	particles.	They	go	further,	rejecting	indistinguishability	even	in	the	quantum	case	(they

consider	that	particles	only	emerge	in	quantum	mechanics	in	the	limit	where	Maxwell-Boltzmann	statistics	hold

sway-where	individuating	predicates	in	our	sense	can	be	defined.

(43)	See	Pniower	(2006)	for	arguments	to	this	effect.

(44)	It	was	first	proposed	by	Hilbert	and	Bernays	(1934);	it	was	subsequently	championed	by	Quine	(1960,	1970).

(45)	For	further	discussion,	see	Quine	(1970,	61–64),	and,	for	criticism,	Wiggins	(2004,	184–188).

(46)	For	further	discussion	of	this	form	of	the	principle	of	identity	of	indiscernibles,	see	Muller	and	Saunders	(2008,

522–23).

(47)	See	French	and	Krause	(2006)	for	this	history.

(48)	See	Muller	and	Seevink	(2009).	Their	idea	is	to	use	certain	commutator	relations	that	could	not	be	satisfied

were	there	only	a	single	particle.

(49)	For	a	discussion	of	the	relation	between	second	quantized	and	free-field	theories	(fermionic	and	bosonic

respectively),	see	Saunders	(1991,	1992).
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Abstract	and	Keywords

This	chapter	focuses	on	unification	in	the	field	of	physics,	arguing	that	there	are	different	distinct	senses	of

unification	in	physics,	each	with	different	implications	for	how	we	view	unified	theories	and	phenomena.	It

describes	the	unification	provided	by	Maxwellian	electrodynamics	and	Newtonian	mechanics	that	brought	together

terrestrial	phenomena	and	celestial	phenomena.	The	chapter	also	argues	for	a	third	type	of	unification	that	focuses

on	unification	of	phenomena	independent	of	the	micro-reduction	characteristic	of	unified	field	theory	approaches.

Keywords:	physics,	unification,	unified	theories,	phenomena,	Maxwellian	electrodynamics,	Newtonian	mechanics,	unified	field	theory

1.	Introduction	and	Background

What	exactly	is	unification	and	what	form	does	it	take	in	physics?	Typically	when	this	question	is	asked	we	think

about	high-energy	physics	and	the	search	for	a	Theory	of	Everything	(TOE).	But	what	would	such	a	theory	look	like

and	what	kind	of	unification	would	it	encompass?	Again,	the	preliminary	answer	is	that	it	would	bring	together	the

four	forces	of	nature	and	show	that	they	are	low-energy	manifestations	of	the	same	force.	But,	would	such	a	theory

involve	deductions	from	a	few	simple	laws	or	would	it	require	several	free	parameters	and	complex	models	to	apply

it	in	concrete	situations?	If	it	is	the	latter,	at	what	point	are	we	willing	to	claim	the	theory	presents	a	“unified”

account	of	the	phenomena?	Much	of	the	discussion	surrounding	the	operation	of	the	Large	Hadron	Collider	(LHC)

and	theories	like	string	theory	and	quantum	gravity	suggests	that	the	immediate	goals	of	unification	in	physics

involve	finding	the	Higgs	particle,	determining	its	nature	and	properties,	and	somehow	bringing	gravity	into	the

framework	of	the	Standard	Model.	The	former	goal	has	been	achieved;	in	July	2012	CERN	announced	that	two

experiments	using	the	Large	Hadron	Collider,	ATLAS	and	CMS,	had	both	amassed	strong	statistical	evidence

(around	5	sigma)	for	a	new	particle	with	a	mass	of	roughly	126	GeV	which	is	consistent	with	Standard	Model

predictions	for	the	Higgs	Boson.	However,	that	the	Standard	Model	provides	a	unified	account	of	the

electromagnetic,	weak	and	strong	forces	under	one	theory	is	far	from	clear	and	the	recent	discovery	of	the	Higgs

boson	may	not	necessarily	solve	that	problem.

In	order	to	see	why	this	is	the	case,	we	need	to	go	back	to	our	initial	question	regarding	what	unification	is	and	how

we	should	characterize	a	“unified	theory.”	Put	differently—how	should	we	understand	the	drive	for	unification	in

physics?	Although	these	questions	are	of	a	philosophical	nature,	they	are	directly	connected	with	scientific	theory

and	experiment—and,	they	are	the	questions	that	will	occupy	the	bulk	of	this	essay.	No	account	of	unification

would	be	complete	without	an	investigation	into	its	associated	difficulties,	and	in	the	context	of	high-energy	physics

that	focus	will	be	partly	on	the	role	of	effective	theories	as	a	way	of	dealing	with	phenomena	at	different	energy

levels.	Interestingly	the	mathematics	involved	in	constructing	effective	theories	points	to	a	different	kind	of

unification	in	physics,	a	unification	at	the	level	of	phenomena	that	had	been	poorly	understood	prior	to	the	use	of

the	renormalization	group	(RG)	techniques.	Our	discussion	will	also	focus	on	this	type	of	unification,	referred	to	as

“universality,”	and	its	relation	to	the	techniques	used	in	the	high-energy	context.
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The	first	systematic	unification	in	physics	was	Newtonian	mechanics,	which	brought	together	terrestrial	phenomena

(e.g.,	tides)	and	celestial	phenomena	(the	moon,	planets,	etc.)	by	showing	how	they	mutually	influenced	each

other's	motion	and	were	subject	to	the	same	force	law—universal	gravitation.	In	that	sense	Newtonian	physics

represented	a	grand	unification	in	that	it	accounted	for	all	the	phenomena	in	the	heavens	and	on	earth.	More

recently,	the	quest	for	a	theory	of	everything—a	grand	unification—involves	showing	that	when	energies	are	high

enough,	the	forces	(interactions),	while	very	different	in	strength,	range,	and	the	types	of	particles	on	which	they

act,	become	one	and	the	same	force.	The	fact	that	these	interactions	are	known	to	have	many	underlying

mathematical	features	in	common	suggests	that	they	can	all	be	accounted	for	by	a	unified	field	theory.	Such	a

theory	describes	elementary	particles	in	terms	of	force	fields	that	further	unify	all	the	interactions	by	treating

particles	and	interactions	in	a	technically	and	conceptually	similar	way.	It	is	this	theoretical	framework	that	allows

for	the	prediction	that	measurements	made	at	a	certain	energy	level	will	supposedly	indicate	that	the	four	separate

forces	are	low-energy	manifestations	of	a	single	force.	Aspects	of	this	unification	are	what	will	hopefully	be

revealed	in	the	LHC,	the	biggest	and	most	complicated	physics	experiment	ever	seen.	The	successful	experiments

responsible	for	the	discovery	of	the	Higgs	particle—the	confirmatory	link	in	the	theory	that	unifies	the	weak	and

electromagnetic	forces—	will	also	be	important	for	discovering	other	aspects	of	the	Standard	Model,	which	includes

the	strong	force	and	of	which	the	electroweak	theory	is	a	part.

In	many	cases	of	unification	not	only	is	there	an	ontological	reduction	where	different	phenomena,	usually	forces,

are	seen	as	one	and	the	same,	but	the	mathematical	framework(s)	used	to	describe	the	fields	associated	with

these	forces	facilitates	their	description	in	a	unified	theory.	Specific	types	of	symmetries	serve	an	important

function	in	these	contexts,	not	only	in	the	construction	of	quantum	field	theories	(QFT)	but	also	in	the	classification

of	particles:	classifications	that	can	lead	to	new	predictions	and	novel	ways	of	understanding	properties	like

quantum	numbers.	Hence,	in	order	to	address	issues	about	unification	and	reduction	in	contemporary	physics	we

must	also	address	the	way	that	symmetries	support	the	development	of	unified	theoretical	frameworks.

Despite	the	association	of	reduction	and	unification,	there	are	clear	cases	where	the	reductionist	ideal	has	not

been	met	and	unification	has	involved	a	synthesis	where	the	phenomena	have	remained	largely	independent	but

are	nevertheless	described	using	the	same	theory.	The	electroweak	theory	is	a	case	in	point.	The	theory	unifies

the	weak	and	electromagnetic	forces	under	the	SU(2)	x	U(1)	symmetry	group	via	a	mixing	of	the	fields,	but	the

carriers	of	the	forces	(particles)	remain	distinct.	Contrast	this	with	the	unification	of	electromagnetism	and	optics

where	Maxwell's	theory	showed	the	identity	of	light	and	electromagnetic	waves. 	The	other	issue	relevant	in	the

case	of	synthetic	unity	is,	of	course,	the	role	of	free	parameters.	The	electroweak	theory	contains	one	free

parameter,	the	Weinberg	angle,	which	represents	the	mixing	of	the	fields	and	yields	the	masses	for	the	W	and	Z

bosons.	The	Standard	Model,	by	contrast,	contains	somewhere	in	the	range	of	26	such	parameters,	which	have	to

be	put	in	by	hand	and	whose	values	are	extracted	from	experimental	data.	This	issue	of	free	parameters	is

extremely	important	because	the	raison	d’être	for	unification	is	the	ability	to	account	for	a	variety	of	phenomena

using	a	few	general	principles.	The	addition	of	free	parameters	not	only	erodes	that	capability	but	undermines

inferences	about	the	identification	of	phenomena	(like	forces)	on	the	basis	of	their	description	under	a	single

theory.	In	other	words,	it	casts	doubt	on	the	idea	that	nature	itself	is	unified.

The	search	for	a	theory	of	everything	that	would	incorporate	gravity	presupposes,	in	some	sense,	that	the

Standard	Model	has	unified	the	weak,	strong,	and	electromagnetic	forces.	But	as	I	mentioned	above,	the	problem	of

free	parameters	and	the	fact	that	the	theory	is	an	amalgam	of	three	different	symmetry	groups	SU(3)	x	SU(2)	x	U(1)

rather	than	a	single	group	speaks	against	the	idea	that	this	is	a	truly	unified	theory.	Moreover,	the	search	for	a	TOE

presumes	that	gravity	is	a	force	like	the	others	when	according	to	General	Relativity	it	is	very	unlike	the	others	in

that	there	are	no	particles	that	couple	to	the	gravitational	field	and	act	as	force	carriers;	the	effects	of	gravitation

are	ascribed	to	spacetime	curvature	instead	of	a	force	per	se.	Some	of	the	most	prominent	attempts	to	incorporate

gravity	into	a	unified	framework	with	quantum	mechanics	include	string	theory	or	others	related	to	supersymmetry

(SUSY)	and	loop	quantum	gravity,	all	of	which	face	theoretical	difficulties.

Those	problems	aside,	the	other	threat	to	the	unificationist	picture	of	physics	comes	from	the	failure	of	reduction	in

a	different	context,	specifically	in	the	case	of	condensed	matter	physics	where	many	of	the	phenomena	are

described	as	emergent.	This	picture	is	exemplified	by	Anderson's	remark	that	“the	ability	to	reduce	everything	to

simple	fundamental	laws	does	not	imply	the	ability	to	start	from	those	laws	and	reconstruct	the	universe.	…	The

behaviour	of	large	and	complex	aggregates	of	particles	…	is	not	to	be	understood	in	terms	of	a	simple

extrapolation	of	the	properties	of	a	few	particles.	Instead	at	each	level	of	complexity	entirely	new	properties
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appear”	(1972,	393).	Examples	of	emergent	phenomena	in	condensed	matter	physics	include	superconductivity

and	superfluidity.	The	defining	feature	of	these	phenomena	is	that	their	behavior	or	existence,	for	that	matter,

cannot	be	explained,	predicted,	or	reduced	to	their	micro	constituents	and	the	laws	that	govern	them.	So,	while

superconductivity	involves	the	pairing	of	electrons,	its	essential	features	(e.g.,	infinite	conductivity)	do	not	depend

on	microphysical	details	related	to	that	pairing.	This	decoupling	of	physics	at	different	energy	levels	that	is

characteristic	of	emergent	phenomena	has	also	been	a	prominent	feature	of	quantum	field	theories	where	effective

theories	containing	appropriate	degrees	of	freedom	are	used	to	describe	physical	phenomena	occurring	at	a

chosen	length	scale,	while	ignoring	substructure	and	degrees	of	freedom	at	shorter	distances	(or,	equivalently,	at

higher	energies).	Indeed,	much	of	high-energy	physics	is	now	dominated	by	the	use	of	effective	field	theories

(EFTs),	and	the	decoupling	theorem	of	Appelquist	and	Carazzone	(1975)	has	often	been	understood	as	a	basis	for

interpreting	physical	reality	as	constituting	a	hierarchy	of	layers	that	are	quasi-autonomous. 	As	we	shall	see,	this

in	itself	need	not	speak	against	the	possibility	of	reduction	and	unification.	The	question	is	whether	the	discoveries

at	the	LHC	will	change	physics	sufficiently	such	that	effective	theories	will	no	longer	be	a	theoretical	requirement.

As	I	mentioned	above,	this	emphasis	on	emergence	and	effective	theories	has	produced	a	new	and	different	kind

of	unity	that	is	often	not	considered	in	the	context	of	unification	in	physics.	What	I	have	in	mind	is	the	explanation

of	what	is	termed	“universal	behavior”	by	the	renormalization	group	methods	developed	by	Kenneth	Wilson	(1971,

1975)	and	others.	Before	RG,	there	was	no	account	of	why	systems	as	different	as	magnets	and	superfluids	shared

the	same	critical	exponents	and	displayed	the	same	behavior	near	a	second-order	phase	transition.	RG	explained

this	phenomenon	by	showing	that	the	differences	between	them	are	related	to	irrelevant	observables	that	play	no

role	in	the	explanation	of	behavior	near	critical	point.	In	other	words,	features	of	the	system	that	are	responsible	for

the	similarities	in	behavior	are	largely	independent	of	microphysical	structure.	Phenomena	that	share	the	same

critical	exponents	are	said	to	belong	to	the	same	universality	class.	This	grouping	of	phenomena	into	universality

classes	exhibits	a	type	of	unification	that	is	the	antithesis	of	reductive	unity	insofar	as	the	microphysical

constituents	are	irrelevant	to	the	universal	properties	or	behavior	to	be	explained.	The	RG	is	also	an	important

component	in	the	effective	field	theory	program	in	particle	physics,	so	interesting	questions	arise	related	to	the

unity	of	method	in	these	two	very	distinct	domains.	I	will	have	more	to	say	about	these	questions	below.

In	order	to	illustrate,	extend,	and	clarify	these	issues	I	want	to	begin	by	discussing	examples	of	the	two	different

types	of	unification	mentioned	above—reductive	and	synthetic	unity.	In	particular	I	will	address	not	just	the

ontological	features	involved	in	each	case	but	also	the	role	of	mathematics	in	constructing	unified	theories.	In	that

sense	our	discussion	will	focus	on	both	the	epistemic	and	ontological	features	of	unification	and	reduction.	While

reductive	unity	exemplifies	the	goals	of	unification	by	illustrating	the	identify	of	different	types	of	phenomena,	its

synthetic	counterpart	presents	a	rather	different	picture	in	that	it	unifies	phenomena	under	the	same	theory	but

falls	short	of	identifying	them	as	one	and	the	same.	From	there	I	will	go	on	to	discuss	the	challenges	facing	the

unification	picture	from	effective	theories	and	emergent	phenomena.	Finally	I	discuss	the	way	that	RG	techniques

have	facilitated	an	understanding	of	similarities	among	very	different	types	of	phenomena,	indicating	a	new	type	of

unity	in	physics	that	had	been	largely	ignored	and	previously	inexplicable.

2.	Reductive	Unity:	Maxwell's	Electrodynamics

The	development	of	Maxwell's	electrodynamics	is	interesting	in	that	the	theory	was	initially	formulated	using	a

completely	fictitious	aether	model	from	which	was	derived	a	wave	equation	that	led	to	the	identification	of

electromagnetic	and	light	waves.	This	model	was	given	up	in	later	formulations	of	the	theory	but	its	most	important

feature	was	the	incorporation	of	a	phenomenon	known	as	the	displacement	current	which	was	responsible	for	the

transmission	of	electric	waves	through	space,	thereby	producing	the	effect	of	having	a	closed	circuit	between	two

conductors.	The	aether	model	explained	how	the	displacement	of	electricity	took	place,	but	it	was	this	notion	of

electric	displacement	that	was	the	key	to	producing	a	field-theoretic	account	of	electromagnetism.	The	idea	at	the

foundation	of	Maxwell's	theory	was	Faraday's	account	of	electromagnetism	in	terms	of	lines	of	force	filling	space.

Prior	to	that,	it	was	thought	that	electromagnetic	force	resided	in	material	bodies	and	could	only	be	transmitted

through	some	type	of	mechanical	interaction.	The	notion	that	the	seat	of	electromagnetic	charge	was	the	field

rather	than	matter	was	both	revolutionary	and	controversial.

In	order	to	disengage	the	theory	from	its	questionable	origins,	later	versions	relied	on	what	Maxwell	described	as

“firmly	established	empirical	facts”	together	with	a	few	general	dynamical	principles	as	characterized	by	the
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abstract	mathematical	structure	of	Lagrangian	mechanics. 	That	structure,	unlike	the	mechanical	model,	provided

no	explanatory	account	of	how	electromagnetic	waves	were	propagated	through	space	nor	any	understanding	of

the	nature	of	electric	charge.	The	new	unified	theory	based	on	that	abstract	dynamics	entailed	no	onto	logical

commitment	to	the	existence	of	forces	or	structures	that	could	be	seen	as	the	source	of	electromagnetic

phenomena.	The	displacement	current	was	retained	as	a	basic	feature	(one	of	the	equations),	but	no	mechanical

hypothesis	was	put	forward	regarding	its	nature.

The	question	that	immediately	arises	is	how	we	should	view	this	type	of	unification	given	that	the	initial	model	was

fictitious	and	the	later	version	had	no	underlying	ontological	foundation	capable	of	grounding	the	apparent

reduction.	In	order	to	address	that	question	I	want	to	draw	attention	to	the	role	that	mathematical	structures	play	in

the	unifying	process	and	how	those	structures	were	able	to	facilitate	a	reductive	unity	without	implying	an

ontological	unity	in	nature.	As	it	turns	out,	Maxwell's	theory	did	accomplish	the	latter	but	no	evidence	for	that	was

forthcoming	until	the	production	of	electromagnetic	waves	by	Hertz	in	1888.

Maxwell's	use	of	the	Lagrangian	approach	was	due	primarily	to	its	generality,	which	makes	it	applicable	in	a	variety

of	contexts;	and	it	was	ultimately	this	feature	that	made	it	especially	suited	to	unifying	different

phenomena/domains.	In	addition	to	the	importance	of	these	types	of	mathematical	structures	for	unification,	I	also

want	to	highlight	what	I	see	as	the	mark	of	a	truly	unified	theory—the	presence	of	a	specific	theoretical

quantity/parameter	that	represents	the	theory's	ability	to	reduce,	identify,	or	synthesize	two	or	more	processes

within	a	single	theoretical	framework.	What	I	have	in	mind	here	is	the	idea	that	one	particular	parameter	functions

as	a	manifestation	of	the	reduction	of	different	phenomena	to	one	specific	kind,	or	its	presence	produces	a

theoretical	context	wherein	different	phenomena	can	be	unified.	In	Maxwell's	theory	the	displacement	current	plays

just	such	a	role.	It	figures	prominently	as	a	fundamental	quantity	in	the	field	equations,	and	without	it	there	could	be

no	notion	of	a	quantity	of	electricity	crossing	a	boundary,	no	derivation	of	the	electromagnetic	wave	equation	and

hence	no	field	theoretic	basis	for	electromagnetism.	In	other	words,	displacement	is	responsible	for	creating	the

field	theoretic	picture	that	allows	Maxwell	to	identify	light	and	electromagnetic	waves	as	field	theoretical	processes.

As	we	shall	see	below,	the	Weinberg	angle	in	the	electroweak	theory	functions	as	the	“unifying	parameter”	in	that

it	represents	the	mixing	of	the	weak	and	electromagnetic	fields.	Without	such	a	parameter,	we	simply	have	a

theory	that	can	accommodate	different	kinds	of	phenomena	but	without	any	relation	or	connection	between	them.

To	see	exactly	why	electrodynamics	qualifies	as	a	reductive	unification	and	to	illustrate	the	differences	with

synthetic	unity	let	me	give	a	brief	overview	of	the	evolution	of	the	theory	from	its	origins	in	the	aether	model	to	its

abstract	dynamical	formulation.	Tracing	some	of	these	details	is	important	because	in	both	reductive	and	synthetic

unification	there	is	a	reliance	on	mathematical	frameworks	as	a	specific	type	of	unifying	tool	(Lagrangian

mechanics	in	the	Maxwellian	case	and	gauge	theory	in	the	electroweak	case)	yet	the	outcomes	are	very	different

in	each	case.	In	other	words,	the	generality	in	the	application	of	these	frameworks	to	diverse	phenomena	does	not

entail	anything	specific	about	the	type	of	unity	that	is	produced.	The	latter	is	solely	a	product	of	the	specific	way	in

which	the	phenomena	are	brought	together.	The	difference	between	reductive	and	synthetic	unity	is	an	important

feature	in	establishing	ontological	claims	about	unity	in	nature;	hence,	the	details	of	how	each	is	achieved	are	an

important	part	of	articulating	how,	exactly,	unification	in	physics	ought	to	be	understood.	In	other	words,	we	can

sometimes	construct	unified	theories	but	whether	there	is	evidence	for	unity	in	nature	is	a	different	matter.

2.1	From	Fictional	Models	to	a	Unified	Theory

Maxwell's	describes	his	1861–62	paper,	“On	Physical	Lines	of	Force,”	as	an	attempt	to	“examine”	electromagnetic

phenomena	from	a	mechanical	point	of	view	and	to	determine	what	tensions	in,	or	motions	of,	a	medium	were

capable	of	producing	the	observed	mechanical	phenomena	(Maxwell	1965,	1:	467).	Faraday	had	described

electromagnetic	phenomena	as	lines	of	force	permeating	space	rather	than	the	result	of	an	interaction	among

material	bodies.	At	the	time	Thomson	had	developed	an	account	of	magnetism	that	involved	the	rotation	of

molecular	vortices	in	a	fluid	aether,	an	idea	that	led	Maxwell	to	hypothesize	that	in	a	magnetic	field	the	medium	(or

aether)	was	in	rotation	around	the	lines	of	force,	the	rotation	being	performed	by	molecular	vortices	whose	axes

were	parallel	to	the	lines.	In	order	to	specify	the	forces	that	caused	the	medium	to	move	and	to	account	for	electric

currents,	Maxwell	needed	to	provide	an	explanation	of	the	transmission	of	rotation	of	the	vortices;	something	he

achieved	via	his	aether	model.	The	specific	details	of	this	early	version	of	the	model	are	not	important	here	but

what	is	important	is	how	the	second	of	his	aether	models,	developed	to	account	for	electrostatics,	facilitated	the
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derivation	of	his	theory	of	light.

In	order	to	explain	charge	and	to	derive	the	law	of	attraction	between	charged	bodies,	Maxwell	constructed	an

elastic	solid	model	in	which	the	aetherial	substance	formed	spherical	cells	endowed	with	elasticity.	The	cells	were

separated	by	electric	particles	whose	action	on	the	cells	would	result	in	a	kind	of	distortion.	Hence,	the	effect	of	an

electromotive	force	was	to	distort	the	cells	by	a	change	in	the	positions	of	the	electric	particles.	Because	changes

in	displacement	involved	a	motion	of	electricity,	Maxwell	argued	that	they	should	be	“treated	as”	currents	(1965,	1:

491).

That	gave	rise	to	an	elastic	force	that	set	off	a	chain	reaction.	Maxwell	saw	the	distortion	of	the	cells	as	a

displacement	of	electricity	within	each	molecule,	with	the	total	effect	over	the	entire	medium	producing	a	“general

displacement	of	electricity	in	a	given	direction”	(Maxwell	1965,	1:	491).	Understood	literally,	the	notion	of

displacement	meant	that	the	elements	of	the	dielectric	had	changed	positions.

Displacement	also	served	as	a	model	for	dielectric	polarization;	electromotive	force	was	responsible	for	distorting

the	cells,	and	its	action	on	the	dielectric	produced	a	state	of	polarization.	When	the	force	was	removed,	the	cells

would	recover	their	form	and	the	electricity	would	return	to	its	former	position	(Maxwell	1965,	1:	492).	The	amount

of	displacement	depended	on	the	nature	of	the	body	and	on	the	electromotive	force.

Because	the	phenomenological	law	governing	displacement	expressed	the	relation	between	polarization	and

force,	Maxwell	was	able	to	use	it	to	calculate	the	aether's	elasticity	(the	coefficient	of	rigidity),	the	crucial	step	that

led	him	to	identify	the	electromagnetic	and	luminiferous	aethers.	It	is	interesting	to	note	that	in	Parts	I	and	II	of	“On

Physical	Lines”	there	is	no	mention	of	the	optical	aether.	However,	once	the	electromagnetic	medium	was	endowed

with	elasticity,	Maxwell	relied	on	the	optical	aether	in	support	of	his	assumption:	“The	undulatory	theory	of	light

requires	us	to	admit	this	kind	of	elasticity	in	the	luminiferous	medium	in	order	to	account	for	transverse	vibrations.

We	need	not	then	be	surprised	if	the	magneto-electric	medium	possesses	the	same	property”	(1965,	1:	489).	After

a	series	of	mathematical	steps,	which	included	correcting	the	equations	of	electric	currents	for	the	effect	produced

by	elasticity	and	calculating	the	value	for	e,	the	quantity	of	free	electricity	in	a	unit	volume,	and	E,	the	dielectric

constant,	he	went	on	to	determine	the	velocity	with	which	transverse	waves	were	propagated	through	the

electromagnetic	aether.	The	rate	of	propagation	was	based	on	the	assumption	described	above—that	the	elasticity

was	due	to	forces	acting	between	pairs	of	particles.

Using	the	formula	V	=	√m/ρ,	where	m	is	the	coefficient	of	rigidity,	ρ	is	the	aethereal	mass	density,	and	μ	is	the

coefficient	of	magnetic	induction,	we	have

giving	us	π	m	=	V μ,	which	yields	E	=	V√μ.	Maxwell	arrived	at	a	value	for	V	that,	much	to	his	astonishment,	agreed

with	the	value	calculated	for	the	velocity	of	light	(V	=	310,740,000,000	mm/sec),	which	led	him	to	remark	that:

“The	velocity	of	transverse	undulations	in	our	hypothetical	medium,	calculated	from	the	electromagnetic

experiments	of	Kohlrausch	and	Weber,	agrees	so	exactly	with	the	velocity	of	light	calculated	from	the	optical

experiment	of	M.	Fiseau	that	we	can	scarcely	avoid	the	inference	that	light	consists	in	the	transverse	undulations

of	the	same	medium	which	is	the	cause	of	electric	and	magnetic	phenomena	(1965,	1:	500).”

Maxwell's	success	involved	linking	the	equation	describing	displacement	(R	=	−4π	E h)	with	the	aether's	elasticity

(modeled	on	Hooke's	law),	where	displacement	produces	a	restoring	force	in	response	to	the	distortion	of	the	cells

of	the	medium.	However,	R	=	−4π	E h	is	also	an	electrical	equation	representing	the	flow	of	charge	produced	by

electromotive	force.	Consequently,	the	dielectric	constant	E	is	both	an	elastic	coefficient	and	an	electric	constant.

Interpreting	E	in	this	way	allowed	Maxwell	to	determine	its	value	and	ultimately	identify	it	with	the	velocity	of

transverse	waves	traveling	through	an	elastic	aether.

In	modern	differential	form,	Maxwell's	four	equations	relate	the	Electric	Field	(E)	and	magnetic	field	(B)	to	the	charge

(ρ)	and	current	(J)	densities	that	specify	the	fields	and	give	rise	to	electromagnetic	radiation—light.
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D	is	the	displacement	field	and	H	the	magnetizing	field.	The	first	equation,	Gauss's	law,	describes	how	an	electric

field	is	generated	by	electric	charges	where	the	former	tends	to	point	away	from	positive	and	toward	negative

charges.	More	specifically,	it	relates	the	electric	flux	through	any	hypothetical	closed	Gaussian	surface	to	the

electric	charge	within	the	surface.	Gauss's	law	for	magnetism	states	that	there	are	no	“magnetic	charges”

(magnetic	monopoles),	analogous	to	electric	charges;	or,	that	the	total	magnetic	flux	through	any	Gaussian

surface	is	zero.	Faraday's	law	describes	how	a	changing	magnetic	field	can	induce	an	electric	field.	Finally,

Ampère's	law	with	Maxwell's	correction	states	that	magnetic	fields	can	be	generated	by	electrical	current	(which

was	the	original	“Ampère	law”)	and	by	changing	electric	fields	(Maxwell's	correction).	Maxwell's	correction	to

Ampère's	law	is	crucial,	since	it	specifies	that	both	a	changing	magnetic	field	gives	rise	to	an	electric	field	and	a

changing	electric	field	creates	a	magnetic	field.	Consequently,	self-sustaining	electromagnetic	waves	can

propagate	through	space.	In	other	words,	it	allows	for	the	possibility	of	“open	circuits.”

Given	the	importance	of	displacement	for	producing	a	field-theoretic	account	of	electromagnetism	and	its	role	in

calculating	the	velocity	of	waves,	it	is	obviously	the	essential	parameter	in	identifying	the	optical	and

electromagnetic	aethers.	In	later	versions	of	the	theory,	the	aether	was	abandoned,	but	displacement	remained	as

a	fundamental	quantity.	However,	its	status	changed	once	it	was	incorporated	into	the	Lagrangian	formulation	of

the	theory	in	that	it	was	no	longer	associated	with	an	electric/elastic	mechanical	explanation.

What	Maxwell	had	in	fact	shown	was	that	given	the	specific	assumptions	employed	in	developing	the	mechanical

details	of	his	model,	the	elastic	properties	of	the	electromagnetic	medium	were	just	those	required	of	the

luminiferous	aether	by	the	wave	theory	of	light.	Hence,	what	was	effected	was	the	reduction	of	electromagnetism

and	optics	to	the	mechanics	of	one	aether,	rather	than	a	reduction	of	optics	to	electromagnetism	simpliciter.	In	that

sense,	the	first	form	of	Maxwell's	theory	displayed	a	reductive	unity,	but	the	more	interesting	question	is	whether,	in

the	absence	of	the	aether,	the	identification	of	electromagnetic	and	optical	waves	still	constitutes	a	reduction	of

two	different	processes	to	a	single	natural	kind.	The	answer	to	this	question	is	complicated	by	the	difficulties	that

plagued	the	model,	the	most	serious	being	the	status	of	electric	displacement	itself.	Not	only	did	it	suffer	from

ambiguities	in	interpretation,	it	was	not	a	natural	consequence	of	the	model	and	there	was	no	experimental	data

that	required	its	postulation.	It	was	introduced	purely	to	facilitate	a	field	theoretic	account	of	electromagnetic

processes.	Moreover,	the	equation	relating	displacement	with	charge	was	not	explicitly	given,	and	without	any

“physical”	account	of	the	field	it	became	difficult	to	see	just	how	charge	could	occur.

Maxwell	claimed	that	his	later	account	entitled	“A	Dynamical	Theory	of	the	Electromagnetic	Field”	(1865)	(DT)	was

based	on	experimental	facts	and	general	dynamical	principles	about	matter	in	motion	as	characterized	by	the

abstract	dynamics	of	Lagrange.	The	aim	of	Lagrange's	Mécanique	Analytique	(1788)	was	to	rid	mechanics	of

Newtonian	forces	and	the	requirement	that	we	must	construct	a	separate	acting	force	for	each	particle.	The

equations	of	motion	for	a	mechanical	system	were	derived	from	the	principle	of	virtual	velocities	and	d'Alembert's

principle. 	The	method	consisted	of	expressing	the	elementary	dynamical	relations	in	terms	of	the	corresponding

relations	of	pure	algebraic	quantities,	which	facilitated	the	deduction	of	the	equations	of	motion.	Consequently,

insofar	as	the	formal	structure	is	concerned,	analytical	mechanics,	electromagnetism,	and	wave	mechanics	can	all

be	deduced	from	a	variational	principle,	the	result	being	that	each	theory	has	a	uniform	Lagrangian	appearance.

Velocities,	momenta,	and	forces	related	to	the	coordinates	in	the	equations	of	motion	need	not	be	interpreted

literally	in	the	fashion	of	their	Newtonian	counterparts.	This	allows	for	the	field	to	be	represented	as	a	connected

mechanical	system	with	currents,	integral	currents,	and	generalized	coordinates	corresponding	to	the	velocities

and	positions	of	the	conductors.	In	other	words,	we	can	have	a	quantitative	determination	of	the	field	without

knowing	the	actual	motion,	location,	and	nature	of	the	system	itself.

Using	this	method	Maxwell	went	on	to	derive	the	basic	wave	equations	of	electromagnetism	without	any	special

assumptions	about	molecular	vortices,	forces	between	electrical	particles,	and	without	specifying	the	details	of	the
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mechanical	structure	of	the	field.	The	20	equations	consisted	of	three	equations	each	for	magnetic	force,	electric

currents,	electromotive	force,	electric	elasticity,	electric	resistance,	total	currents;	and	one	equation	each	for	free

electricity	and	continuity.	This	allowed	him	to	treat	the	aether	(or	field)	as	a	mechanical	system	without	any

specification	of	the	machinery	that	gave	rise	to	the	characteristics	exhibited	by	the	potential-energy	function.

It	becomes	clear,	then,	that	the	unifying	power	of	the	Lagrangian	approach	lay	in	the	fact	that	it	ignored	the	nature

of	the	system	and	the	details	of	its	motion.	Because	very	little	information	is	provided	about	the	physical	system,	it

is	easier	to	bring	together	diverse	phenomena	under	a	common	framework.	Only	their	general	features	are

accounted	for,	yielding	a	unification	that,	to	some	extent,	is	simply	a	formal	analogy	between	two	different	kinds	of

phenomena.	The	Lagrangian	emphasis	on	energetic	properties	of	a	system,	rather	than	its	internal	structure,

became	especially	important	after	the	establishment	of	the	principle	of	conservation	of	energy.	In	fact,	in	the

Treatise	on	Electricity	and	Magnetism	the	notion	of	“field	energy”	became	the	physical	principle	on	which	an

otherwise	abstract	dynamics	could	rest.	Maxwell	claimed	that	all	physical	concepts	in	“A	Dynamical	Theory,”

except	energy,	were	understood	to	be	merely	illustrative,	rather	than	substantial.	Displacement	constituted	one	of

the	basic	equations	and	was	defined	simply	as	the	motion	of	electricity,	that	is,	in	terms	of	a	quantity	of	charge

crossing	a	designated	area.	But,	if	electricity	was	being	displaced,	how	did	this	occur?	Due	to	the	lack	of	a

mechanical	foundation,	the	idea	that	there	was	a	displacement	of	electricity	in	the	field	(a	charge),	without	an

associated	mechanical	source	or	body,	became	difficult	to	motivate	theoretically.	These	issues	did	not	pose

significant	problems	for	Maxwell	himself,	since	he	associated	the	force	fields	with	the	underlying	potentials.

Because	the	value	of	wave	propagation	for	electromagnetic	phenomena	is	equivalent	to	that	for	light,	the	wave

equation	represents	the	reduction	of	electromagnetism	and	optics,	a	process	that	was	facilitated	by	the

displacement	current.

What	methodological	lessons	about	unification	can	be	gleaned	from	the	Maxwell	case?	At	the	very	least,	it	shows

that	theory	unification	can	be	a	rather	complex	process	that	integrates	mathematical	techniques	and	broad-

ranging	physical	principles	that	govern	material	systems.	In	addition	to	the	generality	of	the	Lagrangian	formalism,

its	deductive	character	displays	a	crucial	feature	for	successful	unification:	the	ability	to	derive	equations	of

motion	for	a	physical	system	with	a	minimum	of	information.	But,	as	I	noted	above,	this	mathematical	framework

provided	little	or	no	insight	into	specific	physical	details,	leaving	the	problem	of	whether	to	interpret	the	unification

as	indicative	of	a	physical	unity	in	nature.	This	problem	is	particularly	relevant	because	of	the	accompanying

difficulties	with	displacement.	Because	it	provides	a	necessary	condition	for	formulating	the	field	equations,	it	forms

the	foundation	for	a	truly	unified	theory	that	integrates	or	reduces	various	phenomena	as	opposed	to	one	that

simply	incorporates	more	phenomena	than	its	rivals.	However,	the	theory	cast	in	terms	of	the	Lagrangian	formalism

lacked	real	explanatory	power	due	to	the	absence	of	specific	theoretical	details.	The	field	equations	could	account

for	both	optical	and	electromagnetic	processes	as	the	results	of	waves	traveling	through	space,	but	there	was	no

theoretical	foundation	for	understanding	of	how	that	took	place.	And,	in	the	absence	of	any	experimental	evidence

for	electromagnetic	waves	what	Maxwell	had	shown	was	only	that	a	unification	and	reduction	of	electromagnetism

and	optics	was	theoretically	possible.

Although	the	unity	achieved	in	“On	Physical	Lines”	and	later	versions	of	the	theory	involved	the	reduction	of

optical	and	electromagnetic	processes,	the	electric	and	magnetic	fields	retained	their	independence;	the	theory

simply	showed	the	interrelationship	of	the	two—where	a	varying	electric	field	exists,	there	is	also	a	varying

magnetic	field	induced	at	right	angles,	and	vice	versa.	The	two	together	form	the	electromagnetic	field.	In	that

sense	the	theory	united	the	two	kinds	of	forces	by	integrating	them	in	a	systematic	or	synthetic	way,	but	their	true

unification	did	not	take	place	until	1905	with	the	Special	Theory	of	Relativity.	Maxwell's	equations	were	crucial	in

motivating	Einstein's	paper	where	he	noted	in	the	beginning	paragraph	that	a	description	of	a	conductor	moving

with	respect	to	a	magnet	must	generate	a	consistent	set	of	fields	irrespective	of	whether	the	force	is	calculated	in

the	rest	frame	of	the	magnet	or	that	of	the	conductor.	Maxwell's	equations	generated	an	asymmetry	that	was	not

present	in	the	phenomena	(1952,	37).

Without	going	into	the	details	of	the	unification	provided	by	special	relativity,	it	is	important	to	point	out	that	the

unity	of	electricity	and	magnetism	was	also	indicative	of	something	deeper	and	more	pervasive,	specifically,	a

unification	of	two	domains	of	physics—mechanics	and	electrodynamics.	This	latter	unification	was	a	realization	of

the	requirement	that	the	laws	of	physics	must	assume	the	same	form	in	all	inertial	frames.	The	further

mathematization	of	the	event	structure	of	the	theory	at	the	hands	of	Minkowski	showed	that	the	relationship

between	electricity	and	magnetism	could	be	represented	by	the	transformation	properties	of	the	electromagnetic
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field	tensor.	If	one	begins	with	a	field	E	due	to	a	static	charge	distribution,	with	no	magnetic	field,	and	transforms	to

another	frame	moving	with	uniform	velocity,	the	transformation	equations	show	that	there	exists	a	magnetic	field	in

the	moving	frame	even	though	none	existed	in	the	inertial	frame.	Hence,	the	magnetic	field	appears	as	an	effect	of

the	transformation	from	one	frame	of	reference	to	another.	In	Maxwell's	theory	the	electric	and	magnetic	fields

were	two	entities	combined	by	an	angle	of	interaction,	whereas,	in	the	Minkowski	formulation	the	electromagnetic

field	is	one	entity	represented	by	one	tensor—their	separation	is	merely	a	frame	dependent	phenomena.

Maxwell's	electrodynamics	was	the	first	unified	field	theory	in	physics.	It	exemplified	the	same	type	of	reductive

unity	present	in	Newtonian	mechanics,	which	unified	terrestrial	and	celestial	motion	under	the	same	force	law—

universal	gravitation.	But	few	if	any	subsequent	cases	of	unification	have	demonstrated	this	kind	of	reduction;	in

fact	most	unified	theories	are	the	result	of	a	synthesis	of	different	phenomena	under	a	single	theoretical	framework.

Mathematics	continues	to	be	crucial	for	achieving	unification	but	as	we	shall	see	below,	in	the	electroweak	case

the	goal	is	to	use	mathematical	tools	like	symmetry	for	generating	a	unified	dynamics	as	opposed	to	a	framework

for	representing	existing	theoretical	relations	among	different	phenomena	as	in	the	case	of	electrodynamics.

3.	Synthetic	Unity:	The	Electroweak	Theory

The	electroweak	theory	brings	together	electromagnetism	with	the	weak	force	in	a	single	relativistic	quantum	field

theory	that	involves	the	product	of	two	gauge	symmetry	groups.	From	the	perspective	of	phenomenology	these

two	forces	are	very	different.	Electromagnetism	has	an	infinite	range;	whereas,	the	weak	force,	which	produces

radioactive	beta	decay,	spans	distances	shorter	than	approximately	10 	cm.	Moreover,	the	photon	associated

with	the	electromagnetic	field	is	massless,	while	the	bosons	associated	with	the	weak	force	are	massive	due	to

their	short	range.	Despite	these	differences,	they	do	share	some	common	features:	both	kinds	of	interactions

affect	leptons	and	hadrons;	both	appear	to	be	vector	interactions	brought	about	by	the	exchange	of	particles

carrying	unit	spin	and	negative	parity,	and	both	have	their	own	universal	coupling	constant	that	governs	the

strength	of	the	interactions.	The	electroweak	theory	is	joined	with	quantum	chromodynamics	(QCD)—the	theory	of

the	strong	interactions—to	form	the	Standard	Model.

My	focus	here	will	be	largely	on	the	electroweak	theory	for	several	reasons.	First,	and	perhaps	most	important	for

our	purposes,	by	examining	the	structure	of	the	electroweak	theory	it	is	possible	to	illustrate	the	nature	of

unification	in	a	way	that	is	not	possible	with	the	larger	Standard	Model.	The	electroweak	theory	involves	a

combination	of	the	SU(2)	group	governing	isospin/weak	interactions	and	the	U(1)	group	of	electromagnetism.	The

mixing	of	these	fields	is	represented	by	the	Weinberg	angle	sin θ,	which	is	a	free	parameter	whose	value	is

determined	experimentally.	The	Standard	Model	structure	involves	the	addition	of	the	SU(3)	symmetry	group	that

governs	the	color	charged	fermions	(quarks)	to	form	the	SU(3)	x	SU(2)	x	U(1)	group.	The	SU(3)	color	group

corresponds	to	the	local	symmetry	whose	gauging	gives	rise	to	quantum	chromodynamics—the	theory	that

governs	the	strong	force	(QCD).	In	addition	to	some	of	the	outstanding	theoretical	problems	with	the	Standard

Model,	such	as	the	origin	of	the	masses	and	mixings	of	the	quarks	and	leptons,	the	most	significant	problem	from

the	“unification”	perspective	comes	in	the	application	of	the	theory,	which	involves	significantly	more	free

parameters	than	electroweak—approximately	26	in	total.

While	the	incompatibility	of	the	Standard	Model	with	gravity,	and	until	recently	the	status	of	the	Higgs	boson,	are

often	cited	as	stumbling	blocks	for	unification,	it	is	the	internal	structure	of	the	Standard	Model	itself	that

undermines	its	status	as	a	unified	theory.	Moreover,	finding	the	Higgs	particle	will	only	partly	rectify	the	problems.

By	contrast,	the	electroweak	theory	has	only	one	free	parameter	and	involves	more	than	a	simple	pasting	together

of	the	two	different	force	fields	under	a	combined	symmetry	group.	As	we	shall	see,	it	furnishes	an	account	of	the

mixing	of	the	fields	that	involves	a	synthetic	unity	that	is	simply	not	possible	in	the	current	version	of	the	Standard

Model.	That	is	not	to	say	that	the	electroweak	theory	is	without	its	own	difficulties,	but	only	that	it	clearly	qualifies	as

a	unified	theory	in	a	way	that	the	Standard	Model	does	not.	Below	I	discuss	some	of	these	theoretical	issues	as

they	arise	in	the	context	of	the	electroweak	theory	and	their	relation	to	the	larger	Standard	Model,	but	first	let	me

turn	to	a	more	detailed	discussion	of	the	specifics	of	the	electroweak	theory	to	illustrate	the	exact	nature	of	the

unification	and	how	it	was	produced.

A	solution	to	the	incompatibility	between	electromagnetism	and	the	weak	force	was	achieved	by	postulating	the

Higgs	mechanism,	the	newly	found	element	of	the	Standard	Model.	This	facilitated	a	unification	of	the	fields	but
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does	so	in	a	way	that	leaves	the	forces	more	or	less	distinct.	To	see	how	this	unity	was	achieved	let	me	begin	by

discussing	how	gauge	symmetry	functions	as	a	unifying	structure	and	go	on	to	show	how	this	type	of	unification

presents	us	with	a	very	different	picture	than	the	reductive	unity	provided	by	Newtonian	mechanics	and

Maxwellian	electrodynamics.

3.1	Symmetry	as	a	Tool	for	Unification

In	physics,	a	gauge	theory	is	a	type	of	field	theory	where	the	Lagrangian	is	invariant	under	a	continuous	group	of

local	transformations	known	as	gauge	transformations.	These	transformations	form	a	Lie	group,	which	is	the

symmetry	group	or	the	gauge	group	with	an	associated	Lie	algebra	of	group	generators.	For	each	group	generator

there	necessarily	arises	a	corresponding	vector	field	called	the	gauge	field,	which	is	included	in	the	Lagrangian	to

ensure	its	invariance	under	the	local	group	transformations.	Simply	put:	in	a	gauge	theory	there	is	a	group	of

transformations	of	the	field	variables	(gauge	transformations)	that	leaves	the	basic	physics	of	the	quantum	field

unchanged.	This	condition,	called	gauge	invariance,	gives	the	theory	a	certain	symmetry,	which	governs	its

equations.	Hence,	the	structure	of	the	group	of	gauge	transformations	in	a	particular	gauge	theory	entails	general

restrictions	on	how	the	field	described	by	that	theory	can	interact	with	other	fields	and	elementary	particles.	This	is

the	sense	in	which	gauge	theories	are	sometimes	said	to	“generate”	particle	dynamics—their	associated	symmetry

constraints	specify	the	form	of	interaction	terms.	The	symmetry	associated	with	electric	charge	is	a	local	symmetry

where	physical	laws	are	invariant	under	a	local	transformation.	This	involves	an	infinite	number	of	separate

transformations	that	are	different	at	every	point	in	space	and	time.	But	by	introducing	new	force	fields	that

transform	in	certain	ways	and	interact	with	the	original	particles	in	the	theory,	a	local	invariance	can	be	restored.

To	see	how	local	gauge	invariance	is	related	to	physical	dynamics	consider	the	following:	if	we	write	the	non-

relativistic	Schrodinger	equation

(where	the	canonical	momentum	operator	p 	−	eAμ	is	replaced	by	the	quantum	operator	-ih	∇-	eA),	then	after	a

phase	change	an	additional	gradient	term	proportional	to	e∇λ	emerges,	the	result	of	the	operator	-ih∇	acting	on	the

transformation	wave	function.

This	additional	term	spoils	the	local	phase	invariance,	which	can	then	be	restored	by	introducing	the	new	gauge

field	A .	The	gauge	transformation:

cancels	out	the	new	term.	This	new	gauge	field	is	simply	the	vector	potential	defining	the	electromagnetic	field.	A

different	choice	of	phase	at	each	point	can	be	accommodated	by	interpreting	A 	as	the	connection	relating	phases

at	different	points.	In	other	words,	the	choice	of	a	phase	function	λ(x)	will	not	affect	any	observable	quantity	as

long	as	the	gauge	transformation	for	A 	has	a	form	that	allows	the	phase	change	and	the	change	in	potential	to

cancel	each	other.	What	this	means	is	that	we	cannot	distinguish	between	the	effects	of	a	local	phase	change	and

the	effects	of	a	new	vector	field.

The	combination	of	the	additional	gradient	term	with	the	vector	field	A 	prescribes	the	form	of	the	interaction

between	matter	and	the	field	because	A 	provides	the	connections	between	phase	values	at	nearby	points.	The

phase	of	a	particle's	wave	function	can	be	identified	as	a	new	physical	degree	of	freedom	that	is	dependent	on

spacetime	position.	In	fact,	it	is	possible	to	show	that	from	the	conservation	of	electric	charge	one	can,	given

Noether's	theorem,	choose	a	symmetry,	and	the	requirement	that	it	be	local	forces	us	to	introduce	a	gauge	field,

which	turns	out	to	be	the	electromagnetic	field.	The	structure	of	this	field,	which	is	dictated	by	the	requirement	of

local	symmetry,	in	turn	dictates,	almost	uniquely,	the	form	of	the	interaction,	that	is,	the	precise	form	of	the	forces

on	the	charged	particle	and	the	way	in	which	the	electric-charge	current	density	serves	as	the	source	for	the

gauge	field.

In	Maxwell's	theory	the	basic	field	variables	are	the	strengths	of	the	electric	and	magnetic	fields,	which	may	be

described	in	terms	of	auxiliary	variables	(e.g.,	the	scalar	and	vector	potentials).	The	gauge	transformations	in	this

theory	consist	of	certain	alterations	in	the	values	of	those	potentials	that	do	not	result	in	a	change	of	the	electric

and	magnetic	fields.	This	gauge	invariance	is	preserved	in	quantum	electrodynamics	(QED)	where	the	phase

transformations	are	one-parameter	transformations	and	form	a	one-dimensional	Abelian	group	(meaning	that	any

two	transformations	commute)—in	this	case	the	U(1)	group	of	a	U(1)	gauge	symmetry.
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Symmetry	groups,	however,	are	more	than	simply	mathematizations	of	certain	kinds	of	transformations.	In	the	non-

Abelian	case	(non-commutative	transformations)	the	mathematical	structure	of	the	symmetry	group	determines	the

structure	of	the	gauge	field	and	the	form	of	the	interaction.	In	these	more	complicated	situations,	there	are	several

wave	functions	or	fields	transforming	together,	as	in	the	case	of	SU(2)	and	SU(3)	transformations,	which	involve

unitary	matrices	acting	on	multiplets. 	These	symmetries	are	internal	symmetries	and	typically	are	associated	with

families	of	identical	particles.	In	each	case	the	conserved	quantities	are	simply	the	quantum	numbers	that	label	the

members	of	the	multiplets	(such	as	isospin	and	color),	together	with	operators	that	induce	transitions	from	one

member	of	a	multiplet	to	another.	Hence,	the	operators	correspond,	on	the	one	hand,	to	the	conserved	dynamical

variables	(isospin,	etc.)	and,	on	the	other	hand,	to	the	group	of	transformations	of	the	symmetry	group	of	the

multiplets.

The	extension	of	gauge	invariance	beyond	electromagnetism	began	with	the	work	of	Yang	and	Mills	(1954)	who

generalized	it	to	the	conserved	quantity	isospin	(violated	in	electromagnetic	and	weak	interactions),	which	allows

the	proton	and	neutron	to	be	considered	as	two	states	of	the	same	particle.	Here	a	local	gauge	invariance	means

that	although	we	can,	in	one	location,	label	the	proton	as	the	“up”	state	of	isospin,	and	the	neutron	as	the	“down”

state,	the	up	state	need	not	be	the	same	at	another	location.	But	because	the	SU(2)	symmetry	group	that	governs

isospin	is	also	the	group	that	governs	rotations	in	a	three-dimensional	space,	the	“phase”	is	replaced	by	a	local

variable	that	specifies	the	direction	of	the	isospin.	However,	it	was	not	until	the	work	of	Schwinger	(1957)	that	any

significant	connection	was	made	between	the	weak	and	electromagnetic	forces.	Schwinger's	approach	was	to

begin	with	some	basic	principles	of	symmetry	and	field	theory,	and	go	on	to	develop	a	framework	for	fundamental

interactions	derived	from	that	fixed	structure.	As	we	saw	above,	in	QED	it	was	possible	to	show	that	from	the

conservation	of	electric	charge,	one	could,	on	the	basis	of	Noether's	theorem,	assume	the	existence	of	a

symmetry,	and	the	requirement	that	it	be	local	forces	one	to	introduce	a	gauge	field,	which	turns	out	to	be	just	the

electromagnetic	field.	The	symmetry	structure	of	the	gauge	field	dictates,	almost	uniquely,	the	form	of	the

interaction;	that	is,	the	precise	form	of	the	forces	on	the	charged	particle	and	the	way	in	which	the	electric	charge

current	density	serves	as	the	source	for	the	gauge	field.	The	question	was	how	to	extend	that	methodology

beyond	quantum	electrodynamics	to	embody	weak	interactions.

3.2	From	Mathematics	to	Physics

Because	of	the	mass	differences	between	the	weak	force	bosons	and	photons	a	different	kind	of	symmetry	was

required	if	electrodynamics	and	the	weak	interaction	were	to	be	unified	and	the	weak	and	electromagnetic

couplings	related.	Due	to	the	mass	problem,	it	was	thought	that	perhaps	only	partial	symmetries—invariance	of

only	part	of	the	Lagrangian	under	a	group	of	infinitesimal	transformations—could	relate	the	massive	bosons	to	the

massless	photon.	In	1961	Glashow	developed	a	model	based	on	the	SU(2)	x	U(1)	symmetry	group,	which	required

the	introduction	of	an	additional	neutral	boson	Z ,	which	couples	to	its	own	neutral	lepton	current	J .	By	properly

choosing	the	mass	terms	to	be	inserted	into	the	Lagrangian,	Glashow	was	able	to	show	that	the	singlet	neutral

boson	from	U(1)	and	the	neutral	member	of	the	SU(2)	triplet	would	mix	in	such	a	way	as	to	produce	a	massive

particle	B	(now	identified	as	Z )	and	a	massless	particle	that	was	identified	with	the	photon.	But,	in	order	to	retain

Lagrangian	invariance	gauge	theory	requires	the	introduction	of	only	massless	particles.	As	a	result	the	boson

masses	had	to	be	added	to	the	theory	by	hand,	making	the	models	phenomenologically	accurate	but	destroying

the	gauge	invariance	of	the	Lagrangian,	thereby	ruling	out	the	possibility	of	renormalization.	Although	gauge

theory	provided	a	powerful	tool	for	generating	an	electroweak	model,	unlike	electrodynamics,	one	could	not

reconcile	the	physical	demands	of	the	weak	force	for	the	existence	of	massive	particles	with	the	structural

demands	of	gauge	invariance.	Both	needed	to	be	accommodated	if	there	was	to	be	a	unified	theory,	yet	they	were

mutually	incompatible.

Hopes	of	achieving	a	true	synthesis	of	weak	and	electromagnetic	interactions	came	a	few	years	later	with	Steven

Weinberg's	(1967)	idea	that	one	could	understand	the	mass	problem	and	the	coupling	differences	of	the	different

interactions	by	supposing	that	the	symmetries	relating	the	two	interactions	were	exact	symmetries	of	the

Lagrangian	that	were	somehow	broken	by	the	vacuum.	These	ideas	originated	in	the	early	1960s	and	were

motivated	by	work	done	in	solid	state	physics	on	superconductivity.	But,	if	the	electroweak	and	the

electromagnetic	theory	were	truly	unified	and	mediated	by	the	same	kind	of	gauge	particles,	then	how	could	such

a	difference	in	the	masses	of	the	bosons	and	the	photons	exist?	In	order	for	the	electroweak	theory	to	work,	it	had

to	be	possible	for	the	gauge	particles	to	acquire	a	mass	in	a	way	that	would	preserve	gauge	invariance.
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The	answer	to	these	questions	was	provided	by	the	mechanism	of	spontaneous	symmetry	breaking.	From	work	in

solid	state	physics,	it	was	known	that	when	a	local	symmetry	is	spontaneously	broken	the	vector	particles	acquire

a	mass	through	a	phenomenon	that	came	to	be	known	as	the	Higgs	mechanism	(Higgs,	1964a&b).	This	principle	of

spontaneous	symmetry	breaking	implies	that	the	actual	symmetry	of	a	system	can	be	less	than	the	symmetry	of	its

underlying	physical	laws;	in	other	words,	the	Hamiltonian	and	commutation	relations	of	a	quantum	theory	would

possess	an	exact	symmetry	while	physically	the	system	(in	this	case	the	particle	physics	vacuum)	would	be

nonsymmetrical.	In	order	for	the	idea	to	have	any	merit	one	must	assume	that	the	vacuum	is	a	degenerate	state

(i.e.,	not	unique)	such	that	for	each	unsymmetrical	vacuum	state	there	are	others	of	the	same	minimal	energy	that

are	related	to	the	first	by	various	symmetry	transformations	that	preserve	the	invariance	of	physical	laws.	The

phenomena	observed	within	the	framework	of	this	unsymmetrical	vacuum	state	will	exhibit	the	broken	symmetry

even	in	the	way	that	the	physical	laws	appear	to	operate.	Although	there	is	no	evidence	that	the	vacuum	state	for

the	electroweak	theory	is	degenerate,	it	can	be	made	so	by	the	introduction	of	the	Higgs	mechanism,	which	is	an

additional	field	with	a	definite	but	arbitrary	orientation	in	the	isospin	vector	space.	The	orientation	breaks	the

symmetry	of	the	vacuum.

The	Higgs	field	(or	its	associated	particle	the	Higgs	boson)	is	really	a	complex	SU(2)	doublet	consisting	of	four	real

fields,	which	are	needed	to	transform	the	massless	gauge	fields	into	massive	ones.	A	massless	gauge	boson	like

the	photon	has	two	orthogonal	spin	components	transverse	to	the	direction	of	motion	while	massive	gauge	bosons

have	three	including	a	longitudinal	component	in	the	direction	of	motion.	In	the	electroweak	theory	the	W 	and

the	Z ,	which	are	the	carriers	of	the	weak	force,	absorb	three	of	the	four	Higgs	fields,	thereby	forming	their

longitudinal	spin	components	and	acquiring	a	mass.	The	remaining	neutral	Higgs	field	is	not	affected	and	should

therefore	be	observable	as	a	particle	in	its	own	right.	The	Higgs	field	breaks	the	symmetry	of	the	vacuum	by	having

a	preferred	direction	in	space,	but	the	symmetry	of	the	Lagrangian	remains	invariant.	So,	the	electroweak	gauge

theory	predicts	the	existence	of	four	gauge	quanta,	a	neutral	photon-like	object,	sometimes	referred	to	as	the	X

and	associated	with	the	U(1)	symmetry,	as	well	as	a	weak	isospin	triplet	W 	and	W 	associated	with	the	SU(2)

symmetry.	As	a	result	of	the	Higgs	symmetry	breaking	mechanisms	the	particles	W 	acquire	a	mass	and	the	X

and	W 	are	mixed	so	that	the	neutral	particles	one	sees	in	nature	are	really	two	different	linear	combinations	of

these	two.	One	of	these	neutral	particles,	the	Z ,	has	a	mass	while	the	other,	the	photon,	is	massless.	Since	the

masses	of	the	W 	and	Z 	are	governed	by	the	structure	of	the	Higgs	field	they	do	not	affect	the	basic	gauge

invariance	of	the	theory.	The	so-called	“weakness”	of	the	weak	interaction,	which	is	mediated	by	the	W 	and	the

Z ,	is	understood	as	a	consequence	of	the	masses	of	these	particles.

We	can	see	from	the	discussion	above	that	the	Higgs	phenomenon	plays	two	related	roles	in	the	theory.	It	explains

the	discrepancy	between	the	photon	and	the	intermediate	vector	boson	masses—the	photon	remains	massless

because	it	corresponds	to	the	unbroken	symmetry	subgroup	U(1)	associated	with	the	conservation	of	charge,

while	the	bosons	have	masses	because	they	correspond	to	SU(2)	symmetries	that	are	broken.	Second,	the

avoidance	of	an	explicit	mass	term	in	the	Lagrangian	allows	for	gauge	invariance	and	the	possibility	of

renormalizability.	With	this	mechanism	in	place	the	weak	and	electromagnetic	interactions	could	be	unified	under	a

larger	gauge	symmetry	group	that	resulted	from	the	product	of	the	SU(2)	group	that	governed	the	weak

interactions	and	the	U(1)	group	of	electrodynamics.

From	this	very	brief	sketch,	one	can	get	at	least	a	snapshot	of	the	role	played	by	the	formal,	structural	constraints

provided	by	gauge	theory/symmetry	in	the	development	of	the	electroweak	theory.	I	now	want	to	turn	to	the

specific	kind	of	unity	that	emerged	in	this	context.

The	point	I	want	to	emphasize	regarding	the	electroweak	unification	is	that	the	unity	achieved	was	largely

structural	rather	than	substantial	and	as	a	result	does	not	fit	with	the	ideal	of	reducing	elements	of	the	weak	and

electromagnetic	force	to	the	same	basic	entity.	In	the	case	of	electrodynamics,	the	generality	provided	by	the

Lagrangian	formalism	allowed	Maxwell	to	unify	electromagnetism	and	optics	without	providing	any	specific	details

about	how	the	electromagnetic	waves	were	produced	or	how	they	were	propagated	through	space.	However,	in

addition	to	the	structural	aspects	of	the	unification,	light	and	electromagnetic	waves	were	thought	to	be	identical;

hence	the	reductive	aspect	of	the	unification.	The	SU(2)	×	U(1)	gauge	theory	furnishes	a	similar	kind	of	structure;

it	specifies	the	form	of	the	interactions	between	the	weak	and	electromagnetic	forces	but	provides	no	causal

account	as	to	why	the	fields	must	be	unified.	In	this	case	both	the	electromagnetic	and	weak	forces	remain

essentially	distinct;	the	unity	that	is	supposedly	achieved	results	from	the	unique	way	in	which	these	forces

interact.	Hence,	with	respect	to	the	unifying	process	the	core	of	the	theory	is	really	the	representation	of	the
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interaction	or	mixing	of	the	various	fields.	Because	the	fields	remain	distinct,	the	theory	retains	two	distinct	coupling

constants,	q	associated	with	the	U(1)	electromagnetic	field	and	g	with	the	SU(2)	gauge	field.	In	order	to	make

specific	predictions	for	the	masses	of	the	W 	and	Z 	particles,	one	needs	to	know	the	value	for	the	Higgs	ground

state	|Ф |.	Unfortunately,	this	cannot	be	directly	calculated,	since	its	value	depends	explicitly	on	the	parameters	of

the	Higgs	potential	and	at	the	time	the	theory	was	formulated	little	was	known	about	the	properties	of	the	field.

In	order	to	rectify	the	problem,	the	coupling	constants	are	combined	into	a	single	parameter	known	as	the

Weinberg	angle	θ .	The	angle	is	defined	from	the	normalized	forms	of	A 	and	Z 	which	are	respectively:

The	mixing	of	the	A 	gauge	field	of	U(1)	and	the	new	neutral	gauge	field	 	is	interpreted	as	a	rotation	through	θ

i.e.,

By	relating	the	weak	coupling	constant	g	to	the	Fermi	coupling	constant	G	one	obviates	the	need	for	the	quantity	|

Ф |	(the	value	of	the	Higgs	ground	state).	The	masses	can	now	be	defined	in	the	following	way:

In	order	to	obtain	a	value	for	θ ,	one	needs	to	know	the	relative	sign	and	values	of	g	and	q;	the	problem	however

is	that	they	are	not	directly	measurable.	Instead	one	must	measure	the	interaction	rates	for	the	W 	and	Z

exchange	processes	and	then	extract	values	for	g,	q,	and	θ .	What	θ 	does	is	fix	the	ratio	of	U(1)	and	SU(2)

couplings,	and	in	order	for	the	theory	to	be	unified	θ 	must	be	the	same	for	all	processes.	Despite	this	rather

restrictive	condition,	the	theory	itself	does	not	provide	direct	values	for	the	Weinberg	angle	and	hence	does	not

furnish	a	full	account	of	how	the	fields	are	mixed	(i.e.,	the	degree	of	mixing	is	not	determined	by	the	theory).	More

important,	the	mixing	is	not	the	result	of	constraints	imposed	directly	by	gauge	theory	itself;	rather	it	ultimately

depends	on	the	assumption	that	leptons	can	be	classified	as	weak	isospin	doublets	governed	by	the	SU(2)

symmetry	group.	The	latter	requires	the	introduction	of	the	new	neutral	gauge	field	W 	in	order	to	complete	the

group	generators,	that	is,	a	field	corresponding	to	the	isospin	operator	τ.	This	is	the	field	that	combines	with	the

neutral	photon-	like	X 	to	produce	the	Z 	necessary	for	the	unity.

We	can	see	then	that	the	use	of	symmetries	to	categorize	various	kinds	of	particles	and	their	interaction	fields	is

much	more	than	simply	a	phenomenological	classification;	in	addition	it	allows	for	a	kind	of	particle	dynamics	to

emerge.	In	other	words,	the	symmetry	group	provides	the	foundation	for	the	locally	gauge-invariant	quantum	field

theory.	Hence,	given	the	assumption	about	isospin,	the	formal	restrictions	of	the	symmetry	groups	and	gauge

theory	can	be	deployed	in	order	to	produce	a	formal	model	showing	how	these	gauge	fields	could	be	unified.	The

crucial	feature	that	facilitates	this	interaction	is	the	non-Abelian	structure	of	the	group	rather	than	something

derivable	from	phenomenology	of	the	physics.	Although	the	Higgs	mechanism	is	a	crucial	part	of	the	physical

dynamics	of	the	theory	and	necessary	for	a	unified	picture	to	emerge,	the	framework	within	which	the	unification	is

realized	results	from	the	constraints	of	the	isospin	SU(2)	group	and	the	non-Abelian	structure	of	the	field.

To	summarize:	gauge	theory	serves	as	a	unifying	tool	by	specifying	the	form	for	the	strong,	weak,	and

electromagnetic	fields.	In	that	sense	it	functions	in	a	global	way	to	restrict	the	class	of	acceptable	theories	and	in	a

local	way	to	determine	specific	kinds	of	interactions,	producing	not	only	unified	theories	but	also	a	unified	method.

But	it	is	not	simply	the	presence	of	a	unifying	method	or	structure	that	is	required	for	theory	unification.	As	we	saw

in	with	electrodynamics,	the	displacement	current	was	the	crucial	theoretical	parameter	that	allowed	Maxwell	to

formulate	a	field	theoretic	account	of	electromagnetism	and	to	calculate	the	velocity	of	wave	propagation.	The

Higgs	mechanism	facilitates	the	unification	in	the	electroweak	theory	by	providing	the	symmetry-breaking

mechanism	that	creates	the	boson	masses;	however,	it	does	not	explain	the	mixing	of	the	fields.	That	mixing	was
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possible	through	the	identification	of	leptons	with	the	SU(2)	isospin	symmetry	group	and	represented	in	the

Weinberg	angle	θ .	Employing	gauge-theoretical	constraints,	one	could	then	generate	the	dynamics	of	an

electroweak	model	from	the	mathematical	framework	of	gauge	theory.

But	in	what	sense	does	this	mixing	represent	a	unification?	Because	of	the	neutral-current	interactions,	the	old

measure	of	electric	charge	given	by	Coulomb's	law	(which	supposedly	gives	the	total	force	between	electrons)

was	no	longer	applicable.	Owing	to	the	contribution	from	the	new	weak	interaction,	the	electromagnetic	potential	

	could	not	be	just	the	gauge	field	A 	but	had	to	be	a	linear	combination	of	the	U(1)	gauge	field	and	the	 	field

of	SU(2).	Hence,	the	mixing	was	necessary	if	the	electromagnetic	potential	was	to	have	a	physical	interpretation	in

the	new	theory.	So	although	the	two	interactions	are	integrated	under	a	framework	that	results	from	a	combination

of	their	independent	symmetry	groups,	there	is	a	genuine	unity,	not	merely	the	conjunction	of	two	theories.	A

reconceptualization	of	the	electromagnetic	potential	and	a	new	dynamics	emerged	from	the	mixing	of	the	fields.

Although	this	synthesis	retains	an	element	of	independence	for	each	domain,	it	also	yields	a	broader	theoretical

framework	within	which	their	integration	can	be	achieved.	So,	despite	the	lack	of	reduction,	the	electroweak	theory

nevertheless	provides	a	unified	account	of	the	two	fields.

4.	Problems	and	Prospects:	Electroweak	Unification	and	Beyond

As	we	noted	above,	the	crucial	parameter	in	the	electroweak	theory	is	the	Weinberg	angle,	or	as	it	is	sometimes

called,	the	weak	mixing	angle	but	its	value	is	not	predicted	from	within	the	theory	and	needs	to	be	extracted	from

parity-violating	neutral-current	experiments.	The	electroweak	theory	has	enjoyed	overwhelming	successes	with

predictions	holding	over	a	range	of	distances	from	10 	m	to	more	than	10 	m.	It	has	predicted	the	existence	and

properties	of	weak	neutral	current	interactions,	the	properties	of	the	gauge	bosons	W 	and	Z 	that	mediate

neutral	and	charge	current	interactions,	and	required	the	fourth	quark	flavor—charm.	The	recent	discovery	of	the

Higgs	boson	provides	the	missing	link	for	the	electroweak	theory	but	there	is	still	a	great	deal	left	unanswered.	With

a	large	amount	of	data	still	unanalysed,	questions	remain	as	to	whether	the	discovery	points	to	a	simple	Higgs

particle	or	a	more	complex	entity	in	a	larger	family	of	Higgs	particles.	The	standard	model	predicts	that	the	Higgs

boson	lasts	for	only	a	very	short	time	before	it	decays	into	other	well	known	particles.	These	decay	patterns	are

the	data	relevant	for	the	discovery.	The	decay	channels,	five	studied	by	CMS,	yielded	a	signal	with	statistical

significance	at	4.9	above	background.	The	combined	fit	to	the	two	most	sensitive	and	high	resolution	channels

(photos	and	leptons)	yielded	a	statistical	significance	of	5	sigma.	What	this	means	is	that	the	probability	of	the

background	alone	fluctuating	up	by	this	amount	or	more	is	about	one	in	three	million.	Further	data	are	required	to

measure	properties	like	the	decay	rates	in	various	channels	as	well	as	the	spin	and	parity.	These	will	determine

whether	the	observed	particle	is	the	Higgs	boson	as	predicted	by	the	standard	model,	a	more	complicated	version

of	it	or	the	result	of	new	physics	beyond	it.

Some	of	the	other	problems	facing	the	electroweak	theory	specifically	include	the	fact	that	it	accommodates	but

does	not	predict	or	explain	fermion	masses	and	mixings	(elementary	fermions	are	quarks	and	leptons	while

composite	fermions	are	baryons	that	include	protons	and	neutrons).	The	CKM	(Cabibbo-Kobayashi-Maskawa)

framework,	which	represents	quark	mixing	using	a	3	×	3	unitary	matrix,	describes	CP	violation	but	does	not	explain

its	origin. 	The	mass	of	the	neutrino,	which	is	implied	as	a	result	of	the	discovery	of	neutrino	flavor	mixing,	also

requires	an	extension	of	the	current	electroweak	theory,	since	specific	values	are	determined	by	Yukawa

couplings	of	fermions	to	the	Higgs	field	rather	than	being	set	by	the	theory	itself. 	There	are	several	other

problems	related	to	the	instability	of	the	Higgs	sector	to	large	radiative	corrections	as	well	as	the	lack	of	any

candidates	to	explain	the	cold	dark	matter	required	for	structure	formation	in	the	early	universe.	The	Higgs	boson,

however,	is	unlikely	to	provide	an	explanation	for	dark	matter	since	the	latter	must	be	stable	with	a	very	long

lifetime	and	the	Higgs	decays	very	rapidly.	The	favoured	explanation	is	the	least	massive	supersymmetric	particle

because	it	cannot	decay	any	further;	but,	despite	the	enormous	quantity	of	data	from	the	LHC	there	is	as	yet	no

evidence	for	the	existence	of	any	supersymetric	particles.	Many	of	these	issues	speak	to	the	incompleteness	of

the	Standard	Model	in	general	and	against	the	view	that	it	provides	a	unified	description	of	the	strong,	weak,	and

electromagnetic	forces.	But,	some	of	these	issues	are	also	related	to	the	connection	between	the	electroweak

theory	and	the	larger	context	of	the	Standard	Model.

For	example,	the	CP	violation	mentioned	above	is	one	such	problem.	Quantum	chromodynamics	(QCD)	does	not

seem	to	break	the	CP	symmetry	even	though	the	electroweak	theory	does.	Although	there	are	natural	terms	in	the
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QCD	Lagrangian	that	can	break	the	CP	symmetry,	experiments	do	not	indicate	any	CP	violation	in	the	QCD	sector.

One	of	the	reasons	the	CP	problem	is	troublesome	is	that	it	leaves	unanswered	the	question	of	why	the	universe

does	not	consist	of	equal	parts	matter	and	antimatter.	In	fact,	it	is	possible	to	show	that	one	of	the	conditions

required	for	the	current	imbalance	is	CP	violation	during	the	first	seconds	after	the	Big	Bang.	Other	explanations

require	the	imbalance	to	be	present	from	the	beginning,	which	is	far	less	plausible.	Although	the	violation	of	CP

symmetry	has	been	verified	in	the	case	of	the	weak	force,	it	only	accounts	for	a	small	portion	of	the	violation

required	to	explain	the	matter	in	the	universe.	The	fact	that	this	discrepancy	is	not	even	predicted	by	the	Standard

Model	suggests	a	rather	serious	gap	or	incompatibility	with	the	electroweak	sector.

And,	there	are	other	more	pressing	problems	for	electroweak	theory	itself.	In	addition	to	the	fermion	mass	problem,

there	are	also	the	mixing	angles	that	parameterize	the	discrepancies	between	neutrino	mass	eigenstates	and

those	in	the	quark	sector.	Although	the	Higgs	boson	may	be	responsible	for	fermion	masses,	there	is	nothing	in	the

electroweak	theory	that	can	or	will	determine	the	couplings	of	the	Higgs	particles	to	fermions;	and	in	that	sense	the

theory	is	seriously	incomplete.

Another	equally	serious	concern	is	the	gauge	hierarchy	problem,	which	refers	to	the	marked	difference	between

fundamental	parameters	like	masses	and	couplings	that	are	contained	in	the	Lagrangian	and	the	values	that	are

measured	experimentally.	Typically	the	latter	are	related	to	the	former	via	renormalization	but	in	many	cases	there

are	cancellations	between	the	fundamental	quantity	and	quantum	corrections	that	involve	short	distance	physics.

The	problem	is	that	very	often	the	details	of	physics	at	short	distances	are	largely	unknown.	More	specifically,	the

gauge	hierarchy	problem	relates	to	the	fact	that	the	weak	force	is	10 	times	stronger	than	gravity.	This

discrepancy	gives	rise	to	the	question	of	why	the	Higgs	boson	or	the	weak	scale	(at	100	GeV)	is	so	much	smaller

than	the	Planck	scale	(at	10 	GeV).	The	weak	scale	is	given	by	the	vacuum	expectation	value	of	the	Higgs,	VEV	=

246	GeV,	but	it	is	not	naturally	stable	under	radiative	corrections.	The	radiative	corrections	to	the	Higgs	mass,

which	result	from	its	couplings	to	gauge	bosons,	Yukawa	couplings	to	fermions,	and	its	self-couplings,	result	in	a

quadratic	sensitivity	to	the	ultraviolet	cutoff.	Hence,	if	the	Standard	Model	were	valid	up	to	the	Planck	scale,	then

m 	and	therefore	the	minimum	of	the	Higgs	potential	would	be	driven	to	the	Planck	scale	by	the	radiative

corrections.	To	avoid	this	one	has	to	adjust	the	Higgs	bare	mass	in	the	Standard	Model	Lagrangian	to	one	part	in

10 .	This	is	called	“unnatural	fine-tuning”	where	naturalness	is	defined	in	terms	of	the	magnitude	of	quantum

corrections	where	the	bare	value	and	the	quantum	correction	appear	to	have	an	unexpected	cancellation	that

gives	a	result	much	smaller	than	either	component.

The	issue	of	fine-tuning	is	important	here	because,	as	we	saw	above,	the	mass	of	the	Higgs	boson	is	not	given	by

the	theory	and	without	fine-tuning	the	mass	would	be	so	large	as	to	undermine	the	internal	consistency	of	the

electroweak	theory.	Hence,	the	question	becomes	whether	additions	to	the	Standard	Model	or	any	new	physics	will

still	require	fine-tuning.	The	answer	will	depend	on	what	further	data	from	the	LHC	will	reveal	about	the	nature	of	the

Higgs	boson	and	what	additional	particles	might	be	discovered.	Implicit	in	the	reasoning	that	leads	to	the	fine-tuning

is	the	unsubstantiated	assumption	that	very	little	physics	other	than	renormalization	group	scaling	exists	between

the	Higgs	scale	and	the	grand	unification	energy	which	are	separated	by	roughly	11	orders	of	magnitude	(known

as	the	“big	dessert”	assumption).	If	this	is	true,	then	it	would	seem	that	fine-tuning	is	something	we	need	to	live

with,	at	least	for	the	time	being. 	Of	course,	depending	on	the	specific	findings	at	the	Higgs	scale	the	need	for

fine-tuning	may	very	well	be	obviated.

Another	instance	of	the	hierarchy	problem,	and	one	that	is	a	more	serious	violation	of	the	naturalness	requirement,

involves	the	cosmological	constant.	Observations	of	an	accelerating	universe	imply	the	existence	of	a	small	but

nonzero	cosmological	constant.	But,	the	essential	fact	is	that	the	observed	vacuum	energy	density	must	be

extremely	small—a	few	milli-electronvolts.	However,	if	we	take	v,	the	Higgs	potential	which	is	roughly	246	GeV,	and

insert	the	current	lower	bound	on	m ,	the	Higgs	mass	which	is	126	GeV,	then	the	Higgs	field	contribution	to	the

vacuum	energy	density	is	roughly	54	orders	of	magnitude	greater	than	the	upper	bound	inferred	from	the

cosmological	constant.	If	there	are	other,	heavier	Higgs	fields,	the	problem	is	even	worse.

It	seems	clear	from	our	discussion	that	the	often	cited	problem	of	trying	to	adapt	the	quantum	field	theoretic

framework	to	general	relativity	is	simply	one	of	several	problems	facing	the	Standard	Model.	Indeed,	many	of	the

pressing	theoretical	difficulties	are	generated	from	within	the	structure	of	the	theory	itself.	The	task	of	finding	the

Higgs	particle	is	intimately	connected	with	the	possibility	of	discovering	“new	physics”	beyond	the	Standard	Model

that	would	explain	or	rectify	the	origins	of	the	hierarchy	problem,	among	others.	Given	the	list	of	unanswered
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questions	that	arise	from	the	electroweak	theory	and	its	connection	with	the	Standard	Model,	it	is	reasonably	clear

that	nothing	like	a	unified	understanding	of	the	electromagnetic,	weak,	and	strong	forces	is	available	from	our

present	theories.	So,	while	the	discovery	of	the	Higgs	boson	has	verified	an	important	part	of	the	electroweak

theory,	it	will	not	necessarily	solve	the	outstanding	internal	problems	facing	the	theory.

In	order	for	physics	beyond	the	Standard	Model	to	regulate	the	Higgs	mass,	and	restore	naturalness,	its	energy

scale	must	be	around	the	TeV.	Most	of	the	alternative	theories	that	offer	solutions	to	the	problem	imply	that	new

physics	will	be	discovered	at	the	LHC,	the	most	popular	candidate	being	weak	scale	supersymmetry.

Supersymmetry	(SUSY)	relates	particles	of	one	spin	to	other	“superpartners”	that	differ	by	half	a	unit.	In	a	theory

with	an	unbroken	supersymmetry,	every	type	of	boson	has	a	corresponding	type	of	fermion	with	the	same	mass

and	internal	quantum	numbers	and	vice	versa.	Because	the	superpartners	of	the	Standard	Model	particles	have

not	been	observed,	if	supersymmetry	exists	it	must	be	broken	thereby	allowing	the	superparticles	to	be	heavier

than	their	corresponding	Standard	Model	particles.	There	are	currently	many	models	proposed	to	explain	SUSY

breaking,	as	well	as	models	that	incorporate	weakly	interacting	massive	particles	that	serve	as	candidates	for	dark

matter.

The	other	bonus	supplied	by	supersymmetry	is	its	ability	to	unify	the	different	coupling	constants	at	a	high-energy

scale.	Currently,	within	the	framework	of	the	Standard	Model,	there	is	no	single	energy	at	which	they	all	become

equal.	However,	incorporating	supersymmetry	changes	the	rate	at	which	the	couplings	vary	with	energy,	allowing

them	to	be	unified	at	a	single	point.	If	supersymmetry	exists	close	to	the	TeV	scale,	it	allows	for	a	solution	of	the

hierarchy	problem	because	the	superpartners	of	the	Standard	Model	particles,	having	different	statistics,	contribute

to	the	radiative	corrections	to	the	Higgs	mass	with	the	opposite	sign.	In	the	limit	of	exact	supersymmetry,	all

corrections	to	m 	cancel.

In	the	quest	to	unify	the	four	forces	into	a	single	fundamental	framework—a	TOE—Supersymmetry	also	includes	a

theory	of	quantum	gravity	that	would	unite	general	relativity	and	the	Standard	Model.	Currently,	the	two

predominant	approaches	to	quantum	gravity	are	string	theory	and	loop	quantum	gravity	(LQG).	For	string	theory	to

be	consistent,	supersymmetry	appears	to	be	required	at	some	level	(although	it	may	be	a	strongly	broken

symmetry). 	Loop	quantum	gravity,	in	its	current	formulation,	predicts	no	additional	spatial	dimensions	as	in	the

case	of	string	theory	or	anything	else	about	particle	physics.	Nor	does	LQG	require	any	assumptions	about

supersymmetry. 	Experimental	evidence	at	the	LHC	confirming	supersymmetry	in	the	form	of	supersymmetric

particles	could	provide	support	for	string	theory,	since	supersymmetry	is	one	of	its	required	components.	However,

the	outlook	isn't	bright.	Consistency	of	the	standard	model	demanded	that	the	Higgs	could	not	be	too	massive	but

because	the	superpartners	(particles	predicted	by	supersymmetry)	are	supposed	to	be	only	slightly	heavier	than

the	mass	of	the	Higgs,	it	was	assumed	that	once	the	Higgs	was	found	the	superpartners	would	also	be	in	evidence.

Moreover,	they	were	supposed	to	be	produced	in	much	greater	numbers.	Because	none	has	been	found	a

possible	explanation	is	that	their	mass	is	an	order	of	magnitude	heavier	than	the	Higgs,	making	them	currently

inaccessible;	but	that	value	is	inconsistent	with	the	standard	model	account.	Hence,	many	versions	of	string	theory

that	predict	certain	low	mass	superpartners	will	need	to	be	significantly	revised.

As	was	the	case	with	Maxwell's	electrodynamics	at	the	time	of	its	construction,	the	electroweak	theory	and	the

Standard	Model	in	general	are	by	no	means	free	of	theoretical	difficulties.	The	experiments	at	the	Large	Hadron

Collider	in	CERN	will	probe	the	electroweak	symmetry	breaking	sector	to	determine	whether	the	properties	of	the

newly	discovered	particle	are	consistent	with	those	predicted	for	the	standard	model	Higgs	boson.	Although	the

electroweak	theory	successfully	unifies	the	weak	and	electromagnetic	fields,	the	broader	theoretical	implications

create	significant	problems	that	serve	to	undermine	its	ability	to	furnish	a	theoretically	coherent	account,	that	is,

one	that	is	consistent	with	other	well-established	theoretical	claims	in	particle	physics	and	cosmology.

Consequently,	despite	its	unifying	power	its	overall	epistemic	status	is	not	wholly	unproblematic.

5.	Effective	Field	Theories,	Renormalization,	and	a	New	Type	of	Unification

As	we	have	seen	above,	much	of	what	falls	under	the	title	“unification”	in	high-energy	physics	involves	a

synthesis	under	the	product	of	different	symmetry	groups	rather	than	the	kind	of	reductive	unity	characteristic	of

Newtonian	mechanics	and	electrodynamics.	More	generally,	the	failure	of	the	unification/reduction	strategy	in

particle	physics	has	given	way	to	the	effective	field	theory	(EFT)	program	where	the	“theory”	incorporates	only	the
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particles	that	are	important	for	the	energy	levels	or	distance	scales	being	investigated.	Because	the	theory	is	valid

only	below	the	masses	of	the	heavy	particles,	it	must	be	superseded	by	another	effective	theory	on	that	energy

scale	or	a	complete	fundamental	theory.	The	predominance	of	effective	theories	is	sometimes	seen	as	evidence

against	reduction	and	the	goal	of	unification	but	many,	including	Weinberg,	claim	EFTs	can	be	interpreted	as	simply

low-energy	approximations	to	a	more	fundamental	theory	(e.g.,	string	theory)	thereby	allowing	one	to	embrace

EFTs	while	remaining	loyal	to	the	reductivist/unification	goal.	The	alternative	involves	the	“tower”	of	EFTs,	where

there	may	be	no	end	to	the	process,	just	more	and	more	scales	as	the	energies	get	higher.	Moreover,	the	lack	of

experimental	evidence	and	difficulties	associated	with	unification	that	necessitate	the	use	of	EFTs	may	no	longer

be	an	issue	once	the	LHC	starts	producing	sufficient	data.

Regardless	of	the	future	output	from	the	LHC,	philosophical	questions	arise	concerning	the	epistemic	and

ontological	status	of	unity	given	the	theoretical	problems	mentioned	above	and	the	prevalence	of	EFTs	in	many

other	areas	of	physics	besides	high	energy.	An	examination	of	the	evidence	from	both	experiment	and	theorizing

suggests	the	following	characteristics	of	unity:	it	is	something	that	can	be	achieved	in	certain	local	contexts,	it	is

characterizable	in	different	ways,	but	cannot	be	extended	to	a	“unity	of	nature”	that	is	systematically	defined.

None	of	this	speaks	against	the	possibility	of	grand	unification	but	the	question	that	we,	as	philosophers,	need	to

address	is	how	to	interpret	the	evidence	at	hand,	particularly	the	extensive	role	of	EFTs.	Several	authors	have

contributed	to	this	debate	including	Hartmann	(2001),	who	claims	that	good	scientific	research	can	be

characterized	by	a	fruitful	interaction	between	fundamental	theories,	phenomenological	models,	and	effective	field

theories.	All	of	them	have	their	appropriate	functions	in	the	research	process,	and	all	of	them	are	indispensable,

complementing	each	other	and	hanging	together	in	a	coherent	way.	Cao	and	Schweber	(1993)	take	a	more	radical

approach,	claiming	that	the	current	situation	is	evidence	for	a	pluralism	in	theoretical	ontology,	antifoundationalism

in	epistemology,	and	antireductionism	in	methodology.

But	what	exactly	are	the	implications	of	these	claims	and	are	they	borne	out	by	the	evidence?	Consider,	for

instance,	methodological	antireductionism	and	pluralistic	ontologies;	no	one	would	deny	that	low	and	high-energy

domains	involve	not	only	different	kinds	of	phenomena	but	also	different	methodologies	in	the	sense	that	the

reductionism	inherent	in	the	search	for	fundamental	theories	has	been	largely	unsuccessful	in	treating	many

phenomena	in	the	low-energy	domain.	While	recognizing	that	low	and	high-energy	domains	have	rather	different

goals	and	require	different	techniques,	it	is	important	to	note	that	they	also	both	make	use	of	effective	theories	and

renormalization	group	(RG)	methods.	In	that	sense,	there	is	a	unity	of	method,	especially	where	the	latter	is

concerned.	But	that	in	itself	is	not	philosophically	interesting	unless	we	can	point	to	reasons	why	the	method

should	work	so	well	in	two	rather	disparate	domains.	In	other	words,	is	there	some	other	sense	of	unity	in	physics

that	accounts	for	the	success	of	RG	methods?

Before	addressing	that	question,	it	is	important	to	note	that	the	development	of	RG	methods	also	revealed	a	rather

different	kind	of	unity	that	been	previously	inexplicable,	namely,	the	way	that	different	phenomena	such	as	liquids

and	magnets	exhibit	the	same	type	of	behavior	near	critical	points	regardless	of	differences	in	their	microstructure.

These	phenomena	are	grouped	together	into	universality	classes	and	share	the	same	critical	exponents—

parameters	that	characterize	phase	transitions.	These	critical	exponents	at,	for	example,	the	liquid-gas	transition

are	independent	of	the	chemical	composition	of	the	fluid.	The	predictions	of	universal	behavior	based	on	RG

methods	result	from	the	fact	that	thermodynamic	properties	of	a	system	near	a	phase	transition	depend	only	on	a

small	number	of	features,	such	as	dimensionality	and	symmetry,	and	are	insensitive	to	the	underlying	microscopic

properties	of	the	system.	Although	this	kind	of	unity	among	different	kinds	of	phenomena	is	quite	distinct	from	the

unification	of	theories	in	high-energy	physics,	in	some	way	the	goals	are	similar—explaining	why	seemingly

different	phenomena	exhibit	the	same	type	of	behavior. 	I	will	say	more	about	this	below	but	first	let	me	turn	to	the

more	general	methodological	issues	of	unification	as	they	arise	with	RG.

The	first	systematic	use	of	the	renormalization	group	in	quantum	field	theory	was	by	Gell-Mann	and	Low	(1954).	A

consequence	of	their	approach	was	that	quantum	electrodynamics	could	exhibit	a	simple	scaling	behavior	at	small

distances.	In	other	words,	quantum	field	theory	has	a	scale	invariance	that	is	broken	by	particle	masses,	but	these

masses	are	negligible	at	high	energies	or	short	distances	provided	one	renormalizes	in	the	appropriate	way.	In

statistical	physics	Kadanoff	(1966)	developed	the	basis	for	an	application	of	RG	to	thermodynamic	systems	near

critical	point.	This	picture	also	led	to	certain	scaling	equations	for	the	correlation	functions	used	in	the	statistical

description,	a	method	that	was	refined	and	extended	by	Wilson	(1971).	With	respect	to	the	unification	issue	two

different	questions	arise.	First:	What,	if	anything,	is	the	unifying	thread	that	connects	the	different	RG	methods	and
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why	can	we	use	RG	to	describe	very	different	kinds	of	phenomena?

In	some	sense	this	question	involves	two	parts:	the	first	concerns	the	different	mathematical	techniques	with	an

eye	to	articulating	a	common	ground	that	will	underwrite	the	use	of	RG	in	both	fields.	Once	the	different	techniques

have	been	compared	the	question	is	whether	there	is	anything	about	the	method	itself	that	facilitates	its	use	in

different	domains.	In	other	words,	once	we	have	illustrated	the	similarities	between	the	quantum	field	theoretic

approach	and	that	used	in	statistical	physics,	will	that	reveal	a	unity	of	method	in	the	two	domains?	That	brings	us

to	the	second	question:	Is	there	anything	common	to	the	phenomena	themselves	such	that	they	can	all	be	treated

using	the	RG	approach?

It	is	important	to	keep	in	mind	here	that	I	am	not	simply	assuming	that	because	we	can	use	the	RG	approach	as	a

unifying	methodology	it	also	unifies	phenomena	in	a	way	that	shows	them	to	be	similar.	Rather,	a	proper	answer	to

the	second	question	involves	seeing	what	similarities	might	be	exhibited	between	statistical	and	field	theoretic

phenomena	such	that	they	can	both	be	successfully	treated	using	RG	techniques.

There	is	a	brief	answer	to	the	first	question	which	can	then	be	spelled	out	in	greater	detail,	but	for	our	purposes

here	I	will	outline	just	the	main	point.	In	order	to	do	that	I	first	need	to	say	a	couple	of	things	about	the	basic	idea

behind	the	RG	approach.	Initially	one	can	think	of	QFT	and	statistical	physics	as	having	similar	kinds	of	peculiarities

that	give	rise	to	certain	types	of	problems	(e.g.,	many	degrees	of	freedom,	fluctuations,	and	diverse	spatial	and

temporal	scales).	The	RG	framework	is	significant	in	its	ability	to	link	physical	behavior	across	different	scales	and

in	cases	where	fluctuations	on	many	different	scales	interact.	Hence,	it	becomes	crucial	for	treating	asymptotic

behavior	at	very	high	(or	in	massless	theories	very	low)	energies	(even	where	the	coupling	constants	at	the

relevant	scale	are	too	large	for	perturbation	theory).	In	field	theory	when	bare	couplings	and	fields	are	replaced

with	renormalized	ones	defined	at	a	characteristic	energy	scale	μ	the	integrals	over	virtual	momenta	will	be	cut	off

at	energy	and	momentum	scales	of	order	μ.	As	we	change	μ	we	are	in	effect	changing	the	scope	of	the	degrees	of

freedom	in	the	calculations.	So,	to	avoid	large	logarithms	take	μ	to	be	the	order	of	the	energy	E	that	is	relevant	to

the	process	under	investigation.	In	other	words,	the	problem	is	broken	down	into	a	sequence	of	sub-problems	with

each	one	involving	only	a	few	length	scales.	Each	one	has	a	characteristic	length	and	you	get	rid	of	the	degrees

of	freedom	you	do	not	need.

Reducing	the	degrees	of	freedom	gives	you	a	sequence	of	corresponding	Hamiltonians,	which	can	be	pictured	as

a	trajectory	in	a	space	spanned	by	the	system	parameters	(temperature,	external	fields,	and	coupling	constants).

So	the	RG	gives	us	a	transformation	that	looks	like	this:	(1)

where	H	is	the	original	Hamiltonian	with	N	degrees	of	freedom.	A	wide	choice	of	operators	R	is	possible.	Not	only	is

there	momentum	or	Fourier	space	methods,	which	are	usually	associated	with	field	theory,	but	also	what	is	termed

real	space	renormalization	used	in	statistical	physics	(cases	where	there	is	a	definite	lattice).	The	initial	version,

the	Gell-Mann/Low	formulation,	involved	the	momentum	space	approach	and	hinged	on	the	degree	of	arbitrariness

in	the	renormalization	procedure.	They	essentially	reformulated	and	renormalized	perturbation	theory	in	terms	of	a

cutoff-dependent	coupling	constant	e(Λ).	For	example,	e,	measured	in	classical	experiments	is	a	property	of	the

very	long	distance	behavior	of	QED	(whereas	the	natural	scale	is	the	Compton	wavelength	of	the	electron,	∼10

cm).	G-M/L	showed	that	a	family	of	alternative	parameters	e 	could	be	introduced,	any	one	of	which	could	be	used

in	place	of	e.	The	parameter	e 	is	related	to	the	behavior	of	QED	at	an	arbitrary	momentum	scale	λ	instead	of	the

low	momenta	for	which	e	is	appropriate.	In	other	words,	you	can	change	the	renormalization	point	freely	in	a	QFT

and	the	physics	will	not	be	affected.	Introducing	a	sliding	renormalization	scale	effectively	suppresses	the	low-

energy	degrees	of	freedom.

The	real	space	approach	is	linked	to	the	Wilson-Kadanoff	method.	Kadanoff's	account	of	scaling	relations	involves

a	lattice	of	interacting	spins	(ferromagnetic	transition)	and	transformations	from	a	site	lattice	with	the	Hamiltonian

H (S)	to	a	block	lattice	with	Hamiltonian	H (S).	Each	block	is	considered	as	a	new	basic	entity.	One	then

calculates	the	effective	interactions	between	them	and	in	this	way	constructs	a	family	of	corresponding

Hamiltonians.	If	one	starts	from	a	lattice	model	of	lattice	size	a,	one	would	sum	over	degrees	of	freedom	at	size	a

while	maintaining	their	average	on	the	sub-lattice	of	size	2a	fixed.	Starting	from	a	Hamiltonian	H (S)	on	the	initial

lattice,	one	would	generate	an	effective	Hamiltonian	H (S)	on	the	lattice	of	double	spacing.	This	transformation	is

repeated	as	long	as	the	lattice	spacing	remains	small	compared	to	the	correlation	length.	The	key	idea	is	that	the
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transition	from	H (S)	to	H (S)	can	be	regarded	as	a	rule	for	obtaining	the	parameters	of	H (S)	from	those	of	H (S).

The	process	can	be	repeated	with	the	lattice	of	small	blocks	being	treated	as	a	site	lattice	for	a	lattice	of	larger

blocks.

Close	to	critical	point	the	correlation	length	(the	distance	over	which	the	fluctuations	of	one	microscopic	variable

are	associated	with	another)	far	exceeds	the	lattice	constant	a,	which	is	the	difference	between	neighboring	spins.

As	we	move	from	small	to	larger	block	lattices	we	gradually	exclude	the	small	scale	degrees	of	freedom	by

averaging	out	through	a	process	of	coarse	graining.	So,	for	each	new	block	lattice	one	has	to	construct	effective

interactions	and	find	their	connection	with	the	interactions	of	the	previous	lattice.	What	Wilson	did	was	show	how

the	coupling	constants	at	different	length	scales	could	be	computed,	how	critical	components	could	be	estimated

and	hence	how	to	understand	universality,	which	follows	from	the	fact	that	the	process	can	be	iterated	(i.e.,

universal	properties	follow	from	the	limiting	behavior	of	such	iterative	processes). 	I	will	have	more	to	say	about

these	processes	in	answer	to	question	(2)	below.

Initially,	this	looks	like	one	is	doing	very	different	things;	in	the	context	of	critical	phenomena	one	is	interested	only

in	long	distance	not	short	distance	behavior.	In	the	case	of	QFT,	the	renormalization	scheme	is	used	to	provide	an

ultraviolet	cutoff	while	in	critical	behavior	the	very	short	wave	numbers	are	integrated	out.	Moreover,	why	should

scale	invariance	of	the	sort	found	in	QFT	be	important	in	cases	of	phase	transitions?	To	answer	these	questions	we

can	think	of	the	similarities	in	the	following	way:	in	the	K-W	version	the	grouping	together	of	the	variables	referring

to	different	degrees	of	freedom	induces	a	transformation	of	the	statistical	ensemble	describing	the	thermodynamic

system.	Or,	one	can	argue	in	terms	of	a	transformation	of	the	Hamiltonian.	Regardless	of	the	notation,	what	we	are

interested	in	is	the	successive	applications	of	the	transformation	that	allow	us	to	probe	the	system	over	large

distances.	In	the	field	theoretic	case,	we	do	not	change	the	“statistical	ensemble”	but	the	stochastic	variables	do

undergo	a	local	transformation	whereby	one	can	probe	the	region	of	large	values	of	the	fluctuating	variables.

Using	the	RG	equations,	one	can	take	this	to	be	formally	equivalent	to	an	analysis	of	the	system	over	large

distances.

This	formal	similarity	also	provides	some	clues	to	why	RG	can	be	successfully	applied	to	such	diverse	phenomena.

But	here	I	think	we	need	to	look	more	closely	at	what	exactly	the	RG	method	does.	In	statistical	physics	we

distinguish	between	two	phases	by	defining	an	order	parameter	that	has	a	nonzero	value	in	the	ordered	phase	and

zero	in	the	disordered	phase	(high	temperature).	In	a	ferromagnetic	transition	the	order	parameter	is	homogenous

magnetization.	A	nonzero	value	for	the	order	parameter	corresponds	to	symmetry	breaking	(here,	rotational

symmetry).	In	liquid-gas	transition	the	order	parameter	is	defined	in	terms	of	difference	in	density.	In	the	vicinity	of

a	transition,	a	system	has	fluctuations	for	which	one	can	define	a	correlation	length	ξ	that	increases	as	T	→	Tc

(provided	all	other	parameters	are	fixed).	If	the	correlation	length	diverges	as	T	→	Tc,	then	the	fluctuations	become

completely	dominant	and	we	are	left	without	a	characteristic	length	scale	because	all	lengths	are	equally

important.	Reducing	the	number	of	degrees	of	freedom	with	RG	amounts	to	establishing	a	correspondence

between	one	problem	having	a	given	correlation	length	and	another	whose	length	is	smaller	by	a	certain	factor.

So,	we	get	a	very	concrete	model	(hence	real	space	renormalization)	for	reducing	degrees	of	freedom.

In	cases	of	relativistic	quantum	field	theories	like	QED,	the	theory	works	well	for	the	electron	because	at	long

distances	there	is	simply	not	enough	energy	to	observe	the	behavior	of	other	charged	particles;	that	is,	they	are

present	only	at	distances	very	small	compared	to	the	electron's	Compton	wavelength.	By	choosing	the	appropriate

renormalization	scale,	the	logarithms	that	appear	in	perturbation	theory	will	be	minimized	because	all	the	momenta

will	be	of	the	order	of	the	chosen	scale.	In	other	words,	one	introduces	an	upper	limit	Λ	on	the	allowed	momentum

equivalent	to	a	microscopic	length	scale	h/2π	Λc.	We	can	think	of	a	change	in	each	of	these	scales	as	analogous

to	a	phase	transition	where	the	different	phases	depend	on	the	values	of	the	parameters,	with	the	RG	allowing	us	to

connect	each	of	these	different	scales.	So,	regardless	of	whether	you	are	integrating	out	very	short	wave	numbers

or	using	it	to	provide	an	ultraviolet	cutoff,	the	effect	is	the	same	in	that	you	are	getting	the	right	degrees	of	freedom

for	the	problem	at	hand. 	Hence,	because	the	formal	nature	of	the	problems	is	similar	in	these	two	domains,	one

can	see	why	the	RG	method	is	so	successful	in	dealing	with	different	phenomena.	In	the	momentum	space	or	field

theory	approach,	we	can	think	of	the	high-momentum	variables	as	corresponding	to	short-range	fluctuations

integrated	out.	And	in	the	K-W	version	the	reciprocal	of	a	(the	lattice	constant	which	is	the	difference	between

neighboring	spins)	acts	as	a	cutoff	parameter	for	large	momenta;	that	is,	it	eliminates	short	wave	length	fluctuations

with	wavenumbers	close	to	the	cutoff	parameter.

a 2a 2a a
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The	notion	that	the	RG	equations	and	EFTs	support	ontological	pluralism,	as	suggested	by	Cao	and	Schweber,	is

directly	connected	to	the	success	of	the	decoupling	theorem	(Appelquist	and	Carazzone	1975).	In	simple	terms	the

theorem	states	that	if	one	has	a	renormalizable	theory	where	some	fields	have	much	larger	masses	compared	with

others,	a	renormalization	procedure	can	be	found	enabling	the	heavy	particles	to	decouple	from	the	low-energy

domain.	The	low-energy	physics	is	then	described	by	an	effective	theory	that	deals	only	with	the	particles	that	are

important	for	the	energy	level	being	considered.	Using	the	RG	equations,	one	can	delete	the	heavy	fields	from	the

composite	system	and	redefine	the	coupling	constants	and	masses.	However,	what	is	significant	here	is	that	the

decoupling	is,	to	some	extent,	only	partial.	In	some	cases	the	heavy	particles	produce	renormalization	effects	but

are	suppressed	by	a	power	of	the	relevant	experimental	energy	divided	by	a	heavy	mass	(the	fundamental

energy).	In	that	sense	the	cutoffs	represented	by	the	heavy	particles	define	the	domain	in	which	the	EFT	is

applicable,	that	is,	the	process	is	mass	dependent.

But	what	about	unification?	As	we	saw	above,	properties	near	critical	point	are	determined	primarily	by	the

correlation	length	for	fluctuations	in	the	order	parameter	(i.e.	blocks	of	spins	within	a	correlation	length	of	each

other	will	be	coherently	magnetized).	The	correlation	length	diverges	on	approaching	critical	point	but	using	the

RG	equations	to	reduce	the	degrees	of	freedom	is	in	effect	reducing	the	correlation	length.	As	the	process	is

iterated	the	Hamiltonian	becomes	more	and	more	insensitive	to	what	happens	on	smaller	length	scales.	These

ideas	are	important	for	defining	the	notion	of	universality	mentioned	above—the	similar	behavior	in	different	kinds

of	systems	in	the	neighborhood	of	critical	point.	An	instance	of	this	is	the	wide	variety	of	liquid-vapor	systems

whose	correlation	lengths	appear	to	diverge	in	precisely	the	same	way	as	ferromagnets.	The	systems	form	a

“universality	class”	that	is	determined	primarily	by	the	nature	of	the	order	parameter.	The	behavior	of

thermodynamic	parameters	near	critical	point	is	also	characterized	by	what	are	called	critical	indices.	Phase

transitions	with	the	same	set	of	critical	indices	are	said	to	belong	to	the	same	universality	class.	It	is	important	to

point	out	that	this	is	not	simply	a	case	of	sharing	the	same	exponents	in	the	way	that	gravitation	and

electromagnetism	both	obey	an	inverse	square	law,	(exponent	-2);	that	does	not	show	a	unity	between	the	forces.

A	correspondence	of	exponents	whose	values	are	fractions	like	.63	provides	evidence	that	the	microstructure	is

unimportant.	In	that	sense	the	unity	among	these	phenomena	has	nothing	to	do	with	similarity	at	the	level	of

constituent	properties	as	in	the	case	of	unification	via	reduction.

One	of	the	crucial	features	of	Wilson's	work	was	that	it	showed	that	in	the	long	wave-length/large	space-scale	limit

the	scaling	process	leads	to	a	fixed	point	when	the	system	is	at	a	critical	point.	The	properties	of	this	fixed	point

determine	the	critical	exponents	that	characterize	the	fluctuations	at	the	critical	point.	The	same	fixed	point

interactions	can	describe	a	number	of	different	types	of	systems.	RG	shows	that	different	kinds	of	transitions	have

the	same	critical	exponents	and	can	be	understood	in	terms	of	the	same	fixed-point	interaction	that	describes	all

these	systems.	What	the	fixed	points	do	is	determine	the	kinds	of	cooperative	behavior	that	are	possible.	So,	the

important	point	here	is	not	just	the	elimination	of	irrelevant	degrees	of	freedom	but	also	the	existence	of

cooperative	behavior	and	its	relation	to	the	order	parameter	(symmetry	breaking)	that	characterizes	the	different

kinds	of	systems.

What	the	renormalization	group	equations	show	is	that	phenomena	at	critical	points	have	an	underlying	order.

Indeed	what	makes	the	behavior	of	critical	point	phenomena	predictable,	even	in	a	limited	way,	is	the	existence	of

certain	scaling	properties	that	exhibit	“universal”	behavior.	The	problem	of	calculating	the	critical	indices	for	these

different	systems	was	simplified	by	using	the	renormalization	group	because	it	shows	us	that	the	different	kinds	of

transitions	such	as	liquid–gas,	magnetic,	alloy,	and	so	on	that	have	the	same	critical	exponents	experimentally	can

be	understood	in	terms	of	the	same	fixed-point	interaction	that	describes	all	these	systems.	In	other	words,	the	RG

equations	provide	a	mathematical	framework	that	shows	how	and	why	these	phenomena	are	related	to	each	other.

While	the	notion	of	unification	defined	here	is	in	terms	of	universality,	the	final	question	remains	to	be	answered,

namely,	whether	there	is	some	notion	of	unification	based	on	a	connection	between	the	phenomena	in	QFT	and

condensed	matter	physics	that	is	elucidated	via	the	renormalization	group	techniques.	One	possibility	is	to	think	of

gauge	theories	characteristic	of	QFT	as	exhibiting	different	phases	depending	on	the	value	of	the	parameters.

Each	phase	is	associated	with	a	symmetry	breaking	in	the	same	way	that	phase	change	in	statistical	physics	is

associated	with	the	order	parameter.	In	statistical	physics	nature	presents	us	with	a	microscopic	length	scale.

Cooperative	phenomena	near	a	critical	point	create	a	correlation	length	and	in	the	limit	of	the	critical	point	the	ratio

of	these	two	lengths	tends	to	∞.	In	QFT	we	introduce	an	upper	limit	Δ	on	the	allowed	momentum	defined	in	terms	of

a	microscopic	length	scale	h/2πΔc.	The	real	physics	is	recovered	in	the	limit	in	which	the	artificial	scale	is	small
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compared	to	the	Compton	wavelength	of	the	relevant	particles.	The	ratios	of	the	two	length	scales	Δ/m	are	tuned

toward	infinity.	In	that	sense	all	relativistic	QFTs	describe	critical	points	with	associated	fluctuations	on	arbitrarily

many	length	scales	(Weinberg,	1983).	And,	to	that	extent	we	can	think	of	them	together	with	those	in	condensed

matter	as	exhibiting	a	kind	of	generic	structure;	a	structure	that	is	made	more	explicit	as	a	result	of	the	application

of	RG	techniques.	What	RG	does	is	expose	physical	structural	similarities	in	the	phenomena	it	treats.

As	I	said	above,	the	unification	associated	with	universal	behavior	is	very	different	from	what	is	normally

understood	when	we	think	of	unification	in	physics.	But	that	is	exactly	the	point	I	want	to	stress.	Unification	is	a

diverse	notion	that	takes	many	different	forms,	some	of	which	are	linked	with	reduction	while	others	are	not.	Indeed

some	speak	against	the	very	notion	of	reduction	by	showing	that	we	can	have	a	unity	among	phenomena	that	is

completely	unrelated	to	their	underlying	microstructure.	Despite	these	various	ways	of	understanding	unification

and	the	theoretical	and	experimental	difficulties	associated	with	theories	of	everything,	unification	remains	the	goal

that	drives	most	if	not	all	of	high-energy	physics.	The	question	of	whether,	how,	and	in	what	form	that	goal	will	be

realized	and	how	it	relates	to	a	unity	in	nature	is	an	ongoing	aspect	of	both	physics	research	and	philosophical

inquiry.
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Notes:

(1)	The	first	unification	in	Maxwell's	theory	was	in	terms	of	a	reduction	of	the	electromagnetic	and	luminiferous

aethers.

(2)	For	an	extensive	treatment	of	different	types	of	unification	in	physics,	as	well	as	the	way	that	mathematical

structures	are	used	as	unifying	tools	in	biology,	see	Morrison	(2000).	See	also	Maudlin	(1996)	for	a	discussion	of

unification	in	physics.

(3)	Perhaps	the	most	cited	problem	with	string	theory	is	that	it	has	a	huge	number	of	equally	possible	solutions,

called	string	vacu,	that	may	be	sufficiently	diverse	to	explain	almost	any	phenomena	one	might	observe	at	lower

energies.	If	so,	it	would	have	little	or	no	predictive	power	for	low-energy	particle	physics	experiments.	Other

criticisms	include	the	fact	that	it	is	background	dependent,	requiring	a	specific	starting	point.	This	is	incompatible
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with	general	relativity,	which	is	background	independent.	The	problems	associated	with	loop	quantum	gravity	also

involve	computational	difficulties	in	making	predictions	directly	from	the	theory	and	the	fact	that	its	description	of

spacetime	at	the	Planck	scale	has	a	continuum	limit	that	is	not	compatible	with	general	relativity.	Obviously,	there

are	many	more	detailed	issues	here	that	I	have	not	mentioned.	For	more	discussion,	see	Dine	(2007)	on	string

theory	and	supersymmetry	and	Rovelli	(2007)	on	quantum	gravity.	See	Smolin	(2001)	for	a	popular	account	of	the

latter.

(4)	In	order	to	analyze	a	physical	problem,	it	is	necessary	to	isolate	the	relevant	details	or	choice	of	variables	that

will	capture	the	physics	one	is	interested	in.	Since	this	will	involve	separated	energy	scales,	we	can	study	low-

energy	dynamics	independently	of	the	details	of	high-energy	interactions.	The	procedure	is	to	identify	the

parameters	that	are	very	large	(small)	compared	with	the	relevant	energy	scale	of	the	physical	system	and	put

them	to	infinity	(zero).	We	can	then	use	this	as	an	approximation	that	can	be	improved	by	adding	corrections

induced	by	the	neglected	energy	scales	as	small	perturbations.

(5)	Maxwell	(1965,	1:	564).	The	experimental	facts	concerned	the	induction	of	currents	by	increases	or	decreases

in	neighboring	currents,	the	distribution	of	magnetic	intensity	according	to	variations	of	a	magnetic	potential	and

the	induction	of	statistical	electricity	through	dielectrics.

(6)	For	a	more	extensive	discussion	of	this	point,	see	Morrison	(2008).

(7)	Given	a	system	described	by	n	generalized	coordinates	q ,	their	velocities	 	along	with	purely	holonomic

constraints,	d'Alembert's	principle	yields	n	equations	of	motion

where	 	is	the	kinetic	energy	and

is	the	generalized	force	corresponding	to	q .	For	a	conservative	system,	the	forces	F 	may	be	written	in	terms	of	a

potential	function	V(r ,r ,…),	such	that

Therefore

The	equations	of	motion	become

where	we	have	made	use	of	the	fact	that	V	depends	only	on	the	generalized	coordinates	q	and	not	their	velocities.

This	motivates	the	definition	of	the	Lagrangian

from	which	the	Euler-Lagrange	equations	follow:

The	utility	of	the	Lagrangian	approach	is	that,	by	virtue	of	d'Alembert's	use	of	generalized	coordinates,	(holonomic)

constraint	forces	do	not	appear	explicitly.

(8)	His	attachment	to	the	potentials	as	primary	was	also	criticized,	since	virtually	all	theorists	of	the	day	believed

that	the	potentials	were	simply	mathematical	conveniences	having	no	physical	reality	whatsoever.	To	them,	the

force	fields	were	the	only	physical	reality	in	Maxwell's	theory	but	the	formulation	in	DT	provided	no	account	of	this.

Today,	of	course,	we	know	in	the	quantum	theory	that	it	is	the	potentials	that	are	primary,	and	the	fields	are

derived	from	changes	in	the	potentials.

(9)	The	methods	used	in	“A	Dynamical	Theory”	were	extended	and	more	fully	developed	in	the	Treatise	on

Electricity	and	Magnetism	(TEM),	where	the	goal	was	to	examine	the	consequences	of	the	assumption	that	electric

currents	were	simply	moving	systems	whose	motion	was	communicated	to	each	of	the	parts	by	certain	forces,	the
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nature	and	laws	of	which	“we	do	not	even	attempt	to	define,	because	we	can	eliminate	[them]	from	the	equations

of	motion	by	the	method	given	by	Lagrange	for	any	connected	system”	sect.	552).	Displacement,	magnetic

induction	and	electric	and	magnetic	forces	were	all	defined	in	the	Treatise	as	vector	quantities	(Maxwell	1873,

sect.	11,	12),	together	with	the	electrostatic	state,	which	was	termed	the	vector	potential.	All	were	fundamental

quantities	for	expression	of	the	energy	of	the	field	and	were	seen	as	replacing	the	lines	of	force.

(10)	For	an	extended	discussion	of	unification	in	Special	Relativity	see	Morrison	(2000).

(11)	There	are	two	different	types	of	SU(3)	symmetry:	the	one	that	acts	on	the	different	colors	of	quarks,	which	is

an	exact	gauge	symmetry	mediated	by	gluons,	and	the	flavor	SU(3)	symmetry,	which	rotates	different	flavors	of

quarks	to	each	other.	The	latter	is	an	approximate	symmetry	of	the	QCD	vacuum	and	hence	is	not	fundamental.	It

arises	as	a	consequence	of	the	small	mass	of	the	three	lightest	quarks.

(12)	For	a	more	comprehensive	discussion	of	symmetry	and	its	uses	in	physics,	see	Bangu	(this	volume),	as	well

as	the	edited	collection	by	Brading	and	Castellani	(2003)	and	Morrison	(1995;	2000).

(13)	These	can	also	be	thought	of	as	phase	transformations	where	the	phase	is	considered	a	matrix	quantity.	See

Aitchinson	and	Hey	(1989)	for	a	discussion	of	this	topic.

(14)	Isospin	actually	refers	to	similar	kinds	of	particles	considered	as	two	states	of	the	same	particle	in	particular

types	of	interactions.	For	example,	the	strong	interactions	between	two	protons	and	two	neutrons	are	the	same,

which	suggests	that	for	strong	interactions	they	may	be	thought	of	as	two	states	of	the	same	particle.	So,	hadrons

with	similar	masses,	but	differing	in	terms	of	charge,	can	be	combined	into	groups	called	multiplets	and	regarded	as

different	states	of	the	same	object.	The	mathematical	treatment	of	this	characteristic	is	identical	with	that	used	for

spin	(angular	momentum).	The	SU(2)	group	is	the	isospin	group	and	is	also	the	symmetry	group	of	spatial	rotations

that	give	rise	to	angular	momentum.

(15)	In	order	to	satisfy	the	symmetry	demands	associated	with	the	SU(2)	group	and	in	order	to	have	a	unified

theory	(i.e.,	have	the	proper	coupling	strengths	for	a	conserved	electric	current	and	two	charged	W	fields),	the

existence	of	a	new	gauge	field	was	required,	a	field	that	Weinberg	associated	with	a	neutral	current	interaction	that

was	later	discovered	in	1973.	For	a	discussion	of	the	difficulties	surrounding	the	neutral	current	experiments,	see

Galison	(1987)	and	Pickering	(1984).

(16)	Indeed,	despite	its	discovery,	the	properties	of	the	Higgs	boson	and	whether	it	is	a	single	particle	of	a	family	or

particles	remains	largely	unknown.	Further	data	from	CERN	will	hopefully	reveal	these	features	and	what	their

impact	will	be	on	the	Standard	Model.

(17)	CP	is	a	symmetry	that	states	that	the	laws	of	physics	should	be	the	same	if	a	particle	were	interchanged	with

its	antiparticle	(C	symmetry,	or	charge	conjugation	symmetry),	and	left	and	right	were	swapped	(P	symmetry,	or

parity	symmetry).	In	addition	to	its	role	in	weak	interactions,	it	also	plays	an	important	role	in	the	attempts	of

cosmology	to	explain	the	dominance	of	matter	over	antimatter	in	the	Universe.

(18)	The	Yukawa	interaction	describes	the	coupling	between	the	Higgs	field	and	massless	quark	and	electron

fields.	Through	spontaneous	symmetry	breaking,	the	fermions	acquire	a	mass	proportional	to	the	vacuum

expectation	value	of	the	Higgs	field.

(19)	For	an	extended	discussion	of	these	and	other	problems	facing	the	electroweak	theory,	see	Quigg	(2009).	My

discussion	borrows	from	his	exposition.

(20)	Of	course,	the	notion	of	naturalness	here	is	not	something	that	can	be	given	a	precise	definition,	since	it	is

relative	to	the	gaps	in	our	theoretical	knowledge	of	physics	at	high	energies.	Since	the	quantum	correction

includes	effects	from	high	energy,	there	is	an	uncertainty	about	their	extent	and	validity.	At	energies	beyond	that

for	which	our	theories	are	valid,	new	physics	may	emerge	making	the	quantum	corrections	depend	entirely	on	the

energy	scale.	Hence,	the	notion	of	naturalness	can	be	thought	of	as	scale	relative.

(21)	A	potential	problem	for	SUSY	breaking	is	whether	it	can	be	accomplished	in	a	“natural”	way.	Because	there

seems	to	be	no	obvious	way	to	break	supersymmetry	far	below	the	grand	unification	energy,	this	problem,	in	some

sense,	is	simply	a	reincarnation	of	the	hierarchy	problem.
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(22)	A	string	is	an	object	with	a	finite	spatial	extent	that	has	an	intrinsic	tension	in	the	same	way	that	a	particle	has

intrinsic	mass.	The	presence	of	an	intrinsic	tension	means	that	string	theory	possesses	an	inherent	mass	scale,	a

fundamental	parameter	with	the	dimensions	of	mass	that	defines	the	energy	scale	at	which	“stringy”	effects

(effects	associated	to	the	oscillation	of	the	string)	become	important.	The	various	oscillation	modes	of	the	string	are

effectively	localized	in	its	immediate	neighborhood	and	behave	like	elementary	particles	with	different	masses

related	to	the	oscillation	frequency	of	the	string.	Because	a	string	is	like	a	collection	of	infinitely	many	point

particles,	constrained	to	fit	together	to	form	a	continuous	object,	it	has	infinitely	many	degrees	of	freedom.

Consequently,	its	associated	quantum	theory	required	the	existence	of	several	spatial	dimensions	(26).	The

invention	of	superstring	theory—a	string	with	extra	degrees	of	freedom	that	make	it	supersymmetric—has	reduced

that	number	to	11.

(23)	LQG	incorporates	many	of	the	important	aspects	of	general	relativity,	but	differs	from	the	latter	in	its

quantization	of	space	and	time	at	the	Planck	scale,	as	in	quantum	mechanics.	In	other	words,	the	space	containing

all	physical	phenomena	is	itself	quantized.	Lee	Smolin,	one	of	the	originators	of	LQG,	has	proposed	that	a	loop

quantum	gravity	theory	incorporating	either	supersymmetry	or	extra	dimensions,	or	both,	be	called	“loop	quantum

gravity	II.”

(24)	For	a	general	discussion	of	RG	in	the	context	of	explanation	more	generally,	see	Batterman	(2002).

(25)	Zinn-Justin	(1998)	discusses	some	of	the	connections	between	the	use	of	RG	in	statistical	physics	and

quantum	field	theory.

(26)	My	discussion	of	these	issues	borrows	from	Weinberg	(1983).

(27)	See	Georgi	(1993).	The	point	I	want	to	stress	here	is	that	we	do	not	need	the	decoupling	theorem	to	establish

exact	results	to	see	why	reductionism	is	problematic.	Instead	we	focus	on	what	the	theorem	does	show:	that	the

physics	at	short	distances	is	not	only	unimportant	at	longer	length	scales	but	that	it	is	immune	from	changes	that

take	place	there	in	much	the	same	way	that	atomic	physics	is	irrelevant	to	understanding	turbulence	and	the

Navier	Stokes	equations	at	high	Reynolds	numbers.	In	other	words,	it	simply	does	not	matter	for	these	types	of

problems	whether	matter	becomes	discrete	at	Fermis	rather	than	Angstroms,	and	it	is	that	fact	that	causes

difficulties	for	the	reductionist	picture.
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Abstract	and	Keywords

This	chapter	provides	an	up-to-date	discussion	of	work	on	two	distinct	problems	in	the	foundations	of	quantum

mechanics:	the	problem	of	the	classical	regime	and	the	measurement	problem.	It	explains	that	contemporary	work

has	focused	on	the	role	of	environmental	decoherence	in	the	emergence	of	classical	kinetics	and	dynamics,	and

argues	that	the	success	of	appeals	to	decoherence	to	solve	the	problem	depends	on	the	interpretation	of	the

quantum	theory.	The	chapter	also	considers	the	collapse	postulate,	the	Born	rule,	and	the	apparatus	of	positive

operator	value	measures.

Keywords:	quantum	mechanics,	classical	regime,	measurement	problem,	environmental	decoherence,	classical	kinetics,	dynamics,	collapse

postulate,	Born	rule,	positive	operator	value

In	this	essay,	I	shall	focus	on	two	of	the	main	problems	raising	interpretational	issues	in	quantum	mechanics,

namely	the	notorious	measurement	problem	(discussed	together	with	the	theory	of	measurement	in	section	4)	and

the	equally	important	but	not	quite	as	widely	discussed	problem	of	the	classical	regime	(discussed	together	with

decoherence	in	section	3).	The	two	problems	are	distinct,	but	they	are	both	intimately	related	to	some	of	the	issues

arising	from	entanglement	and	density	operators,	which	are	thus	briefly	reviewed	in	section	2.	A	few	fundamentals

are	rehearsed	in	section	1.	The	essay	will	aim	to	be	fairly	nontechnical	in	language,	but	modern	in	outlook	and

covering	the	chosen	topics	in	more	depth	than	most	introductory	treatments.

The	philosophy	and	foundations	of	quantum	mechanics	offer	many	more	examples	of	live	research	issues,	and

much	progress	has	been	achieved	recently	in	such	traditional	approaches	as	collapse	theories,	pilot-wave

theories	and	Everett	interpretations,	and	in	the	(time-honored	but	recently	revived)	area	of	axiomatic

reconstructions	of	the	theory.	Recent	years	have	seen	fascinating	advances	also	in	the	study	of	the	other	great

puzzle	raised	by	entanglement,	namely	quantum	mechanical	nonlocality.	No	in-depth	coverage	of	these	other

topics	will	be	attempted.

1.	A	Few	Fundamentals

1.1	Phenomenology	of	Measurements

In	classical	mechanics,	measurements	are	idealized	as	testing	whether	a	system	lies	in	a	certain	subset	of	its

phase	space.	This	can	be	done	in	principle	without	disturbing	the	system,	and	the	result	of	the	test	is	in	principle

fully	determined	by	the	state	of	the	system.	In	quantum	mechanics,	none	of	these	idealizations	can	be	made.

Instead:	(i)	measurements	are	idealized	as	testing	whether	the	system	lies	in	a	certain	(norm-closed)	subspace	of

its	Hilbert	space; 	(ii)	a	measurement	in	general	disturbs	a	system:	more	precisely	(and	in	the	ideal	case),	unless

the	state	of	the	system	is	either	contained	in	or	orthogonal	to	the	tested	subspace,	the	state	is	projected	onto

either	the	tested	subspace	or	its	orthogonal	complement	(this	is	known	as	the	“collapse”	of	the	quantum	state,	or

1
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the	“projection	postulate”);	(iii)	this	process	is	indeterministic,	with	a	probability	given	by	the	squared	norm	of	the

projection	of	the	state	on	the	given	subspace	(the	“Born	rule”	or	“statistical	algorithm”	of	quantum	mechanics).

For	instance,	take	a	spin-1/2	system	initially	in	the	state	(1)

where	|+ 〉	and	|− 〉	are	the	states	of	x-spin	up	and	down.	If	we	test	for	x-spin-up	(for	the	subspace	 ),	the	final

state	will	be	either	|+ 〉	with	probability	|α| ,	or	|− 〉	with	probability	|β| .

Often,	one	considers	testing	together	a	family	of	mutually	orthogonal	sub-spaces. 	Such	a	measurement	is	usually

described	as	measuring	a	“self-adjoint	(linear)	operator”	(or	“observable”)	(2)

where	the	(real)	numbers	a 	are	called	the	eigenvalues	of	the	operator	A	and	are	associated	with	the	outcomes	of

the	measurement.	The	P 	are	the	projectors	onto	the	given	subspaces. 	These	subspaces	are	called	the

eigenspaces	of	A	and	are	the	subspaces	of	all	vectors	|ψ )	(the	eigenvectors	of	the	operator)	such	that	(3)

or	equivalently	(4)

This	is	the	origin	of	the	traditional	identification	of	quantum	mechanical	observables	with	(self-adjoint)	operators.

The	collapse	postulate	then	states	that	upon	measurement	of	A	a	state	|ψ〉	will	collapse	onto	P |ψ〉	(suitably

renormalized),	with	probability	p 	=	〈ψ|P |ψ〉.	The	quantity	(5)

is	then	the	average	value	or	expectation	value	of	the	operator	A	in	the	state	|ψ〉.	Note	that	unless	the	state	is	an

eigenstate	of	the	operator	measured,	there	is	a	statistical	spread	of	results,	that	is,	the	dispersion	of	A	in	the	state	|

ψ〉,	(6)

is	nonzero.

The	association	between	self-adjoint	operators	and	families	of	mutually	compatible	tests	may	seem	purely

conventional	from	the	above	description.	This	is	not	quite	so.	Self-adjoint	operators	play	a	further	role	in	quantum

mechanics,	namely	as	(mathematical)	generators	of	the	unitary	Schrödinger	evolution.	Now,	think	of	a	Stern–

Gerlach	spin	experiment.	A	Stern–Gerlach	magnet	produces	(approximately)	a	magnetic	field	that	is

inhomogeneous	in	just	one	spatial	direction.	Classically,	what	such	a	magnetic	field	can	do	is	deflect	along	this

direction	a	particle	with	nonzero	magnetic	moment,	the	amount	of	the	deflection	being	proportional	to	the	magnetic

moment	itself.	In	quantum	mechanics,	spin	operators	of	the	form	(7)

(with	P 	and	P 	the	projection	operators	onto	the	“up”	and	“down”	spin	states	in	some	direction)	will	appear	in	the

Schrödinger	evolution	that	couples	the	spin	of	the	particle	to	its	position	degrees	of	freedom,	and	the	deflection

experienced	by	the	particle	will	in	fact	be	proportional	to	the	eigenvalue	 	or	 .	In	this	sense,	the

measurement	is	indeed	sensitive	to	the	eigenvalues	of	the	corresponding	spin	operator,	and	not	just	to	the

projections	of	the	state	on	the	mutually	orthogonal	eigenspaces. 	This	closer	relation	between	a	measurement	and

a	single	self-adjoint	operator	will	be	lost	in	the	case	of	the	generalized	measurements	discussed	in	section	4.4.

1.2	Minimal	Interpretation	and	Standard	Interpretation

The	above	phenomenological	rules	yield	a	minimal	interpretation	of	the	formalism:	some	laboratory	procedures	are

taken	to	be	state	preparations,	and	others	are	taken	to	be	tests.	Quantum	mechanics	yields	probabilistic	relations

between	states	and	outcomes	of	tests	(Born	rule).	And,	depending	on	their	outcome,	tests	are	associated	with

further	(preparatory)	transformations	of	the	state	(collapse	postulate).	To	be	sure,	the	terms	“preparation”	and
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“test”	(or	“measurement”)	are	phenomenological,	but	in	the	cases	in	which	we	(or	the	working	physicist)	would

normally	apply	them,	any	fundamental	approach	to	quantum	mechanics	must	allow	us	to	recover	the	usual

predictions	of	the	theory,	including	in	particular	the	fact	that	future	predictions	will	depend	on	the	previous

outcomes	in	the	way	specified	by	the	collapse	postulate.

A	common	alternative	interpretation	of	the	formalism	(often	called	the	“standard”	or	“orthodox”	or	“quantum

logical”	or	“Dirac–von	Neumann”	interpretation:	we	shall	adopt	the	first	of	these	terms)	takes	it	that	a	quantum

system	has	certain	properties	also	independently	of	measurements,	namely	properties	corresponding	to	tests	that

the	system	passes	with	probability	1.	These	properties,	which	are	uniquely	fixed	by	the	quantum	state,	can	be

further	identified	either	with	the	state	itself	(or	rather	the	one-dimensional	subspace	spanned	by	the	vector	state)—

as	is	standardly	done	in	the	quantum	logic	literature,	most	explicitly	by	Jauch	and	Piron	(1969)—or	with	an

eigenvalue	associated	with	that	vector	(hence	also	the	name	“eigenstate-eigenvalue	link,”	due	to	Fine	(1973),	for

this	interpretational	rule) .	For	instance,	an	electron	in	a	state	of	spin	up	in	the	x-direction	will	have	a	property

corresponding	to	the	vector	|+ 〉,	or,	simply,	a	value	 	for	spin	in	the	x-direction.	According	to	the	standard

interpretation,	a	collapse	of	the	quantum	state	is	thus	an	actual	change	in	the	properties	of	the	quantum	system.

Assuming	that	quantum	mechanics	is	meant	to	apply	to	any	physical	system	whatsoever,	and	that	there	should	not

be	a	fundamental	difference	in	the	way	it	is	interpreted	across	different	domains,	intuitions	from	the	microscopic

and	the	macroscopic	domains	of	application	of	the	theory	will	pull	in	different	directions.	Applying	the	minimal

interpretation	to	macroscopic	systems	would	mean	that	such	systems	will	merely	appear	to	have	certain	properties

if	measured	(the	Moon	is	not	there	until	we	look).	In	this	domain,	something	like	the	standard	interpretation	would

seem	more	natural	(at	least	prima	facie).	On	the	other	hand,	applying	the	standard	interpretation	to	the	microscopic

domain	would	mean	that	measurements	appear	to	induce	a	discontinuous	change	in	the	properties	of	a

microscopic	system,	in	a	way	that	is	not	necessarily	compatible	with	the	Schrödinger	equation.	This	tension	is	the

origin	of	the	measurement	problem	of	quantum	mechanics	(which	we	shall	eventually	discuss	in	section	4.6).

Obviously,	the	minimal	interpretation	is	an	instrumentalist	interpretation,	while	the	standard	interpretation	involves

an	ontological	commitment	to	the	quantum	state.	The	former	could	be	seen	as	a	stripped-down	version	of	some

historically	more	accurate	reading	of	the	“Copenhagen	interpretation”.	Note	also	that,	while	Schrödinger	clearly

had	an	ontological	commitment	to	the	wave	function,	it	is	not	clear	that	it	could	be	phrased	in	the	abstract	terms	of

the	standard	interpretation.	He	appears	to	have	rather	been	interested	in	the	3-dimensional	manifestation	of	his

wave	functions,	in	particular	in	terms	of	charge	density	(see	also	section	3	below).	Something	like	the	standard

interpretation	instead	may	have	been	adopted	by	both	Dirac	and	von	Neumann.

2.	Density	Operators	and	Reduced	States

2.1	Density	Operators

Vectors	in	Hilbert	space,	as	we	have	seen,	define	probability	measures	over	the	results	of	measurements	of

quantum	mechanical	observables.	Indeed,	up	to	phase	factors,	the	association	between	unit	vectors	and	such

probability	measures	is	one-to-one,	since	it	is	clear	that	if	two	unit	vectors	differ	by	other	than	an	overall	phase

factor,	there	will	be	at	least	one	test	(the	projection	onto	the	subspace	spanned	by	one	of	them),	for	which	they	will

define	different	probabilities.

To	get	rid	of	overall	phase	factors,	we	can	also	identify	a	quantum	state	defined	by	the	vector	|ψ〉	with	the	one-

dimensional	projection	operator	onto	|ψ〉,	denoted	by	|ψ〉	〈ψ|,	i.e.	the	linear	mapping	that	takes	any	vector	state	|ψ〉

to	the	state	〈ψ|φ〉|ψ〉	(the	state	|ψ〉	multiplied	by	the	complex	number	〈ψ|φ〉).	This	can	be	suggestively	written	as

(8)

This	identification	is	particularly	useful	if	one	wishes	to	generalize	the	notion	of	a	quantum	state	further.	Indeed,	it	is

clear	that	the	probability	measures	defined	by	vectors	in	Hilbert	space	will	not	be	the	most	general	such	probability

measures.	The	set	of	these	measures	ought	to	be	a	convex	set,	that	is,	closed	under	convex	sums.

One	can	write	a	convex	sum	of	two	states	corresponding	to	projection	operators,	say	onto	|ψ 〉	and	|ψ 〉	as	the

operator	(9)
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that	maps	any	vector	|φ〉	to	the	superposition	(10)

with	p +p 	=	1.	We	can	now	write	the	corresponding	probability	for	the	system	passing	a	certain	test	represented

by	the	projection	P	as	(11)

Here	Tr(ρP)	is	the	symbol	for	the	so-called	trace	of	the	operator	ρP,	defined	for	any	operator	A	as	(12)

with	the	|ψ 〉	forming	a	basis	of	the	Hilbert	space.

As	already	mentioned	in	section	1.1,	operators	of	the	form	A|ψ〉	=	a |ψ 〉	can	be	used	to	classify	simultaneous

experimental	tests	for	families	of	mutually	orthogonal	subspaces.	A	system	will	test	positively	to	only	one	of	these

tests,	and	to	this	test	can	be	associated	an	eigenvalue	of	the	corresponding	operator.	Since	Tr(ρP )	is	the

probability	for	the	outcome	i	in	a	test	of	P ,	the	expression	(13)

is	equal	to	the	expectation	value	of	the	self-adjoint	operator	A.

The	operator	ρ	is	known	as	a	density	operator,	because	in	the	expression	(11)	it	plays	a	role	similar	to	that	of	a

probability	density.	Note	that	the	one-dimensional	projection	operators	are	the	extremal	elements	of	the	convex

set	of	density	operators,	those	that	cannot	be	decomposed	further	in	terms	of	convex	combinations	of	other

density	operators.

Now,	it	is	a	deep	theorem	due	to	Gleason	(1957)	that	the	states	defined	by	density	operators	are	the	most	general

probability	measures	that	can	be	defined	over	the	possible	tests	that	can	be	(ideally)	performed	on	a	quantum

system.	A	probability	measure	in	Gleason's	sense,	as	one	would	expect,	is	a	positive,	normalized	mapping	that	in

the	finite-dimensional	case	is	additive	and	in	the	infinite-dimensional	case	σ-additive	for	families	of	mutually

orthogonal	projectors.

Quantum	mechanical	states	in	the	sense	of	density	operators	can	be	alternatively	characterized	as	the	most

general	(linear)	expectation	value	functionals	on	the	self-adjoint	operators.	This	is	actually	what	von	Neumann

shows	in	what	has	come	to	be	known	as	his	no-hidden-variables	theorem	(von	Neumann	1932,	pp.	305–324	of	the

English	translation).	More	precisely,	von	Neumann	takes	a	state	s	to	be	an	assignment	of	an	expectation	value	to

each	self-adjoint	operator	A,	subject	to	a	continuity	requirement	(which	is	vacuous	in	finite	dimensions),	a	trivial

normalization	requirement	s(1)	=	1,	a	positivity	requirement	and	a	linearity	requirement	(14)

for	any	two	observables	A	and	B	and	real	numbers	a	and	b.	He	then	proves	that	the	only	such	expectation

functionals	on	the	self-adjoint	operators	are	of	the	form	Tr(ρA),	with	ρ	a	density	operator.	That	is,	the	most	general

states	in	this	sense	are	indeed	the	quantum	mechanical	states.

Von	Neumann	took	this	result	as	showing	that	there	could	be	no	more	precise	description	of	ensembles	of	quantum

mechanical	systems	(in	particular	no	states	with	zero	dispersion	for	all	observables),	and	thus	as	ruling	out

“hidden	variables.”	Note,	however,	that	von	Neumann	himself	explicitly	points	out	that	assumption	(14)	is	natural	in

the	context	of	commuting	observables	(where	we	see	it	is	analogous	to	Gleason's	additivity	requirement),	but	is	a

very	nontrivial	assumption	in	the	case	of	noncommuting	ones	(pp.	308–309).	As	noted	forcibly	by	Grete	Hermann

(1935),	this	vitiates	his	conclusion	about	hidden	variables.

Avery	simple	geometrical	intuition	for	the	convex	structure	of	density	operators	in	the	case	of	spin-1/2	systems

can	be	gained	as	follows.	Imagine	mapping	each	state	of	spin-up	in	the	direction	r	to	the	corresponding	unit	vector

in	three	spatial	dimensions,	(16)
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This	mapping	between	the	vector	states	of	a	spin-1/2	system	and	the	unit	sphere	is	a	bijection	(one-to-one	and

onto).	It	turns	out	that	it	can	be	extended	to	an	affine	isomorphism	(i.e.,	a	map	that	preserves	convex

combinations).	What	this	means	in	particular	is	that	for	any	two	vector	states	|ψ〉	and	|φ〉,	which	are	mapped	onto

unit	vectors	r	and	s	on	the	sphere,	we	can	map	the	density	operator	(17)

to	the	point	λr	+	(1	−	λ)s	in	the	interior	of	the	unit	ball	in	three	dimensions.

This	representation	is	known	as	the	Bloch	sphere	or	the	Poincaré	sphere.	We	can	use	it	to	establish	geometrically

many	propositions	about	density	operators.	Here	are	a	few	examples.	Density	operators	can	be	decomposed

nonuniquely	as	convex	combinations	of	vector	states,	in	fact	in	infinitely	many	ways,	and	as	combinations	of

arbitrarily	many	vector	states	(even	continuously	many).	On	the	other	hand,	for	each	density	operator,	there	is

generally	a	unique	decomposition	as	a	combination	of	spin-up	and	spin-down	in	a	single	direction	(as	a

combination	of	antipodal	points	on	the	sphere). 	The	only	exception	is	the	state	that	lies	at	the	center	of	the	ball,

which	is	the	equal-weight	combination	of	up	and	down	states	in	any	direction	(“maximally	mixed”	state).	We	also

see	that	the	only	states	that	are	extremal	(also	called	pure	states)	in	the	convex	set	of	density	operators	are

indeed	the	vector	states	that	map	to	the	unit	vectors	on	the	sphere.

2.2	Proper	and	Improper	Mixtures

The	nonuniqueness	in	general	of	convex	decompositions	of	a	density	operator	is	one	of	their	most	striking

features,	and	a	major	difference	between	probability	measures	in	quantum	and	classical	mechanics.

Also	in	classical	mechanics	one	can	introduce	states	that	are	convex	combinations	of	the	pure	states	defined	by

points	in	the	phase	space	(which	correspond	to	trivial—or	“dispersion-free”—probability	distributions).	These

general	states	are	simply	probability	measures	over	phase	space.	But	it	is	always	possible	to	decompose	a

classical	probability	measure	uniquely	as	a	convex	combination	of	extremal	states	(a	convex	set	with	this	property

is	known	as	a	“simplex”).	Indeed,	both	mathematically	and	physically,	when	we	deal	with	a	probabilistic	state	in

classical	mechanics,	we	are	always	dealing	with	a	statistical	mixture	of	nonprobabilistic	states,	that	is,	probabilities

arise	through	our	ignorance	of	the	actual	pure	state	of	the	system,	and	any	statistical	distributions	of	measurement

results	are	attributable	to	this	same	ignorance.	There	is	no	possible	ambiguity,	since	the	space	of	classical

probability	measures	is	a	simplex.

In	quantum	mechanics,	things	are	different.	Even	though	formally	density	operators	can	always	be	written	as

“mixtures”	(i.e.,	as	convex	combinations	of	pure	states),	at	the	very	least	their	nonunique	decomposability	will

introduce	an	ambiguity	in	their	interpretation.	Assuming	that	in	some	case	a	density	operator	has	arisen	through

our	ignorance	of	the	actual	pure	state	of	the	system,	this	is	not	manifest	in	the	form	of	the	density	operator.	We

might	know	that	the	spread	of	results	observed	in	our	tests	is	partly	due	to	our	ignorance	of	what	the	quantum	state

actually	is,	and	partly	due	to	the	probabilistic	nature	of	the	vector	states	themselves,	but	knowledge	of	how	to	thus

“apportion	the	blame”	is	knowledge	in	excess	of	that	encoded	in	the	density	operator	itself.	It	corresponds	formally

not	just	to	the	density	operator,	but	to	a	particular	convex	decomposition.	Unlike	the	classical	case,	this

decomposition	cannot	be	uniquely	retrieved	from	the	state	alone.

This	feature	of	quantum	mechanical	“mixtures”	is	essential	to	the	question	of	how	they	should	be	understood,

especially	in	the	context	of	our	distinction	between	the	minimal	and	standard	interpretations	of	the	theory.	There	is,

however,	an	even	more	essential	issue	for	the	question	of	how	to	understand	density	operators.	Of	course,	density

operators	can	arise	as	genuine	statistical	mixtures	of	pure	quantum	states	(for	instance	a	state	obtained	by

randomly	mixing	systems	prepared	in	different	pure	states).	This	is	generally	referred	to	as	a	proper	mixture.	So,

for	instance,	if	we	know	that	a	measurement	of	spin-x	on	an	electron	has	been	actually	carried	out,	but	we	are

ignorant	of	the	result,	then	we	should	apply	the	collapse	postulate,	but	average	over	the	results	(so-called

nonselective	measurement).	In	this	case	we	will	have	a	proper	mixture	of	the	states	|+ 〉	and	|− 〉	due	to

ignorance	(we	do	not	know	which	state	we	should	actually	best	use	for	further	predictions).

However,	there	are	other	cases	in	which	density	operators	arise	that	are	not	thus	related	to	our	ignorance,	namely

as	so-called	reduced	states,	states	of	subsystems	of	a	larger	system	described	by	an	entangled	pure	state.

Indeed,	the	phenomenological	rules	sketched	in	section	1.1	(collapse	postulate	and	Born	rule)	turn	out	to	have
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surprising	consequences	when	applied	to	the	case	of	entangled	states.	Take	a	singlet	state	of	two	spin-1/2

systems	(18)

and	test	for	 .	The	test	will	come	out	negative	with	probability	1,	and	the	state	will	be	undisturbed,	since

it	lies	in	a	subspace	orthogonal	to	the	tested	one.	Now	test	for	 .	The	result	will	be	 	or	

,	each	with	probability	1/2.	In	this	case,	we	see	that	the	results	of	the	spin	measurements	performed

on	the	two	electrons	are	perfectly	(anti-)correlated.	Correlations,	albeit	weaker,	will	be	observed	quite	in	general	if

spin	is	measured	along	two	different	directions	on	the	two	subsystems	(as	can	be	easily	checked	explicitly).

Entanglement	thus	introduces	what	appear	to	be	irreducible	correlations	between	results	of	measurements	(even

carried	out	at	a	distance),	and	this	for	a	generic	pair	of	tests.	This	is	the	origin	of	nonlocality	in	quantum

mechanics.

On	the	other	hand,	performing	a	measurement	(or	any	other	manipulation)	on	one	of	a	pair	of	entangled	particles

does	not	affect	the	probability	distributions	for	results	of	measurements	on	the	other.	This	is	the	so-called	no-

signaling	theorem.	(That	is,	while	conditionalizing	on	the	outcomes	of	one	measurement	in	general	affects	the

probabilities	for	the	other,	conditionalizing	on	performing	the	measurement	does	not.)	It	is	easy	to	see	this	in	the

example:	we	have	perfect	anti-correlations	between	outcomes	on	the	two	sides,	but	averaging	over	the	outcomes

on	one	side	yields	back	the	usual	50–50	distribution	on	the	other	side.	By	explicit	calculation,	one	can	check	the

claim	in	the	general	case,	that	is,	for	measurements	along	different	spin	directions	on	the	two	sides.

The	no-signaling	theorem	is	crucial	to	our	purposes,	since	it	allows	us	to	generalize	the	description	of	quantum

systems	to	subsystems	of	entangled	systems.	Indeed,	although	such	subsystems	cannot	be	associated	with	any

vector	in	their	Hilbert	space,	we	can	assign	them	a	suitable	probability	measure	for	each	test	we	may	want	to	carry

out	on	them,	because	the	no-signaling	result	guarantees	that	the	probability	of	such	a	test	is	well-defined

independently	of	whether	any	test	(or	which	one)	is	carried	out	on	the	rest	of	the	system.	So,	we	can	define	a

probability	measure	for	a	test	on	a	subsystem	by	simply	taking	the	marginal	of	the	probability	measure	associated

with	the	entangled	state	of	the	total	system	when	the	relevant	test	is	paired	with	an	arbitrary	test	on	the	rest	of	the

system.	But	now,	because	of	Gleason's	theorem,	we	know	that	such	a	state	must	be	given	by	a	density	operator.

Let	us	see	this	in	a	concrete	example.	Suppose	we	wish	to	define	the	probability	for	a	measurement	of	spin-x	on

one	of	a	pair	of	spin-1/2	systems	in	some	arbitrary	entangled	state.	We	can	write	the	state	of	the	pair	as	(19)

If	we	were	to	measure	spin-x	on	both	electrons	of	the	pair,	the	resulting	Born-rule	probabilities	would	be	(20)

and	averaging	over	the	results	for	the	second	electron,	we	obtain	(21)

In	this	way,	one	can	determine	the	probabilities	for	arbitrary	tests	on	the	first	(and	similarly	on	the	second)	electron,

and	so	associate	with	it	a	state	in	Gleason's	sense	(a	probability	measure	for	any	family	of	mutually	orthogonal

projections),	even	though	it	is	not	described	by	a	vector	in	Hilbert	space.

A	more	compact	way	of	thinking	of	such	a	state	is	in	terms	of	a	convex	combination	of	the	states	that	one	would

obtain	through	the	collapse	postulate	were	one	to	perform	a	measurement	on	the	other	electron.	So,	for	instance,	if

one	were	to	perform	a	measurement	of	spin-x	on	the	first	electron,	one	would	obtain	the	two	(normalized)	states:

(22)

and	(23)

  ⊗  P 1
+x

P 2
+x

  ⊗  P 1
+x

P 2
−x

⟩  ⊗   ⟩∣∣+1
x ∣∣−2

x

⟩  ⊗   ⟩∣∣−1
x ∣∣+2

x
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Writing	(24)

and	(25)

we	see	that	the	state	of	the	second	electron	would	collapse	to	|ψ 〉	or	|ψ 〉	with	the	probabilities	p 	and	p

(defined	by	(21)),	respectively.

We	can	now	determine	the	probabilities	for	any	tests	on	the	second	electron	by	taking	the	weighted	average	of	the

probabilities	defined	by	|ψ 〉	and	|ψ 〉,	with	the	weights	p 	and	p ,	respectively.	We	call	this	the	reduced	state	of

the	second	electron,	and	write	it	formally	as	(26)

This	representation	makes	it	explicit	that	a	reduced	state	is	a	density	operator.	Furthermore,	the	no-signaling

theorem	shows	us	explicitly	that	the	representation	(26)	cannot	be	unique.	If	a	different	measurement	were	to	be

carried	out	on	the	first	electron,	then	the	states	(24)	and	(25)	would	have	to	be	different,	if	the	total	state	is

entangled,	and	the	corresponding	probabilities	would	generally	also	be	different.	As	a	simple	example,	take	the

singlet	state	(18).	Measuring	spin	in	direction	r	on	the	first	electron	will	collapse	the	second	electron	into	a	state	of

spin	in	the	same	direction	r,	whatever	this	might	be,	due	to	the	rotational	symmetry	of	the	state.

Thus,	the	reduced	state	of	an	electron	from	a	pair	in	the	singlet	state	will	have	the	form	(27)

(in	the	case	of	the	singlet	the	probabilities	for	the	different	results	will	always	be	equal	to	1/2)	and	will	be

independent	of	r.

How	are	we	to	interpret	density	operators	arising	as	reduced	states	of	entangled	systems?	Certainly	not	as	proper

mixtures!	Indeed,	if	a	composite	quantum	system	is	in	a	pure	entangled	state,	this	state	cannot	be	further

decomposed	as	a	weighted	average	of	other	quantum	states,	so	cannot	be	interpreted	in	terms	of	ignorance.	But

then,	neither	can	the	states	of	the	subsystems	be	interpreted	in	terms	of	ignorance,	despite	the	fact	that	the

subsystems	are	necessarily	described	by	density	operators.	Contrapositively,	were	the	subsystems	themselves	in

pure	states	(and	we	ignorant	of	which	pure	states	they	were	in),	then	the	composite	would	be	in	a	mixed	state,

because	it	would	actually	be	in	a	product	state	(but	we	ignorant	of	which	product	state	it	was	in).

A	mixed	state	arising	as	the	reduced	state	of	a	subsystem,	where	the	total	system	is	in	a	pure	state,	is	generally

referred	to	as	an	improper	mixture.	The	reduced	state	of	an	electron	from	an	entangled	pair	is	a	paradigm

example	of	an	improper	mixture,	so	that	a	decomposition	such	as	(26)	should	not	be	taken	as	indicating	that	the

system	is	indeed	either	in	the	state	|ψ 〉	or	in	the	state	|ψ 〉.

At	least	from	the	point	of	view	of	the	minimal	interpretation,	there	is	nothing	especially	problematic	about	this.

Quantum	systems	have	dispositional	properties	to	elicit	certain	outcomes	under	certain	test	circumstances,

irrespectively	of	whether	we	seek	to	explain	them	further.	If	we	do	seek	to	explain	these	further,	the	case	of

subsystems	of	entangled	systems	will	turn	out	to	be	particularly	tricky,	but	from	the	point	of	view	of	the	minimal

interpretation	it	is	perfectly	natural	for	subsystems	of	entangled	systems	to	have	such	dispositional	properties.	The

only	aspect	of	note	is	that	in	the	case	of	such	subsystems	we	explain	the	distributions	over	outcomes	purely	in

dispositional	terms	(just	as	in	the	case	of	systems	in	pure	states),	while	in	other	cases,	we	may	have	reason	to

analyze	the	distributions	over	outcomes	partially	in	terms	of	ignorance.

Instead,	the	existence	of	entanglement	and	reduced	states	has	rather	disquieting	consequences	for	the	standard

interpretation.	Indeed,	if	the	system	is	neither	in	the	state	|ψ 〉	nor	in	the	state	|ψ 〉	(nor	in	any	other	state	that

might	appear	in	a	convex	decomposition	of	the	density	operator	of	the	system),	then	the	system	simply	lacks	the

+ − + −

+ − + −
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properties	that	in	the	standard	interpretation	are	associated	with	these	states.	We	can	still	apply	the	standard

interpretation	and	associate	properties	of	the	system	with	tests	that	the	system	will	pass	with	probability	1.	In

general,	however,	these	properties	will	no	longer	correspond	to	one-dimensional	subspaces	of	the	Hilbert	space,

but	only	to	higher-dimensional	ones	(the	name	“eigenstate-eigenvalue	link”	becomes	a	bit	of	a	misnomer	in	this

case). 	In	extreme	cases,	such	as	with	two	entangled	electrons	(where	each	electron's	spin	space	is	itself	only

two-dimensional),	the	individual	electrons	will	have	no	nontrivial	spin	properties:	the	only	test	they	pass	with

probability	1	is	the	trivial	one	testing	the	projection	onto	the	whole	of	the	Hilbert	space!

2.3	The	Bit	Commitment	Problem

We	shall	conclude	this	section	with	an	example	illustrating	both	the	notion	of	density	operators	and	some	of	the

mystery	surrounding	entangled	states.	Because	a	mixed	state	characterizes	all	statistical	predictions	of	quantum

mechanics	for	measurements	on	a	system,	it	is	impossible,	by	means	of	measurements	performed	on	that	system,

to	distinguish	whether	a	density	operator	corresponds	to	a	proper	mixture	or	an	improper	mixture,	or	which	proper

mixture	(if	any)	it	corresponds	to.	This	can	be	illustrated	with	an	example	from	quantum	information	theory,	the	so-

called	bit	commitment	problem.

The	problem	is	as	follows:	Alice	commits	herself	to	sending	Bob	a	definite	bit	of	information	(0	or	1).	She	then	sends

it,	and	Bob	receives	it.	How	can	he	make	sure	that	what	she	sends	is,	indeed,	what	she	had	committed	herself	to?

(In	whatever	scheme	we	devise	we	must	additionally	ensure	that	Bob	does	not	infer	the	actual	bit	of	information

any	sooner	than	when	Alice	in	fact	sends	it.)	Example:	Alice	and	Bob	are	on	the	phone,	and	they	decide	to	bet	on

something.	First	Alice	tosses	a	coin.	Then	Bob	chooses	heads	or	tails.	Finally,	Alice	tells	him	whether	it	was	heads

or	tails	that	had	come	up.	The	protocol	is	fair	(or	safe)	if	Bob	is	sure	that	Alice	does	not	lie	and	if	Alice	is	sure	that

Bob	did	not	know	the	outcome	of	her	toss	before	he	chose	heads	or	tails.

There	is	an	obvious	classical	solution	to	this	problem	(assuming	Bob	is	not	an	expert	lock-picker):	Alice	writes	the

result	of	her	toss	on	a	piece	of	paper	(1	for	“heads,”	0	for	“tails”),	puts	it	into	a	safe,	sends	the	safe	to	Bob	but

keeps	the	key.	After	Bob	has	chosen	heads	or	tails,	Alice	sends	the	key	as	well.	The	question	is	now	whether	there

is	a	quantum	solution	to	this	problem	that	is	rigorously	fair	(and	could	be	implemented	by	sending	just	a	few

electrons	instead	of	keys	and	safes).

Here	is	an	attempt	to	realize	this.	(One	could	also	phrase	it	in	terms	of	polarization	states	of	photons,	in	which	case

Alice	could	send	them	along	a	more	or	less	standard	optical	fiber	as	used	in	telecommunications.)	Alice	takes	some

random	sequence	of	zeros	and	ones,	say	1100010101110010…,	and	prepares	a	collection	of	electrons	as	follows.

If	the	result	of	her	coin	toss	(her	“bit	commitment”)	is	“heads,”	she	prepares	the	electrons	one	after	the	other	as

spin-up	(for	1)	and	spin-down	(for	0)	in	the	x-direction;	if	her	result	is	“tails,”	she	does	exactly	the	same,	but	with

spin	states	in	the	y-direction.	She	then	sends	the	electrons,	in	sequence,	to	Bob.

At	this	point,	Bob	has	an	ensemble	of	electrons.	We	assume	he	knows	that	Alice	has	prepared	them	either	in	x-spin

states	or	in	y-spin	states,	but	since	the	sequence	is	random,	there	are	as	many	up	states	as	down	states	on

average.	Since	further	(28)

the	ensemble	is	characterized	by	the	maximally	mixed	state,	irrespective	of	whether	Alice	had	got	heads	or	tails.

As	this	characterization	gives	the	maximal	information	Bob	can	extract	from	the	ensemble	by	making

measurements,	he	has	no	way	of	telling	whether	Alice	has	prepared	the	electrons	in	x-	or	y-spin	states.

At	a	later	stage,	Alice	tells	Bob	which	way	she	had	prepared	the	electrons,	together	with	the	random	sequence	she

used.	Now	Bob	can	actually	check	whether	Alice	is	telling	the	truth.	Indeed,	if	he	makes	a	sequence	of

measurements	on	the	electrons,	in	the	order	they	were	sent,	then,	if	the	direction	of	his	measurements	is	the	same

as	the	one	in	which	they	have	been	prepared,	say	x,	he	will	reproduce	the	random	sequence	told	him	by	Alice;	but

if	the	direction	of	his	measurements	is	the	other	one,	say	y,	then	he	will	obtain	a	completely	new	random	sequence

which	is	unrelated	to	the	first	(and	which	Alice	could	thus	not	have	anticipated).	Thus,	the	fact	that	no	information

on	top	of	that	provided	by	the	density	operator	is	available,	in	particular	about	how	a	proper	mixture	has	been

prepared,	provides	a	“safe”	in	which	the	actual	information	about	the	result	of	Alice's	toss	is	inaccessible	without	a

“key.”
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But	the	same	fact	gives	Alice	also	the	possibility	of	cheating.	Instead	of	sending	Bob	one	of	the	two	above	proper

mixtures,	Alice	can	send	him,	say,	the	right-hand	electrons	from	an	ensemble	of	pairs	prepared	in	the	singlet	state.

Since	it	is	impossible	for	Bob	to	tell	whether	the	state	he	receives,	namely	again	the	maximally	mixed	state,	is	a

proper	or	improper	mixture,	he	sees	no	difference	between	this	case	and	the	previous	case.	But	in	this	situation,

Alice	can	wait	for	Bob	to	choose	heads	or	tails	and	then	perform	a	sequence	of,	respectively,	spin-x	or	spin-y

measurements,	tell	Bob	she	had	done	that	before	sending	him	the	electrons	(as	a	way	of	preparing	the

corresponding	proper	mixture	by	way	of	collapsing	the	state),	and	tell	him	the	sequence	of	results	she	obtains

(exchanging	ones	and	zeros).	Since	results	of	spin	measurements	on	pairs	of	electrons	in	the	singlet	state	are

perfectly	anti-correlated,	when	Bob	measures	his	electrons,	he	obtains,	indeed,	the	sequence	Alice	has	told	him,

not	suspecting	that	Alice	has	just	then	collapsed	the	electrons	into	the	states	he	measures.

Thus,	the	indistinguishability	of	proper	and	improper	mixtures	prevents	Bob	from	finding	out	that	Alice	is	cheating,

while	the	objective	difference	between	proper	and	improper	mixtures	(namely,	in	terms	of	the	state	of	the

composite	system)	makes	all	the	difference	for	Alice	in	enabling	her	to	cheat	in	the	first	place!

This	situation	turns	out	to	be	extremely	general.	If	a	protocol	for	bit	commitment	is	based	on	the	idea	that	a	density

operator	could	be	one	of	two	different	proper	mixtures,	which	information	is	then	disclosed	later	on,	then	there

always	exists	a	cheating	strategy	based	on	the	fact	that	this	same	density	operator	could	be	an	improper	mixture.

This	result	is	called	the	no-go	theorem	for	safe	bit	commitment	protocols	(Lo	and	Chau	1997;	Mayers	1997).

3.	Classical	Regime	and	Decoherence

The	problem	of	the	classical	regime	is	the	question	of	whether	and	how	the	sweeping	success	of	classical	physics

(in	particular	on	the	macroscopic	scale)	can	be	explained	in	quantum	mechanical	terms.	While	in	the	philosophical

literature	it	is	the	measurement	problem	that	usually	takes	pride	of	place,	the	problem	of	the	classical	regime	is

equally	important	in	assessing	the	empirical	adequacy	of	quantum	theory	and	its	interpretations.	In	this	section	we

shall	look	at	this	problem	as	it	is	generally	viewed	today,	through	the	eyes	of	decoherence	theory.	To	fix	the	ideas,

however,	we	start	with	a	couple	of	early	examples	of	work	related	to	this	problem.

Schrödinger	(1926)	contributed	a	seminal	paper	on	the	classical	regime,	in	which	he	showed	that	Gaussian	wave

packets	for	the	harmonic	oscillator	maintain	their	shape	and	size	(narrow	in	both	position	and	momentum)	and

follow	the	trajectories	predicted	by	Newtonian	mechanics.	He	believed	this	provided	the	model	for	the	relation

between	“micromechanics”	and	“macromechanics.”	Another	early	treatment	of	“classical”	trajectories	was	given

by	Heisenberg	(1927)	in	his	analysis	of	α-particle	tracks	as	emerging	through	repeated	collapse	of	the	wave

function	in	a	bubble	chamber.	An	alternative	treatment	of	α-particle	tracks	was	given	by	Mott	(1929),	who	showed

that	the	wave	function	of	the	combined	system	of	α-particle	and	gas	was	concentrated	on	configurations	in	which

the	gas	was	ionized	along	straight	lines.

These	examples	(at	least	in	hindsight)	represent	rather	different	approaches	to	understanding	the	problem	of	the

classical	regime,	characterized	by	different	(or	potentially	different)	interpretational	approaches.	Schrödinger	had

an	ontological	commitment	to	the	wave	function.	At	the	time,	he	thought	of	it	as	representing	(or	manifesting	itself

as)	a	charge	density	in	3-dimensional	space.	Thus,	in	order	to	recover	a	classical	regime,	it	is	essential	in	a

Schrödinger-like	approach	to	identify	quantum	states	that	are	both	kinematically	and	dynamically	like	classical

states,	that	is,	for	which	the	classical	quantities	such	as	position	and	momentum	are	both	approximately	well-

defined	and	evolve	in	an	approximately	classical	manner.

As	for	Heisenberg,	it	appears	that	at	the	time	he	did	not	even	believe	in	the	existence	of	wave	functions,	but	only	in

the	transition	probabilities	between	values	of	(measured)	quantum	mechanical	observables. 	For	such	a	view,	it	is

essential	that	the	transition	probabilities	defined	by	the	Born	rule	reduce	approximately	to	0	or	1	for	results	of

measurements	performed	along	classical	trajectories.	Thus,	such	an	approach	(if	applied	consistently	throughout,

in	particular	up	to	the	macroscopic	scale)	arguably	aims	at	an	instrumental	recovery	of	the	predictions	of	classical

mechanics.

The	standard	interpretation	and	the	minimal	interpretation	of	quantum	mechanics	that	we	have	introduced	in

section	1.2	can	be	seen	as	sanitized	versions	of	the	approaches	by	Schrödinger	and	Heisenberg,	respectively.

Instead,	Mott's	treatment	is	an	early	example	of	a	decoherence	analysis,	in	which	no	collapse	need	be	invoked	to
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destroy	the	interference	between	the	wave	components	corresponding	to	the	different	trajectories.	As	I	see	it,	a

decoherence-based	approach	is	best	viewed	as	interpretationally	neutral,	but	as	providing	a	very	powerful	tool	for

any	approach	to	the	problem	of	the	classical	regime.

A	beautiful	example	of	the	importance	of	the	problem	of	the	classical	regime	for	foundational	issues	is	given	by

Einstein's	(1953)	contribution	to	the	Edinburgh	Festschrift	for	Max	Born.	Einstein	describes	a	macroscopic	ball	(of	1

mm	diameter),	bouncing	elastically	to	and	fro	inside	a	box	along	the	direction	x.	The	wave	function	of	the	ball	is

given	by	a	standing	wave,	which	fills	the	entire	box,	and	has	a	similarly	spread-out	distribution	in	momentum.

According	to	Einstein,	Born's	statistical	interpretation	provides	an	adequate	description	of	the	situation	for	an

ensemble	of	systems	(at	least	according	to	his	own	reading	of	Born).	However,	an	individual	ball	must	have	a	well-

defined	macroscopic	state,	and	that	is	not	described	by	the	wave	function.	To	the	objection	that	the	Schrödinger

equation	has	other	solutions,	that	are	sufficiently	localized	in	position	and	momentum,	Einstein	replies	that	these

solutions	will	spread	out	in	time.	Einstein	considers	also	two	attempts	at	interpretation	of	the	wave	function

alternative	to	Born's.	One	is	de	Broglie–Bohm	theory,	in	which	a	particle	will	have	a	well-defined	trajectory	guided

by	the	wave	function. 	In	Einstein's	example,	however,	the	velocity	of	the	ball	will	be	equal	to	zero,	so	that,	in

Einstein's	view,	de	Broglie–Bohm	theory	fails	to	provide	the	correct	macroscopic	description	of	the	ball	as	bouncing

to	and	fro	inside	the	box.	The	other	one	is	Schrödinger's	idea	of	the	wave	function	literally	describing	a	wavelike

nature	of	material	particles	(which	in	some	form	Schrödinger	had	recently	returned	to).	In	this	case,	however,	even

the	macroscopic	ball	is	a	wavelike	object	filling	the	whole	box,	and	Einstein's	verdict	is	that	also	Schrödinger's

reading	of	the	wave	function	fails	to	do	justice	to	the	classical	regime.	Einstein's	own	conclusion	is	that	a	statistical

interpretation	of	the	wave	function	in	the	sense	he	attributes	to	Born	is	the	appropriate	interpretation	to	give	to	the

theory.

3.1	Coherent	States	and	Ehrenfest's	Theorem

The	first	question	we	shall	discuss	now	is	the	sense	in	which	one	could	talk	of	a	quantum	state	as	being

approximately	classical	and	behaving	approximately	classically,	in	the	special	case	of	pure	quantum	states.	The

obvious	candidates	are	wave	functions	with	a	small	spread	both	in	position	and	in	momentum	(small	compared	to

some	macroscopic	scale).	This	was	Schrödinger's	initial	guess	as	to	the	appropriate	candidates	for	the	description

of	classical	particles	in	quantum	mechanics.

The	Heisenberg	uncertainty	relations	give	a	lower	bound	for	the	product	of	the	spreads	in	position	and	in

momentum,	but	for	sufficiently	massive	(“macroscopic”)	systems,	this	in	itself	is	a	very	small	limitation.	For

instance,	it	is	compatible	with	the	uncertainty	relations	that	a	system	has	a	spread	in	position	of	10 	cm	and	a

spread	in	momentum	of	10 	gcm/s.	If	the	system	has	a	(macroscopic)	mass	of	1	g,	the	latter	corresponds	to	a

spread	in	velocity	of	10 	cm/s.	If	we	are	merely	interested	in	describing	our	system	on	such	a	macroscopic

scale,	we	can	reasonably	say	that	the	system	has	both	a	well-defined	position	and	a	well-defined	momentum.	Note

that	such	a	wave	function	will	typically	be	nonzero	everywhere	both	in	position	space	and	in	momentum	space.

“Small	spread”	means	that	the	“bulk”	of	the	wave	function	is	localized.	Indeed,	it	is	well-known	that	those	wave

functions	that	attain	the	lower	bound	given	by	the	uncertainty	principle	are	Gaussian	wave	packets	(i.e.,	they	have

the	shape	of	Gaussian	bell	curves	when	represented	either	as	functions	of	position	or	as	functions	of	momentum),

and	as	such	have	infinite	“tails.”

It	is	obvious,	on	the	other	hand	(as	in	Einstein's	example),	that	even	for	very	massive	systems	there	are	states	with

macroscopically	large	spreads.	For	instance,	take	ψ 	and	ψ 	to	be	two	quantum	states	of	a	macroscopic	system

with	very	small	spreads,	but	with	macroscopically	different	average	values	of	position	and	momentum,	say	x	and	p

in	one	case,	x′	and	p′	in	the	other.	Then	the	state	 	will	have	spreads	of	the	order	of	|x	−	x′|	and	|p

−	p′|.

An	obvious	question	is	thus	whether	states	with	small	spreads	in	both	position	and	momentum	remain	such	under

the	quantum	evolution.	With	regard	to	this,	as	already	mentioned,	Schrödinger	(1926)	made	the	following

discovery.	Gaussian	wave	functions	for	a	harmonic	oscillator	(i.e.,	with	the	potential	proportional	to	the	square	of

position,	e.g.,	an	ideal	spring)	keep	exactly	the	same	shape	and	move	exactly	along	the	classical	trajectories.

These	states,	which	are	both	kinematically	and	dynamically	“classical”	are	called	the	coherent	states	of	the

harmonic	oscillator. 	Schrödinger	was	led	by	this	result	to	think	that	all	classical	behavior	could	be	explained	in

these	terms	by	quantum	mechanics	and,	indeed,	the	result	can	be	generalized	in	various	ways.	But	we	shall	see
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that	this	hope	was	misplaced.

A	simple	way	of	generalizing	these	results,	at	least	in	part,	is	as	follows.	For	short,	write	〈A〉	to	mean	〈ψ(t)|A|ψ(t)〉,

that	is,	the	average	value	of	an	operator	A	in	the	state	|ψ(t)〉	(see	equation	(5)).	Then,	with	m	the	mass	of	the

particle,	Q	and	P	the	position	and	momentum	operators,	and	V(Q)	the	operator	representing	the	potential	(which	is

a	function	of	position),	one	can	derive	the	two	parts	of	Ehrenfest's	theorem:	(29)

(the	average	momentum	is	mass	times	the	time	derivative	of	the	average	position),	and	(30)

(the	time	derivative	of	the	average	momentum	is	equal	to	the	average	force).	Thus,	the	average	position	and

momentum	almost	obey	Newton's	second	law,	with	the	qualification	that	the	classical	value	of	the	force	at	the

average	position	is	replaced	by	the	average	value	of	the	force.	This	holds	for	all	quantum	states,	but	if	the	state

has	a	small	spread	in	position,	the	average	value	of	the	force	is	approximately	equal	to	the	value	of	the	classical

force.	Thus,	a	state	with	a	small	spread	in	position	will	follow	an	approximately	classical	trajectory	as	long	as	its

spread	remains	small	(at	least	if	the	external	potential	in	which	it	moves	is	uniform	enough	on	the	scale	over	which

the	state	is	spread).

Do	position	spreads	remain	small?	In	the	case	of	a	Gaussian,	any	increase	in	the	position	spread	leads	to	a

decrease	in	momentum	spread	and	vice	versa.	Typically,	under	the	unitary	evolution,	the	spread	in	position

increases. 	In	the	simple	case	of	no	potentials	(“free	Gaussian”),	if	the	system	has	macroscopic	mass,	the	spread

of	the	state	will	remain	small	for	a	very	long	time.	For	a	system	with	mass	1	g,	starting	off	in	a	Gaussian	state	with

position	spread	10 	cm,	it	will	take	600	years	for	the	spread	in	position	to	increase	to	10 	cm,	and	it	will	take

another	6,000	million	million	years	for	it	to	further	increase	to	twice	that	size.	If	potentials	are	present,	the

spreading	can	be	enhanced	or	counteracted,	for	example,	if	the	wave	function	is	in	a	potential	well	it	may	stay

trapped	there.	In	the	case	of	the	hydrogen	atom,	the	spreading	of	wave	functions	was	pointed	out	to	Schrödinger

by	Lorentz	in	their	well-known	correspondence	of	1926	(published	in	Przibram	1963).	In	particular,	Lorentz	showed

that	electrons	in	the	hydrogen	atom	would	be	spread	out	over	their	entire	orbits,	even	for	the	case	of	high-energy

orbits.

The	examples	so	far	are	somewhat	mixed,	and	one	might	think	that	Schrödinger's	intuition	might	yet	prove	sound	at

least	for	sufficiently	macroscopic	systems.	That	is	precisely	what	Schrödinger	replied	to	Einstein	upon	receipt	of	his

draft	for	the	Born	Festschrift,	to	which	Einstein	replied	that	one	could	repeat	the	calculation	taking	not	a	1	mm	ball

but	a	dust	particle,	and	get	a	spread-out	state	within	24	hours!

Regardless	of	the	quantitative	details,	the	discussion	so	far	has	presupposed	that	the	state	of	our	system	always

remain	a	pure	state.	That	is,	the	time	evolution	equation	of	the	system	(the	Schrödinger	equation)	may	include

external	potential	terms,	but	it	includes	no	interaction	terms.	If	quantum	interactions	are	included,	however,	the

picture	changes	dramatically.	And	that	is	the	case	we	really	need	to	discuss.

3.2	Entanglement	with	the	Environment

If	two	quantum	systems	do	not	interact,	the	state	of	each	system	will	evolve	(unitarily)	within	the	Hilbert	space	that

describes	that	system,	and	the	state	of	the	composite	system	(if	initially	a	product	state!)	will	always	retain	its

product	form,	|ψ(t)〉|φ(t)〉.	If	the	two	systems	interact,	instead,	the	state	of	the	composite	system	will	evolve

(unitarily)	within	the	product	Hilbert	space,	and	in	general	the	state	of	the	composite	system	will	have	the	entangled

form	(31)

We	can	use	this	state	in	the	standard	way	to	make	predictions	for	the	composite	system,	as	well	as	for	either

subsystem	(in	particular	to	calculate	the	spread	in	position	or	in	momentum	of	either	subsystem).	Indeed,	a

measurement	on	a	subsystem	is	just	a	special	kind	of	measurement	on	the	composite	system,	so	the	usual

formalism	applies.	Equivalently,	as	discussed	already	in	section	2.1,	we	can	make	predictions	for	measurements	on
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a	subsystem	using	the	reduced	state	of	that	subsystem,	which	is	an	improper	mixture	that	takes	the	form,	say,	(32)

In	some	cases,	it	maybe	more	convenient	to	write	this	as	an	integral,	for	instance	over	Gaussian	wave	packets

centered	at	different	positions	(although	as	mentioned	in	section	2.1	a	decomposition	of	the	form	(32)	always

exists).	If	the	component	states	are	Gaussians	with	macroscopically	different	average	positions	(and/or	momenta),

the	spreads	of	the	state	now	can	be	macroscopically	large,	just	as	with	pure	states	that	are	sums	of	such	Gaussian

wave	packets.

Recall	that	improper	mixtures	are	not	ignorance-interpretable,	so	that	a	macroscopically	large	spread	in	position	or

momentum	that	arises	in	this	way	through	quantum	interactions	cannot	be	discussed	away	simply	by	applying	an

ignorance	interpretation	to	the	mixed	state.	Such	a	state	appears	to	be	genuinely	nonclassical.

Thus,	we	have	to	ask	whether	interactions	typically	lead	to	mixed	states	with	large	spreads,	or	whether	we	can	find

a	regime	in	which	these	spreads	remain	small.	Now,	however,	it	is	clearly	the	case	that	quite	common	interactions

do	in	fact	lead	to	such	apparently	nonclassical	states.

One	class	of	interactions	that	lead	to	mixtures	of	macroscopically	different	states	are	measurement	interactions,	as

with	Schrödinger's	(1935)	own	example	of	the	cat.	Although	the	scenario	is	well-known,	here	is	the	description	of

the	thought	experiment,	as	given	by	Schrödinger	himself:

A	cat	is	penned	up	in	a	steel	chamber,	along	with	the	following	diabolical	device	(which	must	be	secured

against	direct	interference	by	the	cat):	in	a	Geiger	counter	there	is	a	tiny	bit	of	radioactive	substance,	so

small,	that	perhaps	in	the	course	of	one	hour	one	of	the	atoms	decays,	but	also,	with	equal	probability,

perhaps	none;	if	it	happens,	the	counter	tube	discharges	and	through	a	relay	releases	a	hammer	which

shatters	a	small	flask	of	hydrocyanic	acid.	If	one	has	left	this	entire	system	to	itself	for	an	hour,	one	would

say	that	the	cat	still	lives	if	meanwhile	no	atom	has	decayed.	The	first	atomic	decay	would	have	poisoned

it.	The	ψ–function	of	the	entire	system	would	express	this	by	having	in	it	the	living	and	the	dead	cat

(pardon	the	expression)	mixed	or	smeared	out	in	equal	parts.

Such	an	example	clearly	provides	a	link	between	the	problem	of	the	classical	regime	and	the	problem	of

measurement.	We	shall	postpone	discussion	of	the	latter,	however,	since	the	two	problems	are	distinct.	In	the	case

of	the	measurement	problem,	we	have	a	special	case	of	failure	or	apparent	failure	of	classicality	at	the	kinematical

level,	but	the	observed	behavior	of	a	measuring	apparatus	(when	coupled	to	the	measured	system)	is	actually	far

from	classical	(thus	we	need	not	worry	about	recovering	classical	dynamics).	The	special	twist	of	the	measurement

problem	is	that	preparations	and	measurements	are	what	is	needed	to	apply	quantum	mechanics	in	the	first	place:

if	it	turned	out	that	these	could	not	be	analyzed	theoretically,	the	theory	would	in	some	sense	be	undermining

itself.

From	the	point	of	view	of	the	classical	regime,	however,	something	perhaps	even	more	startling	happens,	namely

that	very	common	and	spontaneous	interactions	of	a	system	with	its	environment	lead	to	the	same	kind	of	states

with	large	spreads.

To	fix	the	ideas,	think	at	first	of	a	pair	of	coupled	harmonic	oscillators	and	start	them	off	in	the	nonentangled	state

(33)

Both	classically	and	quantum	mechanically,	two	coupled	oscillators	will	recurringly	exchange	energy,	that	is,

evolve	to	and	fro	between	this	state	and	the	nonentangled	state	|	first	excited〉	|ground〉.	But	quantum

mechanically,	this	will	happen	through	intervening	stages	of	the	form	(34)

which	are	entangled;	and	the	single	oscillators	will	be	correspondingly	in	mixtures	of	their	ground	and	first	excited

states.	As	above,	these	mixed	states	arise	from	quantum	interactions	and	the	ensuing	entanglement.	Thus,	they	do

not	allow	for	an	ignorance	interpretation.

Now	imagine	a	harmonic	oscillator	coupled	to	a	thermal	bath	of	harmonic	oscillators.	It	will	be	taking	energy	from
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and	giving	energy	to	all	of	them.	If	initially	the	oscillator	and	the	bath	are	unentangled,	the	recurrence	time	for

disentangling	again	could	be	arbitrarily	long	(or	infinite),	and	in	general	the	state	of	the	oscillator	maybe	a	mixture

of	any	of	its	energy	states.	Indeed,	if	the	oscillator	is	assumed	to	be	in	thermal	equilibrium	with	its	environment,	its

quantum	mechanical	description	is	a	mixture	of	all	its	energy	states.	The	spread	in	position	and	momentum	can	be

calculated	in	various	ways.	One	rather	suggestive	way	uses	the	fact	that	for	high	temperatures	one	can	rewrite	the

equilibrium	state	as	a	mixture	of	all	possible	coherent	states	of	the	oscillator,	with	weights	depending	on	their

energy.	One	can	thus	picture	the	oscillator	as	roughly	spread	out	over	the	classical	trajectories	corresponding	to

the	most	probable	energies	(see,	e.g.,	Donald	1998).

This	example	illustrates	very	well	the	following	general	idea,	which	I	owe	to	Matthew	Donald.	While	in	classical

statistical	physics	we	may	think	of	equilibrium	states,	at	least	intuitively,	as	describing	our	ignorance	of	the	actual

microstate	of	a	system,	quantum	equilibrium	states	should	generally	be	thought	of	as	improper	mixtures:	there	is	no

matter	of	fact	about	which	pure	state	describes	the	system,	and	any	macroscopic	spreads	resulting	from	the

weighted	average	in	the	mixture	are	genuine	nonclassical	features.

A	macroscopic	oscillator	will	clearly	not	draw	in	enough	energy	to	be	spread	out	over	macroscopic	scales,	if	the

environment	is,	say,	at	room	temperature	(a	classical	oscillator	will	not	start	jittering	on	a	macroscopic	scale);	but

as	a	matter	of	fact,	one	can	easily	think	of	systems	that	are	much	more	sensitive	to	the	influence	of	a	thermal

environment,	and	are	thus	highly	problematic	from	the	point	of	view	of	justifying	an	approximate	description	in

terms	of	classical	physics.	One	example	is	a	molecule	of	gas	in	equilibrium	in	a	box.	Every	such	molecule	will	be

spread	out	over	the	entire	volume	of	the	box	(Donald	1998).	Thus,	deriving	classical	statistical	physics	from

quantum	mechanics	is	part	of	the	problem	of	the	classical	regime	(cf.	also	Wallace	2001).

Another	possible	example	is	that	of	a	Brownian	particle	suspended	in	a	fluid.	Our	classical	intuition	is	that	it	is

tossed	around	by	the	molecules	of	the	fluid,	which	influence	the	particle's	motion	in	a	very	irregular	way.	If,

however,	the	interaction	of	the	Brownian	particle	with	its	environment	is	treated	quantum	mechanically,	it	would

seem	that	its	state	will	be	an	improper	mixture	spread	over	all	its	classically	possible	positions.

Radioactive	decay	always	involves	entanglement	with	the	environment,	and	if	the	emitted	radiation	causes	a

carcinogenic	mutation	that	kills	a	cat,	this	is	only	one	component	in	a	complicated	entangled	state	(that	includes

not	only	the	undecayed	component,	but	also	components	describing	decays	at	different	times).	The	similarity	with

Schrödinger's	cat	is	not	accidental:	this	is	precisely	a	Schrödinger	cat,	but	arising	spontaneously,	without	the	need

for	the	experimenter's	“diabolical	device.”

A	little	thought	will	multiply	the	examples.	“Environmental”	interactions	such	as	these	are	clearly	ubiquitous.	And	if

this	is	what	they	lead	to,	then	it	is	clear	that,	at	least	in	its	original	form,	Schrödinger's	approach	to	the	problem	of

the	classical	regime	is	doomed	to	failure.

3.3	Decoherence	and	the	Classical	Regime

Luckily,	the	same	interactions	that	lead	to	entanglement	with	the	environment	also	provide	at	least	a	crucial

ingredient	for	the	resolution	of	the	problem,	because	they	also	induce	decoherence	between	the	various	classical

components	they	superpose.

To	explain	the	concept	of	decoherence,	let	us	first	look	at	a	very	elementary	example,	namely	the	two-slit

experiment.	One	repeatedly	sends	electrons	or	other	particles	through	a	screen	with	two	narrow	slits,	the	particles

impinge	upon	a	second	screen,	and	we	ask	for	the	probability	distribution	of	detections	on	the	surface	of	the

screen.	In	order	to	calculate	this,	one	cannot	just	take	the	probabilities	of	passage	through	the	slits,	multiply	with

the	probabilities	of	detection	at	the	screen	conditional	on	passage	through	either	slit,	and	sum	over	the

contributions	of	the	two	slits.	There	is	an	additional	“interference	term”	in	the	correct	expression	for	the	probability,

and	this	term	depends	on	both	of	the	wave	components	passing	through	one	or	the	other	slit.

There	are,	however,	situations	in	which	this	interference	term	(for	detections	at	the	screen)	is	not	observed,	that	is,

in	which	the	classical	probability	formula	applies.	This	happens	for	instance	when	we	perform	a	detection	at	the

slits,	which	at	least	phenomenologically	induces	a	collapse	of	the	wave	function.	The	disappearance	of	the

interference	term,	however,	can	happen	also	spontaneously,	when	no	detection	at	the	screen	is	performed,	for

instance	if	sufficiently	many	“stray	particles”	scatter	off	the	electron	between	the	slits	and	the	screen.	In	this	case,
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the	reason	why	the	interference	term	is	not	observed	is	because	the	electron	has	become	entangled	with	the	stray

particles,	and	the	results	of	any	observation	on	the	electron	are	determined	by	its	reduced	state	alone.	As	in	our

discussion	of	reduced	states	in	section	2.2,	the	probabilities	for	results	of	measurements	performed	only	on	the

electron	are	calculated	as	if	the	wave	function	had	collapsed	to	one	or	the	other	of	its	two	components.

The	intuitive	picture	is	one	in	which	the	environment	monitors	the	system	of	interest	by	continuously	“measuring”

some	quantity	characterized	by	a	set	of	“preferred”	states	(“eigenstates	of	the	decohering	variable”).	Interaction

potentials	are	functions	of	position,	so	the	preferred	states	will	tend	to	be	related	to	position,	or	to	be	in	fact	joint

approximate	eigenstates	of	position	and	momentum	(since	information	about	the	time	of	flight	is	also	recorded	in

the	environment),	that	is,	coherent	states.	The	localization	thus	achieved	can	be	on	a	very	short	length	scale,	that

is,	the	characteristic	length	above	which	coherence	is	dispersed	(coherence	length)	can	be	very	short.	A	speck	of

dust	of	radius	a	=	10 	cm	floating	in	air	will	have	interference	suppressed	between	(position)	components	with	a

width	of	10 	cm.	Even	more	startlingly,	the	timescales	for	this	process	are	minute.	The	above	coherence	length

is	reached	after	a	microsecond	of	exposure	to	air.

One	can	thus	argue	that	generically	the	states	privileged	by	decoherence	at	the	level	of	components	of	the

quantum	state	are	localized	in	position	or	both	position	and	momentum,	and	therefore	kinematically	classical.	(One

should	be	wary	of	overgeneralizations,	but	this	is	certainly	a	feature	of	many	concrete	examples	that	have	been

investigated.)

What	about	classical	dynamical	behavior?	Interference	is	a	dynamical	process	that	is	distinctively	quantum,	so,

intuitively,	lack	of	interference	might	be	associated	with	classical-like	dynamical	behavior.	To	make	the	intuition

more	precise,	think	of	the	two	components	of	the	wave	going	through	the	slits.	If	there	is	an	interference	term	in	the

probability	for	detection	at	the	screen,	it	must	be	the	case	that	both	components	are	indeed	contributing	to	the

particle	manifesting	itself	on	the	screen.	But	if	the	interference	term	is	suppressed,	one	can	at	least	formally

imagine	that	each	detection	at	the	screen	is	a	manifestation	of	only	one	of	the	two	components	of	the	wave

function,	either	the	one	that	went	through	the	upper	slit,	or	the	one	that	went	through	the	lower	slit.	Thus,	there	is	a

sense	in	which	one	can	recover	at	least	one	dynamical	aspect	of	a	classical	description,	a	trajectory	of	sorts:	from

the	source	to	either	slit	(with	a	certain	probability),	and	from	the	slit	to	the	screen	(also	with	a	certain	probability).

That	is,	one	recovers	a	“classical”	trajectory	at	least	in	the	sense	that	formally	the	probabilities	reduce	to	those	of

a	classical	stochastic	process.

In	the	case	of	continuous	models	of	decoherence	with	interactions	based	on	the	analogy	of	approximate	joint

measurements	of	position	and	momentum,	one	can	do	even	better.	In	this	case,	the	trajectories	at	the	level	of	the

components	(the	trajectories	of	the	preferred	states)	will	approximate	surprisingly	well	the	corresponding	classical

(Newtonian)	trajectories.	Intuitively,	one	can	explain	this	by	noting	that	the	preferred	states	are	the	states	that

themselves	tend	to	get	least	entangled	with	the	environment,	so	they	will	tend	to	follow	the	Schrödinger	equation

more	or	less	undisturbed.	But	in	fact,	as	we	have	seen	from	Ehrenfest's	theorem,	narrow	wave	packets	follow

approximately	Newtonian	trajectories.	Thus,	the	resulting	“histories”	will	be	close	to	Newtonian	ones	on	the

relevant	scales.

The	most	intuitive	physical	examples	for	this	are	the	observed	trajectories	of	α-particles	in	a	bubble	chamber,

which	are	indeed	extremely	close	to	Newtonian	ones,	except	for	additional	tiny	“kinks.”	Indeed,	one	should	expect

slight	deviations	from	Newtonian	behavior.	These	are	due	both	to	the	tendency	of	the	individual	components	to

spread,	and	to	the	detection-like	nature	of	the	interaction	with	the	environment,	which	further	enhances	the

collective	spreading	of	the	components	(a	narrowing	in	position	corresponds	to	a	widening	in	momentum).	These

deviations	appear	as	noise,	that	is,	particles	being	kicked	slightly	off	course. 	Other	examples	will	include

trajectories	of	a	harmonic	oscillator	in	equilibrium	with	a	thermal	bath	(so	the	decomposition	we	mentioned	above	is

not	just	suggestive,	but	in	fact	quite	accurate),	and	trajectories	of	particles	in	a	gas	(which	are	a	precondition	for

then	applying	classical	derivations	of	thermodynamics	from	classical	statistical	mechanics).

Thus	we	see	that	decoherence	provides	us	with	tantalizingly	classical	structure,	both	kinematical	and	dynamical,

at	the	level	of	components	of	the	wave	function.	It	is	thus	natural	to	assume	that	it	will	play	a	crucial	role	in	any

resolution	of	the	problem	of	the	classical	regime.	Whether	it	can	play	such	a	role	and	how,	however,	will	depend	on

the	interpretational	approach	one	adopts	toward	quantum	mechanics.

Let	us	take	first	the	minimal	interpretation	of	the	theory,	according	to	which	quantum	mechanics	is	about	the	results
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of	preparations	and	measurements,	and	merely	provides	a	probabilistic	link	between	these	two.	If	one	adopts	this

view,	the	problem	of	the	classical	regime	is	a	question	about	the	results	of	measurements	performed	on	certain

“classical,”	generally	macroscopic	systems	(or	possibly	certain	elements	of	their	environment).	Decoherence	tells

us	that	it	is	indeed	possible	to	isolate	a	classical	regime	(at	least	one )	for	which	appropriate	measurements	will

reveal	either	actual	quasi-classical	trajectories,	or	the	appearance	thereof.

What	we	mean	by	this	is	the	following:	(a)	if	the	measurements	along	a	quasi-classical	trajectory	are	actually

carried	out	(as	in	Heisenberg's	treatment	of	α-particle	tracks),	then	the	results	obtained	will	“line	up”	along	the

quasi-classical	trajectories	provided	by	decoherence;	but	even	if	(b)	the	intermediate	measurements	are	not

carried	out,	and	only	the	final	measurement	is,	one	can	consistently	assign	retrospectively	the	whole	trajectory	to

the	system	(sometimes	merely	guessing	what	the	trajectories	“must	have	been”).	This	distinction	is	related	to	what

is	known	as	the	movability	of	the	Heisenberg	“cut”	between	observer	and	observed	(which	we	discuss	in	the	next

subsection).

One	will	thus	recover	the	predictions	of	classical	mechanics,	but	only	instrumentally.	Indeed,	measurements	will

need	to	be	regarded	as	primitive	even	in	classical	mechanics,	and	it	will	be	out	of	measurements	that	we	will

reconstruct	“objects”	that	“look”	and	“behave”	classically	(the	Moon	is	not	there	if	we	do	not	look).

What	of	the	standard	interpretation?	In	a	sense,	the	problem	of	the	classical	regime	is	more	interesting	if	one

adopts	this	view,	because	if	one	manages	to	derive	a	classical	regime	within	quantum	mechanics	in	the	standard

interpretation,	then	this	would	recapture	also	the	standard	interpretation	of	classical	mechanics	(with

measurements	being	derived	notions).	However,	as	we	have	seen,	if	one	rejects	a	minimal	interpretation	of	the

formalism,	but	has	some	fuller	ontological	commitment	to	the	wave	function	as	describing	a	quantum	system	itself,

then	decoherence	appears	to	exacerbate	the	problematic	nature	of	the	classical	regime.	Indeed,	quantum

interactions	tend	to	create	improper	mixtures	at	the	level	of	the	component	systems.	Therefore,	it	would	appear

that	they	destroy	classicality,	as	in	the	case	of	Schrödinger's	cat.

As	in	Einstein's	discussion,	if	one	wishes	to	keep	a	fuller	ontological	commitment	to	the	wave	function,	or	to	provide

a	description	of	individual	quasi-classical	systems	within	quantum	mechanics,	one	will	have	to	replace	the

standard	interpretation	(or	quantum	theory	itself)	with	some	alternative	approach.	The	same	broad	frameworks	that

are	usually	proposed	as	relevant	to	the	measurement	problem	appear	to	be	useful	(but	note	our	concluding

qualifications	in	section	5).	Today's	Everett	interpretations	are	intimately	connected	with	decoherence.	Indeed,	the

revival	of	Everettian	ideas	can	be	traced	back	to	Zeh's	work	on	decoherence	from	the	early	1970s,	and	was	taken

up	in	the	philosophy	literature	arguably	starting	in	the	early	1990s	with	the	work	of	Saunders,	and	later	of	Wallace

and	others.	In	these	modern	versions	of	Everett,	either	the	“many	worlds”	or	the	physical	correlate	of	the	“many

minds”	are	explicitly	identified	with	the	stable	structures	created	by	decoherence	at	the	level	of	components	of	the

universal	wave	function. 	Pilot-wave	theories	along	the	lines	of	de	Broglie	and	Bohm	also	need	to	address

explicitly	the	problem	of	the	classical	regime,	since	in	general	the	trajectories	defined	in	the	theory	are	highly

nonclassical	(see,	e.g.,	Holland	1995,	ch.	6,	and,	for	a	different	point	of	view,	Allori	and	Zanghì	2009).	At	least	in

the	nonrelativistic	particle	theory,	it	would	seem	that	the	components	preferred	by	decoherence	correspond	nicely

with	the	“full”	and	“empty”	waves	of	the	theory.	In	Einstein's	example,	the	macroscopic	ball	or	dust	particle	will	be

decohered	by	the	environment	inside	the	box,	and	the	system	will	be	effectively	guided	by	only	one	of	the

components	running	in	opposite	directions	and	that	form	the	standing	wave	when	superposed.	However,	it	is	less

clear	whether	similar	results	are	available	in	the	case	of	quantum	field	theoretic	generalizations	(see,	e.g.,	Wallace

2008).	Finally,	spontaneous	collapse	theories	might	also	be	able	to	take	advantage	of	the	structures	provided	by

decoherence	(which	generally	operates	on	a	much	faster	timescale	than	spontaneous	collapse),	but	explicit

studies	combining	collapse	models	and	decoherence	are	notably	lacking	from	the	literature.

3.4	Heisenberg's	“Cut”

We	conclude	this	section	by	expanding	on	the	remarks	in	the	last	subsection	on	the	Heisenberg	“cut.”	In

particular,	we	wish	to	make	precise	in	what	sense	decoherence	is	relevant	to	Heisenberg's	discussion	of	the

movable	cut	between	observer	and	observed	(or	to	von	Neumann's	discussion	of	measurement	chains),	and	in

what	sense	it	is	not.	This	will	provide	also	a	good	entry	into	the	topic	of	measurement,	treated	in	the	next	section.

Especially	in	the	early	1930s,	Heisenberg	used	to	emphasize	the	importance	of	the	movability	of	the	“cut”	between
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the	quantum	and	the	classical	domains	in	ensuring	the	consistency	of	quantum	mechanics	(cf.	Heisenberg	1930,

ch.	4;	1949,	pp.	7–21	and	35–46;	and	especially	1985).	Neither	Heisenberg	nor	any	of	the	other	founding	fathers	of

quantum	mechanics	believed	in	a	rigid	boundary	between	a	quantum	world,	to	which	one	could	apply	quantum

mechanics,	and	a	classical	world,	to	which	one	could	apply	only	classical	mechanics	and	to	which	the	apparatus

and	the	observer	belonged.	Any	parts	of	the	world	(including	ostensibly	“classical”	ones)	could	be	treated

quantum	mechanically	if	one	so	wished. 	Consistency	of	the	theory	had	to	be	ensured,	according	to	Heisenberg,

in	the	sense	that	applying	quantum	mechanics	to	a	“classical”	part	of	the	world	should	produce	the	same

predictions	as	if	classical	mechanics	had	been	used.

At	the	risk	of	pre-empting	somewhat	our	discussion	of	measurements	in	the	next	section,	let	us	consider	a	so-

called	“measurement	chain,”	say	the	example	discussed	by	von	Neumann	(1932)	in	his	chapter	on	quantum

measurement:	we	measure	the	temperature	of	a	(quantum)	gas	using	a	(classical)	thermometer,	or	we	treat	the

interaction	between	the	gas	and	the	thermometer	quantum	mechanically,	and	we	observe	(classically)	the	height

of	the	mercury	column,	or	we	treat	also	the	interaction	between	the	thermometer	and	the	human	retina	quantum

mechanically,	and	our	brain	registers	(classically)	the	image	on	the	retina,	or	we	treat	the	whole	physical	process

quantum	mechanically,	and	it	is	only	our	consciousness	that	becomes	(“classically”)	aware	of	the	outcome	(and

collapses	the	physical	state).	Now,	there	are	two	senses	in	which	we	can	establish	the	consistency	of	these

descriptions.

First,	if	the	successive	(quantum	or	classical)	interactions	are	such	as	to	correlate	perfectly	the	values	of	the

temperature	and	the	values	of	the	quantities	that	are	meant	to	record	the	temperature,	then	it	follows

straightforwardly	that,	irrespective	of	where	the	collapse	postulate	and	Born	rule	are	applied,	one	will	obtain	the

same	final	results	with	the	same	probabilities.	This	is	actually	the	sense	in	which	both	Heisenberg	and	von

Neumann	are	interested	in	establishing	consistency.

Second,	we	can	consider	the	influence	of	decoherence.	Note	that	if	no	decoherence	were	present,	then

performing	some	other	measurement	on	the	thermometer	(i.e.,	a	measurement	incompatible	with	that	of	the	length

of	the	mercury	column),	or	somewhere	further	along	the	measurement	chain,	would	reveal	interference	terms

between	the	components	of	the	state	corresponding	to	different	measured	temperatures.	The	placing	of	the	“cut”

would	influence	the	final	statistics,	just	as	the	timing	of	the	collapse	does	in	the	case	of	the	two-slit	experiment

(collapse	behind	the	slits	or	at	the	screen).	Conversely,	once	decoherence	has	kicked	in	at	the	level	of	the

thermometer,	there	is	no	further	measurement	we	would	be	able	to	perform	in	practice	on	the	thermometer	that

could	distinguish	whether	the	thermometer	is	a	classical	or	a	quantum	system.	And	similarly	for	the	retina	and	for

the	brain	of	the	observer.	It	is	in	this	stronger	sense	that	decoherence	establishes	that	the	location	of	the	cut

between	the	quantum	and	the	classical	domain	(where	the	collapse	postulate	is	applied	along	the	measurement

chain)	is	arbitrary.

4.	Theory	and	Problem	of	Measurement

We	now	turn	to	discussing	the	theory	and	problem	of	measurement.	We	shall	start	by	discussing	measurements	in

some	detail,	using	Stern–Gerlach	measurements	as	our	exemplar,	and	generalizing	the	phenomenological	notion	of

a	measurement	(and	of	a	measurable	quantity	or	“observable”)	using	the	tools	provided	by	the	so-called	POV

measures.	This	theoretical	discussion	will	then	provide	the	basis	for	discussing	the	measurement	problem	in

section	4.6.

4.1	Discretized	Position	Measurements

Quite	surprisingly,	there	is	no	perfect	analogue	for	the	collapse	postulate	in	the	case	of	measurements	of

continuous	quantities,	such	as	position.	Naively	one	would	expect	a	wave	function	ψ(x)	to	collapse	to	a

(renormalized)	Dirac	δ-function	centered	at	some	point	q,	that	is,	to	ψ(x)δ(x	−	q),	with	a	Born	probability	density

given	by	|ψ(q)| .	The	problem	with	this	is	the	mathematical	fact	that	any	function	that	is	nonzero	at	a	single	point

has	square	integral	0,	and	is	thus	identified	with	the	zero	vector.	Dirac's	famous	δ-functions	are	thus	not	actually

quantum	states,	so,	trivially,	one	cannot	collapse	a	state	to	a	δ-function.

This	was	recognized	already	by	von	Neumann	(1932),	who	used	discretization	procedures	to	describe

measurements	of	position.	For	instance,	we	can	(ideally)	test	for	whether	a	wave	function	lies	in	the	subspace	of	all
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square-integrable	functions	that	are	nonzero	in	the	interval	[x ,x ].	If	the	test	is	positive,	the	original	wave	function

ψ(x)	will	collapse	to	 	(suitably	renormalized), 	with	probability	(35)

(This	suggestion	is	so	obvious	that	the	problematic	nature	of	the	collapse	postulate	for	continuous	quantities	often

goes	unnoticed.)

Such	discretized	measurements	of	position	are	all	we	need	to	analyze	explicitly	how	a	spin	measurement	works,

and	in	fact	to	generalize	it	to	include	more	realistic	kinds	of	spin	“measurements.”

4.2	Ideal	Spin	Measurements

Let	us	first	describe	the	case	of	an	ideal	measurement	of	spin.	Note	that	a	system	with	both	spin	and	position

degrees	of	freedom	is	described	using	the	tensor	product	of	the	Hilbert	spaces	used	to	describe	a	“pure”	spin-1/2

system	(a	two-dimensional	complex	Hilbert	space)	and	a	spinless	particle	(the	Hilbert	space	of	Schrödinger's	wave

functions),	just	as	if	one	were	composing	two	separate	systems.

Take	an	electron	that	we	assume	to	be	initially	in	a	state	(36)

What	this	means	is	that	the	electron	is	described	as	having	a	spin	state,	given	by	the	vector	|φ〉	in	the	two-

dimensional	spin	space	of	the	electron,	as	well	as	a	wave	function,	ψ.

Now	suppose	we	want	to	perform	a	measurement	of	spin	in	some	given	direction,	and	that	with	respect	to	this	spin

basis,	|φ〉	=	α|+〉	+	β|−〉,	so	that	(36)	equals	(37)

If	we	pass	the	electron	through	an	ideal	Stern–Gerlach	magnet,	the	evolution	of	the	state	will	be	described	by	the

appropriate	Schrödinger	equation,	which	is	unitary.	Therefore,	we	can	consider	separately	the	deflection	of	the	two

components	and	superpose	the	results.	We	obtain	(38)

(where	ψ 	and	ψ 	are	suitably	deflected	versions	of	ψ).	We	see	that	the	spin	degree	of	freedom	of	the	electron	is

now	entangled	with	its	position	degrees	of	freedom.

We	now	detect	the	electron	on	a	screen,	that	is,	perform	a	position	measurement.	Indeed,	we	perform	a	discretized

measurement	of	position,	because	we	only	need	to	distinguish	whether	the	electron	hits	the	half	of	the	screen

associated	with	the	up	or	down	component	of	the	spin	(which,	as	mentioned	in	footnote	6,	depending	on	the

experimental	setup	might	or	might	not	coincide	with	the	upper	or	lower	half	of	the	screen,	respectively).	Assuming

that	ψ 	and	ψ 	do	not	overlap,	the	standard	collapse	postulate	and	Born	rule,	applied	to	the	detection	of	the

electron	on	the	screen,	will	yield	either	(39)

or	(40)

and	thus	we	can	actually	derive	the	collapse	postulate	and	Born	rule	for	the	spin	measurement	from	the	collapse

postulate	and	Born	rule	for	the	discretized	measurement	of	position.

4.3	“Unsharp”	Spin	Measurements

Real	experiments,	however,	will	not	yield	exactly	the	above	result.	Let	us	return	to	the	discussion	of	our	Stern–

Gerlach	example.	It	is	a	fact	that	wave	functions,	even	if	at	any	one	time	they	can	be	zero	outside	of	a	given

interval,	will	(typically)	spread	instantaneously	out	to	infinity,	so	that	while	we	could	expect	the	bulk	of	ψ 	and	ψ 	to

be	concentrated	each	on	one	half	of	the	screen,	they	will	have	“tails”	spreading	out	to	the	“wrong”	half	of	the

screen,	say	(41)

1 2
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Here,	ψ 	is	meant	to	represent	that	part	of	ψ 	that	is	distributed	over	the	half-screen	associated	with	the	up	result,

and	ψ 	the	part	that	is	distributed	over	the	half-screen	associated	with	the	down	result;	and	similarly	for	ψ 	and

ψ .	We	shall	assume	for	simplicity	that	(42)

and	thus	also	(43)

In	this	case,	applying	the	collapse	postulate	and	Born	rule	to	detecting	the	electron	on	the	screen	yields	either	(44)

or	(45)

(both	to	be	suitably	renormalized),	with	probabilities	(46)

and	(47)

respectively.

We	see	that	the	effect	of	the	measurement	on	the	spin	state	of	the	electron	is	no	longer	simply	given	by	the

standard	collapse	postulate.	Indeed,	the	two	possible	states	of	the	electron	after	the	measurement	are	not	even

product	states,	so	that	the	spin	of	the	electron	is	still	entangled	with	its	spatial	degrees	of	freedom,	and	the	spin

part	of	the	electron	is	collapsed	to	an	improper	mixture:	either	(48)

or	(49)

with	the	same	probabilities	(46)	and	(47)	(also	here,	we	need	to	suitably	renormalize,	since	the	weights	in	each

decomposition	need	to	sum	to	1).

Note	that	these	are	the	states	we	obtain	if	we,	indeed,	know	the	result	of	the	spin	measurement	and	can	select	one

of	these	two	final	states	on	the	basis	of	the	measurement	result	(thus	performing	a	so-called	selective

measurement).	If	we	do	not	know	the	outcome	of	the	spin	measurement,	then	future	predictions	for	spin

measurements	on	the	electron	will	use	a	state	that	is	itself	a	(proper)	mixture	of	the	two	corresponding	density

operators.	We	can	obtain	this	by	simply	adding	the	two	(unnormalized)	states	(48)	and	(49),	to	yield	(50)

This	is	now	a	case	of	nonselective	measurement,	in	which	we	obtain	a	mixed	state	that	is	partially	ignorance-

interpretable.	But—as	in	the	case	of	the	bit	commitment	problem	of	section	2.3—we	need	to	know	the	past	history

of	the	system	(how	the	state	has	been	prepared),	in	order	to	know	how	and	how	far	to	interpret	this	mixed	state	in

terms	of	ignorance.	If	the	measurement	is	ideal,	then	the	correct	decomposition	of	the	state	is	in	terms	of	spin-up	or

spin-down;	if	the	measurement	is	correctly	modeled	by	the	above,	the	correct	decomposition	is	given	in	terms	of

(48)	and	(49).

In	this	example	(where	we	have	combined	an	ideal	Stern–Gerlach	magnet	with	a	more	realistic	position	state),	we

see	that	the	probabilities	in	(50)	are	independent	of	the	shape	of	the	position	state	(and	indeed,	of	whether	it	is

“ideal”	or	“realistic”).	One	easily	realizes	that	even	more	general	transformations	on	the	spin	state	of	the	electron

can	be	induced	by	a	detection	on	the	screen,	if	one	considers	that	the	Stern–Gerlach	magnetic	field	itself	is	not

“ideal”	(in	order	to	satisfy	the	Maxwell	equations,	it	cannot	be	perfectly	homogeneous	in	the	directions

perpendicular	to	that	of	measurement).	Or,	indeed,	if	one	considers	that	one	could	have	chosen,	at	least	in

principle,	any	other	unitary	coupling	between	the	spin	and	position	degrees	of	freedom	of	the	electron	before

proceeding	to	the	detection	on	the	screen.
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4.4	General	Phenomenology	of	Measurements

The	above	examples	of	various	kinds	of	spin	measurements	serve	as	perfect	illustrations	of	the	general

phenomenology	and	theory	of	measurements	in	quantum	mechanics.	As	discussed	in	section	1.1,	measurements

are	phenomenologically	captured	by	the	collapse	postulate,	which	describes	transformations	on	the	state	of	the

measured	system,	and	the	Born	rule,	which	gives	the	probabilities	for	such	transformations.	Both	rules	need	to	be

generalized.	We	shall	sketch	this	generalization	here,	but	only	in	the	discrete,	finite-dimensional	case.

Let	us	first	slightly	redescribe	the	collapse	postulate	and	Born's	rule	for	the	case	of	the	standard	measurements	of

section	1.1.	Take	a	family	of	mutually	compatible	quantum	mechanical	tests,	corresponding	to	a	family	of	mutually

orthogonal	sub-spaces	of	the	Hilbert	space.	(If	they	do	not	span	already	the	whole	Hilbert	space,	we	can	add	to	the

family	the	orthogonal	complement	of	their	span,	corresponding	to	the	system	testing	negatively	to	all	the	tests.)

The	corresponding	projection	operators	form	a	so-called	(PV,	or	projection-valued)	resolution	of	the	identity:	(51)

where	1	is	the	identity	operator	on	the	Hilbert	space.	In	this	case,	we	also	talk	of	a	PV-observable.

In	the	case	of	a	selective	measurement	of	this	PV-observable,	with	outcome	i,	the	state	of	the	system	collapses	as:

(52)

or	more	generally,	writing	ρ	for	the	initial	state	to	cover	also	the	case	when	it	might	not	be	pure:	(53)

(in	both	cases	with	suitable	renormalization).	The	probabilities	for	the	collapses	(52)	and	(53)	are,	respectively,

〈ψ|P |〉	and	(54)

(Note	that	the	trace	is	cyclic,	that	is,	Tr(AB)	=	Tr(BA)	for	any	two	operators,	and	that	 	for	projections.)

In	the	case	of	a	nonselective	measurement,	the	collapse	takes	the	form	(55)

(already	normalized,	because	of	(51)).

In	the	case	of	the	more	realistic	spin	measurements	just	discussed,	instead	of	the	transformation	(52),	we	have	a

transformation	to	an	(improper)	mixture,	which	we	can	write	as	(56)

or	(57)

depending	on	the	outcome,	with	probabilities	given	by	the	trace	of	(56)	or	of	(57),	respectively.

In	the	most	general	case,	the	transformation	(52)	or	(53)	takes	the	form	of	a	so-called	operation,	or	completely

positive	map:	(58)

with	suitable	operators	 	for	each	outcome	i.	(If	there	is	only	one	 	corresponding	to	the	outcome	i,	the

operation	is	said	to	be	“pure,”	because	it	maps	pure	states	to	pure	states.)

The	corresponding	probabilities	are	given	by	(59)

where	we	have	defined	the	so-called	effect 	E 	as	(60)
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In	the	nonselective	case,	the	transformation	(55)	becomes	(61)

And	the	normalization	of	the	probabilities	(59)	yields	the	analogue	of	(51),	namely	(62)

that	is,	the	E 	form	an	effect-valued	(or	POV,	or	positive-operator-valued)	resolution	of	the	identity	(or	POV-

observable).

Interesting	special	cases	are	obtained	when,	as	in	the	case	of	the	spin	measurements	above,	the	operations	are

combinations	of	the	projections	from	a	PV-observable	(so-called	“unsharp”	measurements	of	the	corresponding

PV-observable);	or	when	the	effects	E 	are	in	fact	mutually	orthogonal	projections,	but	the	corresponding

operations	are	not	simple	projections,	but	have	a	more	general	form	(“disturbing”	measurement	of	the

corresponding	PV-observable).	Other	cases	of	POV-observables	can	be	interpreted	as	corresponding	to

sequences	of	measurements	of	PV-observables	(or	of	other	POV-observables),	yet	others	as	corresponding	(in

certain	specific	senses)	to	joint	unsharp	measurements	of	incompatible	PV-observables.	The	closer	relation

between	a	measurement	and	a	single	self-adjoint	operator	mentioned	in	section	1.1	is	clearly	lost	in	the	general

case.

These	transformations	provide	the	general	form	of	the	phenomenological	collapse	postulate,	and	the

corresponding	probabilities	the	general	form	of	the	phenomenological	Born	rule.	The	above	discussion	of	spin

measurements,	however,	illustrates	also	the	general	theoretical	description	of	such	measurements.	Indeed,	one

can	show	(this	is	known	as	the	Naimark	dilation	theorem)	that	any	completely	positive	map	on	the	states	of	the

measured	system	can	always	be	obtained	by	suitable	interaction	with	some	other	system,	followed	by	a	PV-

measurement	on	this	other	system	(i.e.,	a	transformation	of	the	form	(53)	or	(55),	where	it	should	again	be

emphasized	that	the	P 	need	not	be	one-dimensional	projections).	This	other	system	can	be	thought	of	either	as	a

generally	microscopic	ancillary	system	or	degree	of	freedom	(e.g.	the	position	of	the	electron	in	a	Stern–Gerlach

measurement,	or	the	photon	in	the	Heisenberg	microscope),	or	as	an	“indicator	variable”	or	“pointer	variable”	of	a

generally	macroscopic	measuring	device.	We	shall	see	this	in	detail	(for	the	case	of	ideal	measurements)	in

section	4.5.

POV-observables	provide	a	very	powerful	tool	for	describing	the	phenomenology	of	quantum	mechanical

measurements.	And	they	have	become	a	completely	standard	tool	in	various	branches	of	quantum	physics	(e.g.,

quantum	information	theory).

For	instance,	it	is	well-known	that	using	a	measurement	of	a	single	PV-observable	it	is	impossible	to	reconstruct

completely	the	quantum	state	describing	an	ensemble	of	systems.	(If	the	PV-observable	is	spin	in	some	direction,

and	if	the	state	is	pure,	say	α|+〉	+	β|−)	in	that	basis,	the	measurement	statistics	will	determine	only	the	absolute

values	of	the	coefficients	α	and	β,	not	their	relative	phases.)	But	there	are	single	POV-observables	(so-called

informationally	complete	observables)	that	allow	such	a	reconstruction.	A	simple	example	is	given	by	the	resolution

of	the	identity	(63)

which	intuitively	pools	together	the	information	provided	by	measurements	of	spin	in	the	three	directions	x,	y,	and	z

(and	can	be	seen	as	one	sense	of	a	joint	unsharp	measurement	of	the	three	PV-observables	(Cattaneo	et	al.

1997)).	Indeed,	such	a	POV-measurement	can	be	performed	simply	by	throwing	a	die	and	measuring	spin	in	the

direction	x,	y,	or	z	depending	on	whether	the	die	shows	up	1,	2,	or	3	(mod	3).	Note,	however,	that	from	the	Naimark

dilation	theorem	we	also	know	that	there	is	a	single	interaction	with	an	ancilla	or	measuring	device	that	will

implement	on	the	electron	any	set	of	six	operations	needed	to	measure	the	POV-observable	(63).

Note	that	Gleason's	theorem	can	be	formulated	also	in	terms	of	probability	measures	over	the	outcomes	of	all
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possible	POV	experiments,	yielding	again	the	quantum	mechanical	mixed	states	as	the	most	general	states	defining

probabilities	for	the	outcomes	of	such	experiments	(Busch	2003).

We	conclude	by	mentioning	one	example	of	continuous	POV	measurements,	the	so-called	“unsharp”

measurements	of	position,	which	provide	a	continuous	alternative	to	von	Neumann's	discretization	procedures.

The	wave	function	ψ(x)	collapses	upon	measurement	to	a	wave	function	(64)

(suitably	renormalized),	where	α(x	−	q)	is	not	a	δ-function	but	a	normalized	Gaussian	centered	at	q.	The

probability	density	for	the	collapse	is	given	by	(65)

This	POV-measurement	has	the	intuitive	properties	of	a	measurement	of	position,	in	that	after	the	collapse	the	wave

function	is	concentrated	around	the	point	q.	Readers	may	recognize	this	as	the	family	of	operations	that	take	place

spontaneously	in	the	spontaneous	collapse	theory	by	Ghirardi,	Rimini,	and	Weber	(1986).

4.5	The	Standard	Model	of	Measurement

The	model	of	measurement	that	underlies	standard	discussions	of	the	measurement	problem	(although	usually

phrased	mainly	in	terms	of	ideal	measurements)	is	directly	related	to	the	theoretical	description	based	on	the

dilation	theorem,	as	follows.

In	the	ideal	case,	one	takes	a	basis	of	eigenvectors	of	the	observable	one	wishes	to	measure	on	the	system	of

interest,	{|φ 〉},	and	couples	it	one-to-one	to	an	orthonormal	family	of	states	{|ψ 〉}	of	the	apparatus,	in	the	sense

that	for	some	“ready	state”	|ψ 〉	of	the	apparatus,	(66)

for	all	i.	This	is	indeed	possible	through	a	single	unitary	evolution,	because	it	is	simply	a	requirement	that

orthonormal	states	be	mapped	into	orthonormal	states.

The	outcomes	of	the	measurement	are	assumed	to	correspond	to	orthogonal	subspaces	(not	necessarily	one-

dimensional),	or	their	corresponding	projections	P ,	each	containing	one	or	more	of	the	|ψ 〉	(depending	on	the

“resolution”	of	the	measurement).	If	each	outcome	corresponds	to	a	single	|φ 〉,	the	measurement	is	said	to	be

maximal.

Under	this	coupling,	an	arbitrary	state	of	the	system	will	interact	with	the	apparatus	in	the	ready	state	as	(67)

If	the	measurement	is	maximal,	applying	the	standard	collapse	postulate	to	the	pointer	observable	will	now	yield

any	one	of	the	states	(68)

with	probability	|α | .	If	the	measurement	is	non-maximal,	more	than	one	|ψ 〉	will	lie	in	the	subspace	associated

with	the	measurement	outcome,	and	the	collapse	will	yield	some	superposition	of	the	states	(68).

More	generally,	a	measurement	will	involve	an	arbitrary	coupling	between	the	system	of	interest	and	the

apparatus,	so	that	the	final	state	of	the	composite	will	have	the	form	(69)

or	performing	the	sum	over	i	first,	(70)

Defining	β 	as	the	norm	of	 ,	and	 	as	 ,	(70)	can	be	rewritten	as	(71)
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Applying	the	standard	collapse	postulate	to	the	pointer	observable	will	now	yield	any	one	of	the	states	(72)

with	the	corresponding	probability	 	(or	some	superposition	thereof	if	more	than	one	|ψ 〉	lies	in	the	subspace

associated	with	the	measurement	outcome).

4.6	The	Measurement	Problem

In	this	section,	we	shall	build	on	the	theory	of	measurement	we	have	just	sketched,	and	describe	the	measurement

problem	of	quantum	mechanics.	The	phrase	“measurement	problem”	denotes	a	complex	of	interrelated	questions,

but	we	shall	take	the	following	to	be	its	core:	whether	the	practical	rules	of	quantum	mechanics	(collapse	postulate

and	Born	rule)	are	derivable	from	first	principles,	by	applying	the	theory	(in	particular	the	dynamics	of	the	theory,

as	given	by	the	deterministic	Schrödinger	equation)	to	a	measurement	situation,	i.e.	a	situation	in	which	we	have

an	appropriate	interaction	between	a	system	and	a	measuring	apparatus.

As	we	have	seen	from	generalizing	the	example	of	the	Stern–Gerlach	measurement,	a	theoretical	description	of	a

measurement	can	indeed	be	given	by	coupling	the	system	of	interest	(the	spin	of	the	electron)	to	some	“indicator”

variable	(the	position	of	the	electron	on	the	upper	or	lower	half	of	the	screen).	And	we	have	also	seen	that	the

collapse	postulate	and	Born	rule	for	the	system	(in	their	most	general	form)	can	be	obtained	by	applying	the

collapse	and	Born	rule	(in	their	more	restricted	form)	to	the	indicator	variable	itself.

Suppose	that	from	an	appropriate	application	of	the	Schrödinger	equation,	and	without	explicitly	invoking	the

collapse	postulate	and	the	Born	rule	for	the	indicator	variable,	one	could	derive	that	in	the	correct	fraction	of	cases

the	final	state	after	a	measurement	is	given	by	(68)	or	(72),	rather	than	by	(67)	or	(71).	Then	the	collapse	and	the

Born	rule	would	be	derivable	from	first	principles,	irrespective	of	whether	one	adopts	the	minimal	or	standard

interpretation	of	the	theory.

Indeed,	under	the	standard	interpretation,	states	such	as	(68)	or	(72)—or	even	appropriate	superpositions	of	such

states—correspond	to	the	apparatus	possessing	an	intrinsic	property	indicating	a	definite	outcome	(a	subspace	P

representing	an	appropriate	macrostate	of	the	apparatus).	And	under	the	minimal	interpretation,	these	same	states

mean	that	the	apparatus	has	a	surefire	dispositional	property	to	be	seen	as	indicating	a	definite	outcome	if

somebody	looks.

However,	these	final	states	do	not	obtain	if	the	description	just	given	in	section	4.5	is	correct.	Just	like	in	the	bit

commitment	problem	of	section	2.3,	where	there	is	an	objective	difference	between	the	case	in	which	Alice	sends

a	statistical	mixture	of	electrons	in	various	spin	states,	and	the	case	in	which	she	sends	electrons	from	entangled

pairs	(a	difference	enabling	her	to	cheat),	so	in	the	case	of	the	standard	model	of	measurement	there	is	an

objective	difference	between	the	case	of	a	statistical	mixture	of	states	associated	with	different	measurement

results	and	states	in	which	the	macroscopic	outcome	is	entangled	with	the	microscopic	value	of	the	measured

observable.	The	theoretical	description	of	measurement	in	terms	of	a	unitary	interaction	has	merely	shifted	the

place	of	application	of	the	phenomenological	rules.	Thus,	if	it	is	a	correct	description	of	the	process	of

measurement,	it	does	not	provide	a	derivation	of	the	collapse	postulate	and	Born	rule,	whether	the	interpretation	of

choice	is	the	minimal	interpretation	or	the	standard	interpretation.

Before	discussing	this	further,	we	should	pause	to	consider	whether	we	have	been	misled	by	the	power	of	the

dilation	theorem	and	been	overly	rash	in	adopting	this	model	of	measurement.	That	is,	we	should	see	whether	the

negative	result	just	described	is	merely	an	artifact	of	the	model	of	measurement	adopted.

What	could	count	as	a	derivation	of	the	collapse	postulate	and	Born	rule	from	the	Schrödinger	equation?	At	first,	it

might	seem	conceptually	mistaken	even	to	pose	such	a	question.	How	can	a	probabilistic	process	ever	be	derived

from	a	deterministic	one?	According	to	von	Neumann,	the	differences	run	even	deeper,	in	that	the	former	is	a

thermodynamically	irreversible	process,	while	the	latter	is	reversible. 	On	the	other	hand,	in	the	case	of	classical

thermodynamics	and	statistical	mechanics,	we	are	familiar	with	the	claim	that	a	phenomenologically	irreversible

theory	can	be	reduced	(in	some	appropriate	sense)	to	an	underlying	reversible	one.	The	obvious	first	attempt	at
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answering	the	problem	is	thus	to	point	out	that	it	is	perfectly	possible	for	a	deterministic	evolution	to	underpin

statistical	results,	if	we	consider	statistical	states	(that	is,	genuinely	statistical	states,	which	are	proper	mixtures)

rather	than	pure	states.	That	is,	while	the	Schrödinger	evolution	maps	pure	states	into	pure	states,	it	is	perfectly

possible	to	obtain	a	final	state	that	is	a	proper	mixture	of	different	readings	of	the	apparatus,	if	the	initial	state	is	not

pure	but	itself	a	proper	mixture.

The	intuition	here	is	that	the	initial	state	of	system	and	apparatus	should	be	given	not	by	a	product	of	pure	states,

but	more	realistically	by	a	state	of	the	form	|ψ 〉	⊗	ρ ,	where	ρ 	is	a	suitable	statistical	state	of	the	apparatus.

Indeed,	any	realistic	apparatus	will	arguably	be	a	macroscopic	object,	and	thus	its	exact	microstate	will	not	be

specifiable.	Instead,	the	state	of	the	apparatus	will	be	given	only	in	terms	of	certain	macroscopic	parameters,

analogously	to	the	macrostates	of	statistical	mechanics,	and	thus	for	instance	to	be	described	as	lying	in	some

subspace	P 	or	as	some	appropriate	proper	mixture	of	microstates.

For	simplicity,	let	us	stick	to	our	Stern–Gerlach	example,	even	though	the	“indicator”	variable	(the	position	of	the

electron)	is	not	itself	macroscopic. 	Imagine	that	initially	we	are	not	able	to	prepare	the	wave	function	ψ	for	the

spatial	degrees	of	freedom	of	the	electron,	but	only	a	proper	mixture	 ,	where	each	ρ 	corresponds

itself	to	a	wave	function	ψ 	(a	pure	state)	localized	within	the	spread	of	the	original	ψ.	Imagine	further	that	ρ

decomposes	into	(73)

where	the	weights	μ 	are	related	to	the	coefficients	in	the	decomposition	(37)	as	(74)

Here	Λ 	is	the	set	of	indices	for	which	|ψ〉	⊗	ρ 	evolves	to	some	final	state	entirely	contained	in	the	subspace

corresponding	to	1	⊗	P 	(i.e.,	the	projection	onto	the	half	of	the	screen	associated	with	“up”).	And

correspondingly	for	Λ .

Since	the	initial	mixture	was	by	assumption	ignorance-interpretable,	also	the	final	state	is	a	proper	mixture	such

that	in	a	fraction	|α| 	of	cases,	the	electron	has	ended	up	on	the	half	of	the	screen	associated	with	“up,	|	and	in	a

fraction	|β| 	of	cases,	the	electron	has	ended	up	on	half	of	the	screen	associated	with	“down,”	as	desired.

The	problem	with	this	obvious	strategy	is	that	it	does	not	work	in	general.	Indeed,	if	the	initial	state	of	the	electron	is

not	(37)	but,	say,	(75)

then,	even	assuming	that	each	ρ 	still	ends	up	on	one	or	the	other	half	of	the	screen,	it	is	not	clear	why	the	new

sets	 	and	 	into	which	the	set	Δ	splits	should	again	satisfy	(74)	with	γ	and	δ	substituted	for	α	and	β.	Indeed,

this	constraint	is	impossible	to	satisfy	for	all	initial	spin	states	|φ〉	if	the	temporal	evolution	is	unitary. 	The

apparatus	would	have	to	conspire	to	know	in	advance	what	spin	state	it	is	meant	to	measure	in	order	to	be	in	the

appropriate	statistical	mixture	of	microstates	that	will	produce	the	desired	outcomes	with	the	desired	frequencies.

For	the	case	of	ideal	measurements,	the	fact	that	the	measurement	problem	cannot	be	solved	by	invoking	an	initial

mixed	state	of	the	apparatus	was	already	discussed	by	von	Neumann	(1932,	section	VI.3),	who	remarks	that	this

idea	was	often	proposed	as	a	solution	to	the	measurement	problem. 	(It	is	periodically	“rediscovered,”	which	only

shows	that	von	Neumann's	book	is	often	referred	to	but	still	not	widely	read.)	Von	Neumann	used	this	to	support	his

claim	that	one	needs	indeed	two	different	kinds	of	processes	(namely	collapse	and	unitary	evolution)	to	describe

the	behavior	of	quantum	systems	with	and	without	measurements.	This	“insolubility	theorem,”	as	it	is	now	known,

has	since	been	widely	generalized,	in	particular	to	include	also	measurements	of	POV	observables.

Thus,	we	are	left	with	our	original	conclusion,	irrespective	of	the	model	of	measurement	we	choose.	In	a	nutshell,

measurements	understood	as	quantum	interactions	magnify	quantum	superpositions	to	the	macroscopic	level

(because	of	the	linearity	of	the	dynamics),	and	thus	do	not	lead	to	the	phenomenologically	correct	behavior

(collapse	postulate	and	Born	rule).	If	we	apply	the	Schrödinger	equation	to	describe	the	measurement	process,

then	we	do	not	obtain	states	that	would	seem	to	include	definite	measurement	results,	but	superpositions	of	such
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states,	nor	do	we	obtain	any	kind	of	probabilistic	distributions	over	final	states.

Under	the	minimal	interpretation,	this	might	not	be	very	satisfactory,	but	need	not	be	particularly	troubling,	since

the	interpretation	only	seeks	to	provide	an	instrumentalist	reading	of	the	theory.	And	in	various	variants	of	the

Copenhagen	interpretation,	one	can	argue	that	one	should	in	fact	expect	measurements—or	the	quantum-classical

interface—to	display	a	peculiar	behavior.	What	is	essential,	on	these	interpretations,	is	consistency	between

different	choices	of	when	and	where	to	apply	the	collapse	postulate	and	the	Born	rule.	And,	as	we	discussed	in

section	3.3,	this	consistency	is	ensured	by	decoherence,	or	in	a	weaker	sense	by	the	existence	of	perfect

correlations	along	a	measurement	chain.

As	a	matter	of	fact,	von	Neumann	considered	the	measurement	problem	to	be	purely	the	question	of	whether	such

consistency	(in	the	weaker	sense)	could	be	ensured,	and	his	treatment	of	the	measurement	problem	consists

precisely	in	showing	that	unitary	evolutions	exist	that	will	produce	the	perfect	correlations	(i.e.,	essentially,	in

showing	that	the	standard	model	of	measurement	is	well-defined).	Collapse	could	occur	when	the	thermometer

records	the	temperature	of	the	gas,	or	when	the	length	of	the	mercury	column	is	recorded	in	the	photons	traveling

to	the	eye,	or	in	our	retina,	or	along	the	optic	nerve,	or	when	ultimately	consciousness	is	involved.	If	all	of	these

possibilities	are	equivalent	as	far	as	the	final	predictions	are	concerned,	von	Neumann	can	maintain	that	collapse

is	related	to	consciousness	while	in	practice	applying	the	collapse	postulate	at	a	much	earlier	(and	more	practical)

stage	in	the	description.

From	the	point	of	view	of	the	standard	interpretation,	however,	the	problem	is	serious,	because	in	the	state	(67)	or

(71)	the	system	and	the	apparatus	are	entangled,	and	the	mixed	state	resulting	for	the	apparatus	is	not	ignorance-

interpretable.	Thus,	the	apparatus	does	not	have	a	reading	under	the	standard	interpretation.	As	we	have	also

seen,	in	the	case	of	the	standard	interpretation	decoherence	does	not	help;	if	anything	it	makes	the	situation	even

worse,	because	it	will	produce	such	macroscopic	improper	mixtures	even	independently	of	observer-engineered

measurement	situations.

Insofar	as	the	standard	interpretation	is	meant	as	an	approach	to	quantum	mechanics	that	treats	it	as	a

fundamental	theory,	rather	than	as	a	phenomenological	theory,	we	see	that	the	standard	interpretation	fails.	In

particular,	it	fails	to	support	a	theoretical	analysis	of	the	process	of	measurement	that	ensures	that	measurements

have	definite	outcomes,	let	alone	one	that	enables	one	to	rederive	the	phenomenological	rules	for	the	description

of	measurements	(the	collapse	postulate	and	the	Born	rule).	Everett	theories,	pilot-wave	theories	and	spontaneous

collapse	theories	are	again	the	options	of	choice	if	one	wishes	to	provide	a	solution	to	the	measurement	problem

rather	than	a	minimalist	or	(neo)-Copenhagen	dissolution, 	but	a	detailed	discussion	of	these	goes	beyond	the

scope	of	this	essay.

5.	Conclusion

We	have	discussed	two	of	the	main	interpretational	problems	of	quantum	mechanics,	both	engendered	by	the

nature	of	quantum	mechanical	entanglement,	and	the	consequent	failure	of	the	ignorance	interpretation	of	reduced

states.

The	two	problems	are	equally	important	if	one	wishes	to	give	a	foundationally	adequate	reading	of	quantum

mechanics.	We	are	not	here	in	the	business	of	discussing	what	a	foundationally	adequate	reading	of	quantum

mechanics	might	be.	The	minimal	interpretation,	while	not	being	entirely	satisfactory,	will	arguably	count	as

adequate	if	one	has	an	instrumentalist	picture	of	science.	More	sophisticated	Copenhagen	or	neo-Copenhagen

views	may	also	find	it	easier	to	negotiate	these	two	problems. 	Yet	more	robust	ontological	requirements	will

prompt	one	to	seek	a	more	successful	replacement	for	the	standard	interpretation	of	quantum	mechanics,	with	the

help	of	decoherence	and	usually	along	the	lines	of	de	Broglie–Bohm,	collapse	or	Everett.

A	solution	to	the	problem	of	the	classical	regime,	however,	will	not	automatically	be	also	a	solution	to	the

measurement	problem	(and	vice	versa).	While	pieces	of	apparatus	are	generally	macroscopic	systems	or	arguably

at	least	kinematically	classical	systems,	their	dynamical	behavior	in	probing	the	quantum	world	is	decidedly

nonclassical,	and	solving	the	dynamical	aspects	of	the	measurement	problem	is	thus	distinct	from	deriving

approximately	Newtonian	trajectories.	For	instance,	modern-day	Everettians	can	use	the	results	of	decoherence	in

an	extremely	effective	way,	both	toward	the	solution	of	the	problem	of	the	classical	regime	and	toward	that	of	the
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measurement	problem.	But	the	Everettian	solution	to	the	measurement	problem	relies	more	heavily	on	a	successful

derivation	of	the	Born	rule	(e.g.,	the	decision-theoretic	approach	proposed	by	Deutsch	(1999)	and	Wallace

(2007)).	Should	the	critics	of	the	Deutsch–Wallace	approach	prove	correct	(e.g.,	Lewis	2010),	Everettians	might

still	be	lacking	a	derivation	of	the	Born	rule	from	first	principles,	and	thus	a	full	solution	to	the	measurement

problem.

Conversely,	a	solution	to	the	measurement	problem	will	not	automatically	be	a	solution	to	the	problem	of	the

classical	regime.	For	instance,	recent	developments	in	de	Broglie–Bohm	theory	have	included	various	proposals

for	describing	at	least	large	portions	of	the	standard	model	of	particle	theory	(see,	e.g.,	Colin	and	Struyve	2007;

Dürr	et	al.	2005;	Struyve	and	Westman	2007;	and	the	review	in	Struyve	2011).	Critics,	however,	argue	that	the

configuration	variables	in	these	models	(which	are	guided	by	the	relevant	wave	functional)	are	not	necessarily

decohering	variables	(Wallace	2008).	It	may	well	be,	as	argued	in	particular	in	the	“minimalist”	model	of	Struyve

and	Westman	(2007),	that	there	are	choices	for	configuration	variables	that	will	ensure	that	measurement	results

(suitably	construed)	will	always	be	well-defined.	But	should	the	critics	prove	correct,	the	“measured”	classical

trajectories	will	be	no	more	real	than	those	of	the	minimal	interpretation,	and	pilot-wave	theorists	would	still	lack	a

fully	satisfactory	solution	to	the	problem	of	the	classical	regime.

Much	progress	has	been	achieved	in	recent	years	on	the	resolution	of	these	two	problems,	and	generally	in	the

philosophy	and	foundations	of	quantum	mechanics.	One	should	expect	to	see	more	in	years	to	come.
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Notes:

(1)	A	subspace	is	a	subset	that	is	closed	under	linear	combinations.	We	shall	assume	familiarity	with	the	basic

concepts	of	Hilbert	spaces.

(2)	Terminology	varies,	and	sometimes	the	terms	“collapse	postulate”	or	“projection	postulate”	include	also	the

Born	rule.

(3)	Note	once	and	for	all	that	we	are	not	necessarily	assuming	that	these	subspaces	are	one-dimensional.

Alternatively,	one	can	think	of	testing	them	in	succession,	in	any	order.	Explicit	application	of	the	collapse

postulate	and	the	Born	rule	will	show	that	one	will	obtain	the	same	results	with	the	same	probabilities	and	the	same

final	state,	irrespectively	of	the	order	in	which	the	tests	are	performed.

(4)	Linear	operators	are	mappings	on	the	Hilbert	space	(or	a	subspace	thereof)	that	map	superpositions	into	the

corresponding	superpositions.	The	adjoint	of	a	linear	operator	A	is	a	linear	operator	A 	such	that	〈A ψ|φ〉	=	〈ψ|Aφ〉

for	all	vectors	|ψ〉,	|φ〉	for	which	the	two	expressions	are	well-defined.	An	operator	is	self-adjoint	iff	A	=	A .	A

projection	operator	P	is	a	self-adjoint	operator	such	that	P 	=	P.	For	ease	of	exposition,	we	shall	mostly	confine

ourselves	to	the	case	of	operators	with	“discrete	spectrum”	(the	sum	in	(2)	is	discrete),	or	even	to	finite-

dimensional	Hilbert	spaces.

(5)	Note	that	any	self-adjoint	operator	can	be	decomposed	uniquely	into	a	sum	(or	more	generally	an	integral)	of

projectors	onto	a	family	of	mutually	orthogonal	subspaces.	This	is	the	so-called	spectral	theorem,	which	in

elementary	linear	algebra	is	just	the	diagonalizability	of	self-adjoint	matrices.

(6)	Incidentally,	note	that	whether	a	(classical	or	quantum)	particle	moves	up	or	down	in	a	Stern–Gerlach	magnetic

field	will	depend	also	on	whether	the	inhomogeneous	magnetic	field	is	stronger	at	the	north	pole	or	at	the	south

pole.	Inverting	either	the	gradient	or	the	polarity	of	the	field	will	invert	the	direction	of	deflection	of	a	particle.	(Since

rotating	the	apparatus	by	180	degrees	corresponds	to	inverting	both	the	gradient	and	the	polarity	it	has	no	net

effect	on	the	deflection.)	Thus	the	choice	of	the	words	“up”	and	“down”	for	labeling	the	results	is	rather

conventional.	(The	existence	of	these	two	different	set-ups	for	measuring	spin	in	the	same	direction	is	crucial	in

discussing	contextuality	and	nonlocality	in	pilot-wave	theory.)

(7)	Note	that	already	according	to	the	minimal	interpretation,	a	quantum	system	described	by	a	vector	in	Hilbert

space	has	a	set	of	dispositional	properties	to	elicit	specific	responses	with	given	probabilities	in	measurement

situations	(and	these	are	fixed	uniquely	by	the	sure-fire	disposition	to	elicit	a	certain	response	with	probability	1	in

a	suitable	measurement).	The	standard	interpretation	further	identifies	this	set	of	dispositions	with	an	intrinsic

property	of	the	system.
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(8)	Note	that	thinking	of	Hilbert-space	vectors	in	terms	of	their	associated	probability	measures	also	makes	readily

intelligible	why	one	considers	only	unit	vectors.	Indeed,	normalization	of	the	vector	ensures	that	the	probabilities

are	correctly	normalized	(i.e.,	add	up	to	1).

(9)	One	can	check	that	the	definition	of	the	trace	is	indeed	independent	of	the	basis.	In	finite	dimensions	and	given

a	matrix	representation	of	A,	the	trace	is	simply	the	sum	of	the	diagonal	elements	of	the	corresponding	matrix.

(10)	Normalization	means	p(1)	=	1,	with	1	the	identity	operator	(i.e.,	the	projection	onto	the	whole	of	the	Hilbert

space).	The	theorem	holds	for	quantum	systems	with	Hilbert	space	of	dimension	at	least	3	(but	see	the	remark	at

the	end	of	section	4.4	below).

(11)	The	relevant	section	7	in	Hermann's	essay	has	been	translated	into	English	by	M.	Seevinck	(see

http://mpseevinck.ruhosting.nl/seevinck/trans.pdf).	The	same	point	was	famously	made	by	Bell	(1966),	who	further

pointed	out	the	absurdity	of	requiring	linearity	of	the	hypothetical	“dispersion-free	states”	(which	would	have	to

assign	an	eigenvalue	to	each	observable	as	a	definite	value).	Bell	uses	the	following	example:	consider	the

operators	σ ,σ 	and	σ 	+	σ .	For	a	linear,	dispersion-free	state	λ,	((15))

But	the	left-hand	side	takes	the	possible	values	 ,	while	the	right-hand	side	takes	the	possible	values	−2,0,+2,

so	that	(15)	cannot	be	satisfied.

(12)	Technically,	a	density	operator	(in	arbitrary	dimensions)	is	a	“compact	operator,”	and	for	such	operators	a

discrete	(if	not	necessarily	finite)	decomposition	as	a	sum	of	mutually	orthogonal	projectors	always	exists.

(13)	Of	course	the	collapse	postulate	is	a	phenomenological	rule,	so	if	one	does	not	believe	that	collapse	is

fundamental,	there	is	a	sense	in	which	proper	mixtures	cannot	be	prepared	in	this	way.	Nevertheless,	any

fundamental	approach	to	quantum	mechanics,	even	if	it	denies	the	reality	of	collapse,	will	have	to	explain	the

appearance	of	the	possibility	of	preparing	proper	mixtures,	just	as	it	will	have	to	explain	the	appearance	of

collapse.

(14)	Geometrically,	this	is	the	maximally	mixed	state	at	the	center	of	the	Bloch	sphere.

(15)	Technically,	these	are	all	those	subspaces	that	contain	the	(norm-closed)	range	of	the	density	operator,	i.e.

the	(norm-closure	of)	the	subspace	of	all	vectors	that	are	images	of	vectors	under	the	linear	mapping	defined	by

the	density	operator.

(16)	It	is	important	to	add	that,	at	least	by	1927,	Schrödinger	was	well	aware	that	this	“charge	density”	was	not

simply	a	classical	charge	density,	but	a	quantity	that	would	(approximately)	behave	as	a	classical	charge	density

only	in	certain	respects	and/or	in	the	appropriate	regime.	See	in	particular	his	contribution	to	the	1927	Solvay

conference	(Schrödinger	1928),	and	also	the	discussions	in	Bacciagaluppi	and	Valentini	(2009,	ch.	4,	esp.	section

4.4)	and	Bacciagaluppi	(2010,	esp.	section	4).

(17)	See	in	particular	Born	and	Heisenberg's	contribution	to	the	1927	Solvay	conference	(Born	and	Heisenberg

1928),	and	the	discussions	in	Bacciagaluppi	(2008),	and	Bacciagaluppi	and	Valentini	(2009,	esp.	chs.	3	and	6).

(18)	Recall	that	Bohm	(1952)	had	recently	rediscovered	and	extended	the	pilot-wave	theory	by	de	Broglie	(1928).

(19)	This	need	not	be	a	problem	in	itself,	say	if	one	interprets	the	wave	function	along	Schrödinger's	lines	as

manifesting	itself	in	3-dimensional	space	as	a	charge	(or	mass)	density.	It	may	become	a	problem	if	the	“tails”	are

themselves	highly	structured,	as	will	happen	in	spontaneous	collapse	theories	in	the	case	of	measurements	or

Schrödinger	cats,	as	this	allows	for	an	Everettian-style	criticism	of	the	idea	that	such	a	wave	function	represents	a

single	copy	of	a	quasi-classical	system	(i.e.,	the	tail	is	itself	a	“tiny”	live	or	dead	cat).

(20)	They	are	very	important	also	in	quantum	optics,	because	each	mode	of	the	electromagnetic	field	is	a

harmonic	oscillator.

(21)	Thus,	while	we	might	want	to	identify	kinematically	a	classical	state	with	one	with	small	spreads	in	both	position

and	momentum,	it	is	specifically	the	smallness	of	the	spread	in	position	that	determines	whether	this	state	will

behave	classically	also	in	terms	of	its	dynamics	(in	the	sense	of	Ehrenfest's	theorem).

x y x y
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(22)	Note	that	this	is	not	a	strict	result,	but	only	a	phenomenological	arrow	of	time,	since	the	Schrödinger	equation

is	time-symmetric.

(23)	See	Schrödinger	to	Einstein,	no	date	(but	between	18	and	31	January	1953),	AHQP	microfilm	37,	section	005–

012	(draft	ms.)	and	005–013	(carbon	copy),	and	Einstein	to	Schrödinger,	31	January	1953,	AHQP	microfilm	37,

section	005–014	(both	in	German).

(24)	See	sections	4.1–4.5	for	the	theoretical	discussion	of	measurements,	and	section	4.6	for	the	measurement

problem.

(25)	This	subsection	is	mostly	based	on	my	entry	for	the	Stanford	Encyclopedia	of	Philosophy	(Bacciagaluppi

2003).

(26)	For	a	review	of	more	rigorous	arguments,	see,	e.g.,	Zurek	(2003,	pp.	28–30).	Such	arguments	can	be	obtained

in	particular	from	the	Wigner	function	formalism,	as	done,	e.g.,	by	Zurek	and	Paz	(1994),	who	apply	these	results	to

derive	chaotic	trajectories	in	quantum	mechanics.

(27)	For	a	very	accessible	discussion	of	α-particle	tracks	roughly	along	these	lines,	see	Barbour	(1999,	ch.	20).

(28)	The	question	of	uniqueness	of	a	classical	or	“quasi-classical”	regime	has	been	quite	hotly	debated	especially

in	the	“decoherent	histories”	literature,	and	it	appears	that	explicit	definitions	of	quasi-classicality	always	remain

too	permissive	to	identify	it	uniquely.	But	maybe	uniqueness	is	not	strictly	necessary	(as	nowadays	often	argued	in

the	context	of	the	Everett	interpretation).	For	these	issues,	see,	e.g.,	Wallace	(2008).

Attempts	to	enforce	uniqueness	in	other	ways	appear	to	overshoot	the	mark.	Indeed,	various	“modal”

interpretations	based	on	the	biorthogonal	decomposition	theorem,	the	polar	decomposition	theorem,	or	the	spectral

decomposition	theorem	for	density	operators,	select	histories	uniquely,	but	end	up	agreeing	with	the	results	of

decoherence	only	in	special	cases,	failing	to	ensure	classicality	in	general	(Donald	1998;	Bacciagaluppi	2000).

(29)	For	a	comprehensive	collection	of	recent	papers	on	the	Everett	interpretation,	in	particular	covering	the	more

modern	developments	referred	to	here,	see	Saunders	et	al.	(2010).

(30)	While	this	point	is	especially	clear	in	Heisenberg's	writings,	it	is	clear	that	it	was	espoused	also	by	other	main

exponents	of	what	is	known	collectively	as	the	Copenhagen	interpretation.	For	instance,	Bohr	often	applies	the

uncertainty	relations	to	macroscopic	pieces	of	apparatus	in	his	replies	to	Einstein's	critical	thought	experiments	of

the	period	1927–1935	(Bohr	1949).	And	Pauli,	commenting	to	Born	on	Einstein's	views,	is	adamant	that	under	the

appropriate	experimental	conditions	also	macroscopic	objects	would	display	interference	effects	(Pauli	to	Born,	31

March	1954,	reprinted	in	Born	1969).

(31)	Indeed,	von	Neumann's	aim	was	simply	to	show	that	there	always	exist	unitary	evolutions	that	will	produce

such	perfect	correlations,	in	order	to	establish	consistency	in	this	first	sense.	Heisen-berg's	discussion,	although

technically	somewhat	defective	(see	the	analysis	in	Bacciagaluppi	and	Crull	2009),	is	along	similar	lines.	Note,

however,	that	Heisenberg	is	particularly	interested	in	the	case	of	the	Heisenberg	microscope,	where	the	electron

interacts	with	a	microscopic	ancilla	(the	photon),	and	one	considers	alternative	measurements	on	the	ancilla.	For

Heisenberg's	purposes	it	is	thus	important	that	interference	is	still	present	and	that	decoherence	does	not	kick	in

until	later.

(32)	The	same	point	is	valid	if	we	are	talking	about	the	empirical	determination	of	when	and	where	collapse	occurs

in	spontaneous	collapse	theories.	See	the	nice	discussion	in	Albert	(1992,	ch.	5).

(33)	The	function	 	is	the	so-called	characteristic	function	of	the	interval	[x ,x ],	that	is,	the	function	that

is	1	on	the	interval	and	0	outside.

(34)	Instead	of	talking	of	resolutions	of	the	identity,	one	can	also	talk	of	PV	“measures,”	in	the	sense	that

(analogously	to	a	probability	measure),	one	can	assign	to	each	“event”	(subset	I	of	the	indices	labeling	the

results)	a	corresponding	projection	 .	One	will	talk	similarly	of	POV	measures	when	the	requirement	that	the

elements	of	the	resolution	of	the	identity	be	projections	is	relaxed.

(x)χ[ , ]x1 x2
1 2

∑
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(35)	Technically,	an	effect	is	a	positive	operator	with	spectrum	contained	in	the	interval	[0,	1].

(36)	In	this	formulation,	the	theorem	holds	in	all	dimensions.

(37)	For	further	details	of	POV	observables,	we	refer	the	reader	to	standard	references,	e.g.	Busch,	Grabowski,	and

Lahti	(1995).

(38)	Note	that	the	corresponding	subspace	in	the	apparatus	Hilbert	space	need	not	be	one-dimensional:	in	the

case	of	the	spin	measurements	of	section	4.2,	we	had	infinite-dimensional	projections	onto	the	upper	or	lower	half

of	the	detection	screen.	Given	that	the	“apparatus”	will	usually	be	a	macroscopic	system,	the	idea	that	a	reading

should	correspond	to	a	large	subspace	of	its	state	space	rather	than	to	a	single	state	is	quite	appealing.	A	reading

ought	to	correspond	rather	to	a	macroscopic	state	of	the	apparatus	than	to	a	microscopic	state,	and	a

macroscopic	state	could	well	be	represented	by	an	appropriate	subspace	P .

(39)	Note	that	in	this	case	the	system	is	collapsed	to	an	improper	mixture	of	the	states	|φ 〉.

(40)	Von	Neumann's	characterization	is	based	on	an	extensive	thermodynamic	analysis,	which	we	shall	not	enter

into,	but	it	should	be	immediately	clear	that	the	transformation	(61)	is	not	time-reversible.

(41)	We	shall	assume	this	for	the	sake	of	argument,	even	though	we	have	suggested	in	section	3.2	that	these

mixtures	might	be	improper	in	the	first	place.

(42)	Recall	that	on	the	minimal	interpretation	the	indicator	variable	is	merely	a	variable	that	if	measured	will

produce	the	result	that	the	apparatus	reads	either	up	or	down.	The	position	of	the	electron	fulfills	this	role	perfectly.

(43)	Note	also	that	even	if	this	were	possible,	such	a	solution	to	the	measurement	problem	would	run	into	trouble

when	trying	to	reproduce	the	experimental	violations	of	the	Bell	inequalities,	at	least	unless	the	microstates	of	the

apparatuses	are	correlated	before	the	measurements.	For	a	related	point	see	Bacciagaluppi	(2012).

(44)	Arguably,	the	only	loophole	is	if	one	considers	models	in	which	the	initial	correlations	between	the	microstate

of	the	apparatus	and	the	state	of	the	system	(and	between	the	microstates	of	different	apparatuses)	are	explained

in	retrocausal	terms,	and	thus	are	no	longer	conspiratorial.	The	models	of	measurement	by	Schulman	(1997)	are

probably	best	understood	in	this	way.	For	a	more	general	discussion	of	retrocausal	models	in	quantum	mechanics,

see	Price	(1996).

(45)	Historical	puzzle:	who	is	von	Neumann	referring	to?	Someone	like	Schrödinger	who	suggested	matter	should

be	literally	described	by	wave	functions?	Or	something	like	the	early	Copenhagen	“disturbance”	theory	of

measurement?

(46)	See	e.g.	Fine	(1970),	Brown	(1986),	Busch	and	Shimony	(1996),	Bassi	and	Ghirardi	(2000)	and	Bacciagaluppi

(2012).

(47)	I	would	suggest,	however,	that	if	one	considers	the	in-principle	possibility	of	performing	arbitrary

measurements	unimpeded	by	decoherence,	then	problems	of	consistency	arise	again	in	the	context	of	thought

experiments	of	the	type	of	Wigner's	friend.

(48)	As	a	prominent	example	of	a	neo-Copenhagen	view,	one	can	take	the	“quantum	Bayesianism”	of	Fuchs	and

co-workers	(e.g.,	Fuchs	2010).

(49)	Modulo	the	caveat	about	Wigner's	friend	in	footnote	47.
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Abstract	and	Keywords

This	chapter	examines	the	Everett	interpretation	of	quantum	mechanics,	or	the	many-worlds	interpretation.	It

analyzes	problems	that	have	been	raised	for	the	Everett	interpretation,	including	the	problem	of	providing	a

preferred	basis	and	the	probability	problem.	The	chapter	argues	for	a	straightforward,	fully	realist	interpretation	of

the	bare	mathematical	formalism	of	quantum	mechanics,	which,	it	explain,	can	make	sense	of	superposed	cats

without	changing	the	theory	and	without	changing	our	overall	view	of	science.

Keywords:	Everett	interpretation,	quantum	mechanics,	many-worlds	interpretation,	preferred	basis,	probability	problem,	mathematical	formalism

1.	Introduction

The	Everett	interpretation	of	quantum	mechanics—better	known	as	the	Many-Worlds	Theory—has	had	a	rather

uneven	reception.	Mainstream	philosophers	have	scarcely	heard	of	it,	save	as	science	fiction.	In	the	philosophy	of

physics	it	is	well	known	but	has	historically	been	fairly	widely	rejected. 	Among	physicists	(at	least,	among	those

concerned	with	the	interpretation	of	quantum	mechanics	in	the	first	place),	it	is	taken	very	seriously	indeed,

arguably	tied	for	first	place	in	popularity	with	more	traditional	operationalist	views	of	quantum	mechanics.

For	this	reason,	my	task	in	this	chapter	is	twofold.	Primarily	I	wish	to	provide	a	clear	introduction	to	the	Everett

interpretation	in	its	contemporary	form;	in	addition,	though,	I	aim	to	give	some	insight	into	just	why	it	is	so	popular

among	physicists.	For	that	reason,	I	begin	in	section	2	by	briefly	reprising	the	measurement	problem	in	a	way	that	(I

hope)	gives	some	insight	into	just	why	Everett's	idea,	if	workable,	is	so	attractive.	In	section	3	I	introduce	that	idea

and	state	“the	Everett	interpretation”—which,	I	argue	in	that	section,	is	really	just	quantum	mechanics	itself

understood	in	a	conventionally	realist	fashion.	In	sections	4–10	I	explore	the	consequences	of	the	Everett

interpretation	via	considerations	of	its	two	traditional	difficulties:	the	“preferred	basis	problem”	(sections	4–6)	and

the	“probability	problem”	(sections	8–10).	I	conclude	(sections	11–12)	with	a	brief	introduction	to	other	issues	in

the	Everett	interpretation	and	with	some	further	reading.

Little	about	the	Everett	interpretation	is	uncontroversial,	but	I	deal	with	the	controversy	rather	unevenly.	The

concepts	of	decoherence	theory,	as	I	note	in	sections	5–6,	have	significantly	changed	the	debate	about	the

preferred-basis	problem,	but	these	insights	have	only	entered	philosophy	of	physics	relatively	recently,	and

relatively	little	in	the	way	of	criticism	of	a	decoherence-based	approach	to	Everettian	quantum	mechanics	has

appeared	as	yet	(recent	exceptions	are	Hawthorne	(2010),	Maudlin	(2010),	and	Kent	(2010)).	By	contrast	(perhaps

because	the	salient	issues	are	closer	to	mainstream	topics	in	metaphysics	and	philosophy	of	science)	the

probability	problem	has	been	vigorously	discussed	in	the	last	decade.	As	such,	my	discussion	of	the	former	fairly

uncritically	lays	out	what	I	see	as	the	correct	approach	to	the	definition	of	the	Everett	interpretation	and	to	the

preferred	basis	problem.	Readers	will,	I	suspect,	be	better	served	by	forming	their	own	criticisms,	and	seeking	them

elsewhere,	than	by	any	imperfect	attempt	of	mine	to	pre-empt	criticisms.	My	discussion	of	the	latter	is	(somewhat)
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less	opinionated	and	attempts	to	give	an	introduction	to	the	shape	of	the	debate	on	probability.

I	use	little	technical	machinery,	but	I	assume	that	the	reader	has	at	least	encountered	quantum	theory	and	the

measurement	problem,	at	about	the	level	of	Albert	(1992)	or	Penrose,	(1989,	ch.	6).

2.	The	Measurement	Problem

There	are	philosophical	puzzles,	perhaps,	in	how	physical	theories	other	than	quantum	mechanics	represent	the

world,	but	it	is	generally	agreed	that	there	is	no	paradox.	States	of	any	such	theory—be	it	Newtonian	particle

mechanics	or	classical	electrodynamics	or	general	relativity—are	mathematical	objects	of	some	kind:	perhaps

functions	from	one	space	to	another,	perhaps	N-tuples	of	points	in	a	three-dimensional	space,	perhaps	single

points	in	a	high-dimensional,	highly-structured	space.	And,	insofar	as	the	theory	is	correct	in	a	given	situation,

these	states	represent	the	physical	world,	in	the	sense	that	different	mathematically	defined	states	correspond	to

different	ways	the	world	can	be. 	There	is	space	for	debate	as	to	the	nature	of	this	representation—is	it	directly	a

relationship	between	mathematics	and	the	world,	or	should	it	be	understood	as	proceeding	via	some	linguistic

description	of	the	mathematics? —	but	these	details	cause	no	problems	for	the	straightforward	(naive,	if	you	like)

view	that	a	theory	in	physics	is	a	description,	or	a	representation,	of	the	world.

Quantum	mechanics,	it	is	widely	held,	cannot	be	understood	this	way.	To	be	sure,	it	has	a	clean	mathematical

formalism—most	commonly	presented	as	the	evolution	of	a	vector	in	a	highly	structured,	high-dimensional	complex

vector	space.	To	be	sure,	some	of	the	states	in	that	space	seem	at	least	structurally	suited	to	represent	ordinary

macroscopic	systems:	physicists,	at	least,	seem	relaxed	about	regarding	so-called	“wave	packet”	states	of

macroscopic	systems	as	representing	situations	where	those	systems	have	conventional,	classically	describable

characteristics.	But	central	to	quantum	mechanics	is	the	superposition	principle,	and	it	tells	us	(to	borrow	a	famous

example)	that	if	x	is	a	state	representing	my	cat	as	alive,	and	ϕ	is	a	state	representing	my	cat	as	dead,	then	the

“superposition	state”	(1)

is	also	a	legitimate	state	of	the	system	(where	α	and	β	are	complex	numbers	satisfying	|α| 	+|β| 	=	1)—and	what

can	it	represent?	A	cat	that	is	alive	and	dead	at	the	same	time?	An	undead	cat,	in	an	indefinite	state	of	aliveness?

These	don't	seem	coherent	ways	for	the	world	to	be;	they	certainly	don't	seem	to	be	ways	we	observe	the	world	to

be.

Nor	does	the	practice	of	physics	seem	to	treat	such	states	as	representing	the	state	of	the	physical	world.

Confronted	with	a	calculation	that	says	that	the	final	state	of	a	system	after	some	process	has	occurred	is	some

superposition	like	ψ,	a	theoretician	instead	declares	that	the	state	of	the	system	after	the	process	cannot	be	known

with	certainty,	but	that	it	has	probability	|α| 	of	being	in	the	macroscopic	physical	state	corresponding	to	x,	and

probability	|β| 	of	being	in	the	macroscopic	physical	state	corresponding	to	ϕ.	(If	he	is	more	cautious,	he	may

claim	only	that	it	has	probabilities	|α| ,	|β| 	of	being	observed	to	be	in	those	macroscopic	physical	states.)	That	is,

the	theoretician	treats	the	mathematical	state	of	the	system	less	like	the	states	of	classical	mechanics,	more	like

those	of	classical	statistical	mechanics,	which	represent	not	the	way	the	world	is	but	a	probability	distribution	over

possible	ways	it	might	be.

But	quantum	mechanics	cannot	truly	be	understood	that	way	either.	The	most	straightforward	way	to	understand

why	is	via	quantum	interference—the	α	and	β	coefficients	in	ψ	can	be	real	or	imaginary	or	complex,	positive	or

negative	or	neither,	and	can	reinforce	and	cancel	out.	Ordinary	probability	doesn't	do	that.	Put	more	physically:	if

some	particle	is	fired	at	a	screen	containing	two	slots,	and	if	conditional	on	it	going	through	slot	1	it's	detected	by

detector	A	half	the	time	and	detector	B	half	the	time,	and	if	conditional	on	it	going	through	slot	2	it's	likewise

detected	by	each	detector	half	the	time,	then	we	shouldn't	need	to	know	how	likely	it	is	to	go	through	slot	1	to

predict	that	it	will	have	a	50%	chance	of	being	detected	by	A	and	a	50%	chance	of	being	detected	by	B.	But	a

particle	in	an	appropriately	weighted	superposition	of	going	through	each	slot	can	be	100%	likely	to	be	detected	at

A,	or	0%	likely	to	be,	or	anything	in	between.

So	it	seems	that	our	standard	approach	to	understanding	the	content	of	a	scientific	theory	fails	in	the	quantum

case.	That	in	turn	suggests	a	dilemma:	either	that	standard	approach	is	wrong	or	incomplete,	and	we	need	to

understand	quantum	mechanics	in	a	quite	different	way;	or	that	approach	is	just	fine,	but	quantum	mechanics	itself
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is	wrong	or	incomplete,	and	needs	to	be	modified	or	augmented.	Call	these	strategies	“change	the	philosophy”	and

“change	the	physics,”	respectively.

Famous	examples	of	the	change-the-philosophy	strategy	are	the	original	Copenhagen	interpretation,	as	espoused

by	Niels	Bohr,	and	its	various	more-or-less	operationalist	descendants.	Many	physicists	are	attracted	to	this

strategy:	they	recognize	the	virtues	of	leaving	quantum	mechanics—a	profoundly	successful	scientific	theory—

unmodified	at	the	mathematical	level.	Few	philosophers	share	the	attraction:	mostly	they	see	the	philosophical

difficulties	of	the	strategy	as	prohibitive.	In	particular,	attempts	to	promote	terms	like	“observer”	or	“measurement”

to	some	privileged	position	in	the	formulation	of	a	scientific	theory	are	widely	held	to	have	proved	untenable.

Famous	examples	of	the	change-the-physics	strategy	are	de	Broglie	and	Bohm's	pilot-wave	hidden	variable	theory,

and	Ghirardi,	Rimini,	and	Weber's	dynamical-collapse	theory.	Many	philosophers	are	attracted	to	this	strategy:

they	recognize	the	virtue	of	holding	on	to	our	standard	picture	of	scientific	theories	as	representations	of	an

objective	reality.	Few	physicists	share	the	attraction:	mostly	they	see	the	scientific	difficulties	of	the	strategy	as

prohibitive.	In	particular,	the	task	of	constructing	alternative	theories	that	can	reproduce	the	empirical	successes

not	just	of	nonrelativistic	particle	mechanics	but	of	Lorentz-covariant	quantum	field	theory	has	proved	extremely

challenging.

But	for	all	that	both	strategies	seem	to	have	profound	difficulties,	it	seems	nonetheless	that	one	or	the	other	is

unavoidable.	For	we	have	seen	(haven't	we?)	that	if	neither	the	physics	of	quantum	mechanics	nor	the	standard

philosophical	approach	to	a	scientific	theory	is	to	be	modified,	we	do	not	end	up	with	a	theory	that	makes	any

sense,	far	less	one	that	makes	correct	empirical	predictions.

3.	Everett's	Insight

It	was	Hugh	Everett's	great	insight	to	recognize	that	the	apparent	dilemma	is	false—	that,	contra	the	arguments	of

section	2,	we	can	after	all	interpret	the	bare	quantum	formalism	in	a	straightforwardly	realist	way,	without	either

changing	our	general	conception	of	science	or	modifying	quantum	mechanics.

How	is	this	possible?	Haven't	we	just	seen	that	the	linearity	of	quantum	mechanics	commits	us	to	macroscopic

objects	being	in	superpositions,	in	indefinite	states?	Actually,	no.	We	have	indeed	seen	that	states	like	ψ—a

superposition	of	states	representing	macroscopically	different	objects—are	generic	in	unitary	quantum	mechanics,

but	it	is	actually	a	non	sequitur	to	go	from	this	to	the	claim	that	macroscopic	objects	are	in	indefinite	states.

An	analogy	may	help	here.	In	electromagnetism,	a	certain	configuration	of	the	field—say,	F (x,	t)	(here	F	is	the

electromagnetic	2-form)	might	represent	a	pulse	of	ultraviolet	light	zipping	between	Earth	and	the	Moon.	Another

configuration,	say	F (x,	t),	might	represent	a	different	pulse	of	ultraviolet	light	zipping	between	Venus	and	Mars.

What	then	of	the	state	of	affairs	represented	by	(2)

What	weird	sort	of	thing	is	this?	Must	it	not	represent	a	pulse	of	ultraviolet	light	that	is	in	a	superposition	of	traveling

between	Earth	and	Moon,	and	of	traveling	between	Mars	and	Venus?	How	can	a	single	pulse	of	ultraviolet	light	be

in	two	places	at	once?	Doesn't	the	existence	of	superpositions	of	macroscopically	distinct	light	pulses	mean	that

any	attempt	to	give	a	realist	interpretation	of	classical	electromagnetism	is	doomed?

Of	course,	this	is	nonsense.	There	is	a	perfectly	prosaic	description	of	F:	it	does	not	describe	a	single	ultraviolet

pulse	in	a	weird	superposition,	it	just	describes	two	pulses,	in	different	places.	And	this,	in	a	nutshell,	is	what	the

Everett	interpretation	claims	about	macroscopic	quantum	superpositions:	they	are	just	states	of	the	world	in	which

more	than	one	macroscopically	definite	thing	is	happening	at	once.	Macroscopic	superpositions	do	not	describe

indefiniteness,	they	describe	multiplicity.

The	standard	terminology	of	quantum	mechanics	can	be	unhelpful	here.	It	is	often	tempting	to	say	of	a	given

macroscopic	system—like	a	cat,	say—that	its	possible	states	are	all	the	states	in	some	“cat	Hilbert	space,”	 .

Some	states	in	 	are	“macroscopically	definite”	(states	where	the	cat	is	alive	or	dead,	say);	most	are

“macroscopically	indefinite.”	From	this	perspective,	it	is	a	very	small	step	to	the	incoherence	of	unitary	quantum

mechanics:	quantum	mechanics	predicts	that	cats	often	end	up	in	macroscopically	indefinite	states;	even	if	it

makes	sense	to	imagine	a	cat	in	a	macroscopically	indefinite	state,	we	have	certainly	never	seen	one	in	such	a
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state;	so	quantum	mechanics	(taken	literally)	makes	claims	about	the	world	that	are	contradicted	by	observation.

From	an	Everettian	perspective	this	is	a	badly	misguided	way	of	thinking	about	quantum	mechanics.	This	 	is

presumably	(at	least	in	the	nonrelativistic	approximation)	some	sort	of	tensor	product	of	the	Hilbert	spaces	of	the

electrons	and	atomic	nuclei	that	make	up	the	cat.	Some	states	in	this	box	certainly	look	like	they	can	represent	live

cats,	or	dead	cats.	Others	look	like	smallish	dogs.	Others	look	like	the	Mona	Lisa.	There	is	an	awful	lot	that	can	be

made	out	of	the	atomic	constituents	cat	of	a	cat,	and	all	such	things	can	be	represented	by	states	in	 ,	and	so

calling	it	a	“cat	Hilbert	space”	is	very	misleading.

But	if	so,	it	is	equally	misleading	to	describe	a	macroscopically	indefinite	state	cat	of	 	as	representing	(say)

“a	cat	in	a	superposed	state	of	being	alive	and	being	dead.”	It	is	far	more	accurate	to	say	that	such	a	state	is	a

superposition	of	a	live	cat	and	a	dead	cat.

One	might	still	be	tempted	to	object:	very	well,	but	we	don't	observe	the	universe	as	being	in	superpositions	of

containing	live	cats	and	containing	dead	cats,	any	more	than	we	observe	cats	as	being	in	superpositions	of	alive

and	dead.	But	it	is	not	at	all	clear	that	we	don't	observe	the	universe	in	such	superpositions.	After	all,	cats	are	the

sort	of	perfectly	ordinary	objects	that	we	seem	to	see	around	us	all	the	time—a	theory	that	claims	that	they	are

normally	in	macroscopically	indefinite	states	seems	to	make	a	nonsense	of	our	everyday	lives.	But	the	universe	is

a	very	big	place,	as	physics	has	continually	reminded	us,	and	we	inhabit	only	a	very	small	part	of	it,	and	it	will	not

do	to	claim	that	it	is	just	“obvious”	that	it	is	not	in	a	superposition.

This	becomes	clearer	when	we	consider	what	actually	happens,	dynamically,	cat	to	 ,	to	its	surroundings,	and

to	those	observing	it,	when	it	is	prepared	in	a	superposition	of	a	live-cat	and	a	dead-cat	state.	In	outline,	the

answer	is	that	the	system's	surroundings	will	rapidly	become	entangled	with	it,	so	that	we	do	not	just	have	a

superposition	of	live	and	dead	cat,	but	a	superposition	of	extended	quasi-classical	regions—“worlds,”	if	you	like—

some	of	which	contain	live	cats	and	some	of	which	contain	dead	cats.	If	the	correct	way	to	understand	such

superpositions	is	as	some	sort	of	multiplicity,	then	our	failure	to	observe	that	multiplicity	is	explained	quite	simply	by

the	fact	that	we	live	in	one	of	the	“worlds”	and	the	other	ones	don't	interact	with	ours	strongly	enough	for	us	to

detect	them.

This,	in	short,	is	the	Everett	interpretation.	It	consists	of	two	very	different	parts:	a	contingent	physical	postulate,

that	the	state	of	the	Universe	is	faithfully	represented	by	a	unitarily	evolving	quantum	state;	and	an	a	priori	claim

about	that	quantum	state,	that	if	it	is	interpreted	realistically	it	must	be	understood	as	describing	a	multiplicity	of

approximately	classical,	approximately	noninteracting	regions	that	look	very	much	like	the	“classical	world.”

And	this	is	all	that	the	Everett	interpretation	consists	of.	There	are	no	additional	physical	postulates	introduced	to

describe	the	division	into	“worlds,”	there	is	just	unitary	quantum	mechanics.	For	this	reason,	it	makes	sense	to	talk

about	the	Everett	interpretation,	as	it	does	not	to	talk	about	the	hidden-variables	interpretation	or	the	dynamical-

collapse	interpretation.	The	“Everett	interpretation	of	quantum	mechanics”	is	just	quantum	mechanics	itself,

“interpreted”	the	same	way	we	have	always	interpreted	scientific	theories	in	the	past:	as	modeling	the	world.

Someone	might	be	right	or	wrong	about	the	Everett	interpretation—they	might	be	right	or	wrong	about	whether	it

succeeds	in	explaining	the	experimental	results	of	quantum	mechanics,	or	in	describing	our	world	of

macroscopically	definite	objects,	or	even	in	making	sense—but	there	cannot	be	multiple	logically	possible	Everett

interpretations	any	more	than	there	are	multiple	logically	possible	interpretations	of	molecular	biology	or	classical

electrodynamics.

This	in	turn	makes	the	study	of	the	Everett	interpretation	a	rather	tightly	constrained	activity	(a	rare	and	welcome

sight	in	philosophy!).	For	it	is	not	possible	to	solve	problems	with	the	Everett	interpretation	by	changing	the

interpretative	rules	or	changing	the	physics:	if	there	are	problems	with	solving	the	measurement	problem	Everett-

style,	they	can	be	addressed	only	by	hard	study—mathematical	and	conceptual—of	the	quantum	theory	we	have.

Two	main	problems	of	this	kind	have	been	identified:

1.	the	preferred	basis	problem	(which	might	better	be	called	the	problem	of	branching)—what	actually

justifies	our	interpretation	of	quantum	superpositions	in	terms	of	multiplicity?

2.	The	probability	problem—how	is	the	Everett	interpretation,	which	treats	the	Schrödinger	equation	as

deterministic,	to	be	reconciled	with	the	probabilistic	nature	of	quantum	theory?
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My	main	task	in	the	remainder	of	this	chapter	is	to	flesh	out	these	problems	and	the	contemporary	Everettian

response	to	each.

4.	The	Preferred	Basis	Problem

If	the	preferred	basis	problem	is	a	question	(“how	can	quantum	superpositions	be	understood	as	multiplicities?”),

then	there	is	a	traditional	answer,	more	or	less	explicit	in	much	criticism	of	the	Everett	interpretation	(Barrett	(1999),

Kent	(1990),	Butterfield	(1996)):	they	cannot.	That	is:	it	is	no	good	just	stating	that	a	state	like	(1)	describes

multiple	worlds:	the	formalism	must	be	explicitly	modified	to	incorporate	them.	Adrian	Kent	put	it	very	clearly	in	an

influential	criticism	of	Everett-type	interpretations:

one	can	perhaps	intuitively	view	the	corresponding	components	[of	the	wave	function]	as	describing	a

pair	of	independent	worlds.	But	this	intuitive	interpretation	goes	beyond	what	the	axioms	justify:	the	axioms

say	nothing	about	the	existence	of	multiple	physical	worlds	corresponding	to	wave	function	components.

(Kent,	1990)

This	position	dominated	discussion	of	the	Everett	interpretation	in	the	1980s	and	early	1990s:	even	advocates	like

Deutsch	(1985)	accepted	the	criticism	and	rose	to	the	challenge	of	providing	such	a	modification.

Modificatory	strategies	can	be	divided	into	two	categories.	Many-exact-worlds	theories	augment	the	quantum

formalism	by	adding	an	ensemble	of	“worlds”	to	the	state	vector.	The	“worlds”	are	each	represented	by	an

element	in	some	particular	choice	of	“world	basis”	|ψ (t)〉	at	each	time	t:	the	proportion	of	worlds	in	state	|ψ (t))〉	at

time	t	is	|〈ψ(t)|ψ (t)〉| ,	where	|ψ(t)〉	is	the	(unitarily	evolving)	universal	state.	Our	own	world	is	just	one	element	of

this	ensemble.	Examples	of	many-exact-worlds	theories	are	given	by	the	early	Deutsch	(1985,	1986),	who	tried	to

use	the	tensor-product	structure	of	Hilbert	space	to	define	the	world	basis, 	and	Barbour	(1994,	1999)	who

chooses	the	position	basis.

In	many-minds	theories,	by	contrast,	the	multiplicity	is	to	be	understood	as	illusory.	A	state	like	(1)	really	is

indefinite,	and	when	an	observer	looks	at	the	cat	and	thus	enters	an	entangled	state	like	(3)

then	the	observer	too	has	an	indefinite	state.	However:	to	each	physical	observer	is	associated	not	one	mental

state,	but	an	ensemble	of	them:	each	mental	state	has	a	definite	experience,	and	the	proportion	of	mental	states

where	the	observer	sees	the	cat	alive	is	|α| .	Effectively,	this	means	that	in	place	of	a	global	“world-defining	basis”

(as	in	the	many-exact-worlds	theories)	we	have	a	“consciousness	basis”	for	each	observer. 	When	an	observer's

state	is	an	element	of	the	consciousness	basis,	all	the	minds	associated	with	that	observer	have	the	same

experience	and	so	we	might	as	well	say	that	the	observer	is	having	that	experience.	But	in	all	realistic	situations

the	observer	will	be	in	some	superposition	of	consciousness-basis	states,	and	the	ensemble	of	minds	associated

with	that	observer	will	be	having	a	wide	variety	of	distinct	experiences.	Examples	of	many-minds	theories	are

Albert	and	Loewer	(1988),	Lockwood	(1989,	1996),	Page	(1996),	and	Donald	(1990,	1992,	2002).	It	can	be	helpful

to	see	the	many-exact-worlds	and	many-minds	approaches	as	embodying	two	horns	of	a	dilemma:	either	the	many

worlds	really	exist	at	a	fundamental	level	(in	which	case	they	had	better	be	included	in	the	formalism),	or	they	do

not	(in	which	case	they	need	to	be	explained	away	as	somehow	illusory).

Both	approaches	have	largely	fallen	from	favor.	Partly,	this	is	on	internal,	philosophical	grounds.	Many-minds

theories,	at	least,	are	explicitly	committed	to	a	rather	unfashionable	anti-functionalism—probably	even	some	kind	of

dualism—about	the	philosophy	of	mind,	with	the	relation	between	mental	and	physical	states	being	postulated	to	fit

the	interests	of	quantum	mechanics	rather	than	being	deduced	at	the	level	of	neuroscience	or	psychology.	If	it	is

just	a	fundamental	law	that	consciousness	is	associated	with	some	given	basis,	clearly	there	is	no	hope	of	a

functional	explanation	of	how	consciousness	emerges	from	basic	physics	(and	hence	much,	perhaps	all,	of

modern	AI,	cognitive	science,	and	neuroscience	is	a	waste	of	time ).	And	on	closer	inspection,	many-exact-worlds

theories	seem	to	be	committed	to	something	as	strong	or	stronger:	if	“worlds”	are	to	be	the	kind	of	thing	we	see

around	us,	the	kind	of	thing	that	ordinary	macroscopic	objects	inhabit,	then	the	relation	between	those	ordinary

macroscopic	objects	and	the	world	will	likewise	have	to	be	postulated	rather	than	derived.

But	more	important,	both	approaches	undermine	the	basic	motivation	for	the	Everett	interpretation.	For	suppose

that	a	wholly	satisfactory	many-exact-worlds	or	many-minds	theory	were	to	be	developed,	specifying	an	exact
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“preferred	basis”	of	worlds	or	minds.	Nothing	would	then	stop	us	from	taking	that	theory,	discarding	all	but	one	of

the	worlds/minds 	and	obtaining	an	equally	empirically	effective	theory	without	any	of	the	ontological	excess	that

makes	Everett-type	interpretations	so	unappealing.	Put	another	way:	an	Everett-type	theory	developed	along	the

lines	that	I	have	sketched	would	really	just	be	a	hidden-variables	theory	with	the	additional	assumption	that	a

continuum	of	many	noninteracting	sets	of	hidden	variables	exists,	each	defining	a	different	classical	world.	(This

point	is	made	with	some	clarity	by	Bell	(1981b)	in	his	classic	attack	on	the	Everett	interpretation.)

At	time	of	writing,	almost	no	advocate	of	“the	many-worlds	Interpretation”	actually	advocates	anything	like	the

many-exact-worlds	approach 	(Deutsch,	for	instance,	clearly	abandoned	it	some	years	ago)	and	many-minds

strategies	that	elevate	consciousness	to	a	preferred	role	continue	to	find	favor	mostly	in	the	small	group	of

philosophers	of	physics	strongly	committed	for	independent	reasons	to	a	nonfunctionalist	philosophy	of	mind.

Advocates	of	the	Everett	interpretation	among	physicists	(almost	exclusively)	and	philosophers	(for	the	most	part)

have	returned	to	Everett's	original	conception	of	the	Everett	interpretation	as	a	pure	interpretation:	something	that

emerges	simply	from	a	realist	attitude	to	the	unitarily	evolving	quantum	state.

How	is	this	possible?	The	crucial	step	occurred	in	physics:	it	was	the	development	of	decoherence	theory.

5.	The	Role	of	Decoherence

A	detailed	review	of	decoherence	theory	lies	beyond	the	scope	of	this	chapter,	but	in	essence,	decoherence

theory	explores	the	dynamics	of	systems	that	are	coupled	to	some	environment	with	a	high	number	of	degrees	of

freedom.	In	the	most	common	models	of	decoherence,	the	“system”	is	something	like	a	massive	particle	and	the

“environment”	is	an	external	environment	like	a	gas	or	a	heat	bath,	but	it	is	equally	valid	to	take	the	“system”	to	be

the	macroscopic	degrees	of	freedom	of	some	large	system	and	to	take	the	“environment”	to	be	the	residual

degrees	of	freedom	of	that	same	system.	For	instance,	the	large	system	might	be	a	solid	body,	in	which	case	the

“system”	degrees	of	freedom	would	be	its	centre-of-mass	position	and	its	orientation	and	its	“environment”

degrees	of	freedom	would	be	all	the	residual	degrees	of	freedom	of	its	constituents;	or	it	might	be	a	fluid,	in	which

case	the	“system”	degrees	of	freedom	might	be	the	fluid	density	and	velocity	averaged	over	regions	a	few

microns	across.

Whatever	the	system-environment	split,	“decoherence”	refers	to	the	tendency	of	states	of	the	system	to	become

entangled	with	states	of	the	environment.	Typically	no	system	state	is	entirely	immune	to	such	entanglement,	but

certain	states—normally	the	wave-packet	states,	which	have	fairly	definite	positions	and	momentums—	get

entangled	fairly	slowly.	Superpositions	of	such	states,	on	the	other	hand,	get	entangled	with	the	environment

extremely	quickly,	for	straightforward	physical	reasons:	if,	say,	some	stray	photon	in	the	environment	is	on	a	path

that	will	take	it	through	point	q,	then	its	future	evolution	will	be	very	different	according	to	whether	or	not	there	is	a

wave-packet	localized	at	q.	So	if	the	system	is	in	a	superposition	of	being	localized	at	q	and	being	localized

somewhere	else,	pretty	soon	system-plus-environment	will	be	in	a	superposition	of	(system	localized	at	q,	photon

scattered)	and	(system	localized	somewhere	else,	photon	not	scattered).	Intuitively,	we	can	think	of	this	as	the

system	being	constantly	measured	by	the	environment,	though	this	“measurement”	is	just	one	more	unitary

quantum-mechanical	process.

Mathematically,	this	looks	something	like	the	following.	If	|q,p〉	represents	a	wave-packet	state	of	our	macroscopic

system	with	position	q	and	momentum	p,	then	an	arbitrary	nonentangled	state	of	the	system	will	have	state	(4)

so	that	if	the	environment	state	is	initially	|env 〉,	the	combined	system-plus-environment	state	is	(5)

But	very	rapidly	(very	rapidly,	that	is,	compared	to	the	typical	timescales	on	which	the	system	evolves),	this	state

evolves	into	something	like	(6)
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where	〈env(q,p)|env(q′,p′)〉	≃	0	unless	q	≃	q′	and	p	≃	p′.	In	this	way,	the	environment	records	the	state	of	the

system,	and	it	does	so	quickly,	repeatedly,	and	effectively	irreversibly	(more	accurately,	it	is	reversible	only	in	the

sense	that	other	macroscopic-scale	processes,	like	the	melting	of	ice,	are	reversible).

Why	does	this	matter?	Because	as	long	as	the	environment	is	constantly	recording	the	state	of	the	system	in	the

wave-packet	basis,	interference	experiments	cannot	be	performed	on	the	system:	any	attempt	to	create	a

superposition	of	wave-packet	states	will	rapidly	be	undone	by	decoherence.	The	overall	quantum	system	(that	is,

the	system-plus-environment)	remains	in	a	superposition,	but	this	has	no	dynamical	significance	(and,	in	particular,

cannot	be	empirically	detected)	without	carrying	out	in-practice-impossible	experiments	on	an	indefinitely	large

region	of	the	universe	in	the	system's	vicinity.

And	this	matters,	in	turn,	because	it	is	interference	phenomena	that	allow	the	different	structures	represented	by	a

quantum	state	in	a	superposition	to	interact	with	one	another,	so	as	to	influence	each	other	and	even	to	cancel	out

with	one	another.	If	interference	is	suppressed	with	respect	to	a	given	basis,	then	evolving	entangled

superpositions	of	elements	of	that	basis	can	be	regarded	as	instantiating	multiple	independently	evolving,

independently	existing	structures.	As	such,	if	macroscopic	superpositions	are	decohered—as	they	inevitably	will

be—then	such	superpositions	really	can	be	taken	to	represent	multiple,	dynamically	isolated,	macroscopic	states

of	affairs.

For	this	reason,	by	the	mid-1990s	decoherence	was	widely	held	in	the	physics	community	to	have	solved	the

preferred	basis	problem,	by	providing	a	definition	of	Everett's	worlds.	(It	was	just	as	widely	held	to	have	solved	the

measurement	problem	entirely,	independent	of	the	Everett	interpretation;	since	decoherence	does	not	actually

remove	macroscopic	superpositions,	though,	it	was	never	clear	how	decoherence	alone	was	supposed	to	help.)

Philosophers	of	physics	were	rather	more	skeptical	(Simon	Saunders	was	a	notable	exception;	cf.	Saunders

Saunders	(1993),	1995),	essentially	because	decoherence	seems	to	fall	foul	of	Kent's	criticism:	however

suggestive	it	might	be,	it	does	not	seem	to	succeed	in	defining	an	“explicit,	precise	rule”	(Kent	1990)	for	what	the

worlds	actually	are.	For	decoherence	is	by	its	nature	an	approximate	process:	the	wave-packet	states	that	it	picks

out	are	approximately	defined;	the	division	between	system	and	environment	cannot	be	taken	as	fundamental;

interference	processes	may	be	suppressed	far	below	the	limit	of	experimental	detection	but	they	never	quite

vanish.	The	previous	dilemma	remains	(it	seems):	either	worlds	are	part	of	our	fundamental	ontology	(in	which

case	decoher-ence,	being	merely	a	dynamical	process	within	unitary	quantum	mechanics,	and	an	approximate

one	at	that,	seems	incapable	of	defining	them),	or	they	do	not	really	exist	(in	which	case	decoherence	theory

seems	beside	the	point).

Outside	the	philosophy	of	physics,	though	(notably	in	the	philosophy	of	mind,	and	in	the	philosophy	of	the	special

sciences	more	broadly),	it	has	long	been	recognized	that	this	dilemma	is	mistaken,	and	that	something	need	not	be

fundamental	to	be	real.	In	the	last	decade,	this	insight	was	carried	over	to	the	philosophy	of	physics.

6.	Higher-Order	Ontology	and	the	Role	of	Structure

On	even	cursory	examination,	we	find	that	science	is	replete	with	perfectly	respectable	entities	that	are	nowhere	to

be	found	in	the	underlying	microphysics.

Douglas	Hofstader	and	Daniel	Dennett	make	this	point	very	clearly:

Our	world	is	filled	with	things	that	are	neither	mysterious	and	ghostly	nor	simply	constructed	out	of	the

building	blocks	of	physics.	Do	you	believe	in	voices?	How	about	haircuts?	Are	there	such	things?	What	are

they?	What,	in	the	language	of	the	physicist,	is	a	hole—not	an	exotic	black	hole,	but	just	a	hole	in	a	piece

of	cheese,	for	instance?	Is	it	a	physical	thing?	What	is	a	symphony?	Where	in	space	and	time	does	“The

Star-Spangled	Banner”	exist?	Is	it	nothing	but	some	ink	trails	in	the	Library	of	Congress?	Destroy	that	paper

and	the	anthem	would	still	exist.	Latin	still	exists	but	it	is	no	longer	a	living	language.	The	language	of	the

cavepeople	of	France	no	longer	exists	at	all.	The	game	of	bridge	is	less	than	a	hundred	years	old.	What

sort	of	a	thing	is	it?	It	is	not	animal,	vegetable,	or	mineral.

These	things	are	not	physical	objects	with	mass,	or	a	chemical	composition,	but	they	are	not	purely

abstract	objects	either—objects	like	the	number	pi,	which	is	immutable	and	cannot	be	located	in	space	and
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time.	These	things	have	birthplaces	and	histories.	They	can	change,	and	things	can	happen	to	them.	They

can	move	about—much	the	way	a	species,	a	disease,	or	an	epidemic	can.	We	must	not	suppose	that

science	teaches	us	that	every	thing	anyone	would	want	to	take	seriously	is	identifiable	as	a	collection	of

particles	moving	about	in	space	and	time.	(Hofstadter	and	Dennett	1981,	6–7)

The	generic	philosophy-of-science	term	for	entities	such	as	these	is	emergent:	they	are	not	directly	definable	in

the	language	of	microphysics	(try	defining	a	haircut	within	the	Standard	Model!)	but	that	does	not	mean	that	they

are	somehow	independent	of	that	underlying	microphysics.

To	look	in	more	detail	at	a	particularly	vivid	example,	consider	tigers,	which	are	(I	take	it!)	unquestionably	real,

objective	physical	objects,	even	though	the	Standard	Model	contains	quarks,	electrons,	and	the	like,	but	no	tigers.

Instead,	tigers	should	be	understood	as	patterns,	or	structures,	within	the	states	of	that	microphysical	theory.

To	see	how	this	works	in	practice,	consider	how	we	could	go	about	studying,	say,	tiger	hunting	patterns.	In

principle—and	only	in	principle	—	the	most	reliable	way	to	make	predictions	about	these	would	be	in	terms	of	atoms

and	electrons,	applying	molecular	dynamics	directly	to	the	swirl	of	molecules	that	make	up,	say,	the	Kanha

National	Park	(one	of	the	sadly	diminishing	places	where	Bengal	tigers	can	be	found).	In	practice,	however	(even

ignoring	the	measurement	problem	itself!),	this	is	clearly	insane:	no	remotely	imaginable	computer	would	be	able	to

solve	the	10 	or	so	simultaneous	dynamical	equations	that	would	be	needed	to	predict	what	the	tigers	would	do.

Actually,	the	problem	is	even	worse	than	this.	For	in	a	sense,	we	do	have	a	computer	capable	of	telling	us	how	the

positions	and	momentums	of	all	the	molecules	in	the	Kanha	National	Park	change	over	time.	It	is	called	the	Kanha

National	Park.	(And	it	runs	in	real	time!)	Even	if,	per	impossibile,	we	managed	to	build	a	computer	simulation	of	the

Park	accurate	down	to	the	last	electron,	it	would	tell	us	no	more	than	what	the	Park	itself	tells	us.	It	would	provide

no	explanation	of	any	of	its	complexity.	(It	would,	of	course,	be	a	superb	vindication	of	our	extant	microphysics.)

If	we	want	to	understand	the	complex	phenomena	of	the	Park,	and	not	just	reproduce	them,	a	more	effective

strategy	can	be	found	by	studying	the	structures	observable	at	the	multi-trillion-molecule	level	of	description	of	this

“swirl	of	molecules.”	At	this	level,	we	will	observe	robust—though	not	100%	reliable—regularities,	which	will	give	us

an	alternative	description	of	the	tiger	in	a	language	of	cell	membranes,	organelles,	and	internal	fluids.	The

principles	by	which	these	interact	will	be	deducible	from	the	underlying	microphysics	(in	principle	at	least;	in

practice	there	are	usually	many	gaps	in	our	understanding),	and	will	involve	various	assumptions	and

approximations;	hence	very	occasionally	they	will	be	found	to	fail.	Nonetheless,	this	slight	riskiness	in	our

description	is	overwhelmingly	worthwhile	given	the	enormous	gain	in	usefulness	of	this	new	description:	the

language	of	cell	biology	is	both	explanatorily	far	more	powerful,	and	practically	far	more	useful,	than	the	language

of	physics	for	describing	tiger	behavior.

Nonetheless	it	is	still	ludicrously	hard	work	to	study	tigers	in	this	way.	To	reach	a	really	practical	level	of

description,	we	again	look	for	patterns	and	regularities,	this	time	in	the	behavior	of	the	cells	that	make	up	individual

tigers	(and	other	living	creatures	that	interact	with	them).	In	doing	so	we	will	reach	yet	another	language,	that	of

zoology	and	evolutionary	adaptationism,	which	describes	the	system	in	terms	of	tigers,	deer,	grass,	camouflage,

and	so	on.	This	language	is,	of	course,	the	norm	in	studying	tiger	hunting	patterns,	and	another	(in	practice	very

modest)	increase	in	the	riskiness	of	our	description	is	happily	accepted	in	exchange	for	another	phenomenal	rise

in	explanatory	power	and	practical	utility.

The	moral	of	the	story	is:	there	are	structural	facts	about	many	microphysical	systems	which,	although	perfectly

real	and	objective	(try	telling	a	deer	that	a	nearby	tiger	is	not	objectively	real)	simply	cannot	be	seen	if	we	persist

in	analyzing	those	systems	in	purely	microphysical	terms.	Zoology	is	of	course	grounded	in	cell	biology,	and	cell

biology	in	molecular	physics,	but	the	entities	of	zoology	cannot	be	discarded	in	favor	of	the	austere	ontology	of

molecular	physics	alone.	Rather,	those	entities	are	structures	instantiated	within	the	molecular	physics,	and	the

task	of	almost	all	science	is	to	study	structures	of	this	kind.

Of	which	kind?	(After	all,“structure”	and	“pattern”	are	very	broad	terms:	almost	any	arrangement	of	atoms	might

be	regarded	as	some	sort	of	pattern.)	The	tiger	example	suggests	the	following	answer,	which	I	have	previously

(Wallace,	2003a,	93)	called	“Dennett's	criterion”	in	recognition	of	the	very	similar	view	proposed	by	Daniel

Dennett	(1991):
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Dennett's	criterion:	A	macro-object	is	a	pattern,	and	the	existence	of	a	pattern	as	a	real	thing	depends

on	the	usefulness—in	particular,	the	explanatory	power	and	predictive	reliability—of	theories	which	admit

that	pattern	in	their	ontology.

Nor	is	this	account	restricted	to	the	relation	between	physics	and	the	rest	of	science:	rather,	it	is	ubiquitous	within

physics	itself.	Statistical	mechanics	provides	perhaps	the	most	important	example	of	this:	the	temperature	of	bulk

matter	is	an	emergent	property,	salient	because	of	its	explanatory	role	in	the	behavior	of	that	matter.	(It	is	a

common	error	in	textbooks	to	suppose	that	statistical-mechanical	methods	are	used	only	because	in	practice	we

cannot	calculate	what	each	atom	is	doing	separately:	even	if	we	could	do	so,	we	would	be	missing	important,

objective	properties	of	the	system	in	question	if	we	abstained	from	statistical-mechanical	talk.)	But	it	is	somewhat

unusual	because	(unlike	the	case	of	the	tiger)	the	principles	underlying	statistical-mechanical	claims	are

(relatively!)	straightforwardly	derivable	from	the	underlying	physics.

For	an	example	from	physics	that	is	closer	to	the	cases	already	discussed,	consider	the	case	of	quasi-particles	in

solid-state	physics.	As	is	well	known,	vibrations	in	a	(quantum-mechanical)	crystal,	although	they	can	in	principle

be	described	entirely	in	terms	of	the	individual	crystal	atoms	and	their	quantum	entanglement	with	one	another,	are

in	practice	overwhelmingly	simpler	to	describe	in	terms	of	“phonons”—collective	excitations	of	the	crystal	that

behave	like	“real”	particles	in	most	respects.	And	furthermore,	this	sort	of	thing	is	completely	ubiquitous	in	solid-

state	physics,	with	different	sorts	of	excitation	described	in	terms	of	different	sorts	of	“quasi-particle”—crystal

vibrations	are	described	in	terms	of	phonons;	waves	in	the	magnetization	direction	of	a	ferromagnet	are	described

in	terms	of	magnons,	collective	waves	in	a	plasma	are	described	in	terms	of	plasmons,	and	so	on.

Are	quasi-particles	real?	They	can	be	created	and	annihilated;	they	can	be	scattered	off	one	another;	they	can	be

detected	(by,	for	instance,	scattering	them	off	“real”	particles	like	neutrons);	sometimes	we	can	even	measure

their	time	of	flight;	they	play	a	crucial	part	in	solid-state	explanations.	We	have	no	more	evidence	than	this	that

“real”	particles	exist,	and	indeed	no	more	grip	than	this	on	what	makes	a	particle	“real,”	and	so	it	seems	absurd	to

deny	that	quasi-particles	exist—and	yet,	they	consist	only	of	a	certain	pattern	within	the	constituents	of	the	solid-

state	system	in	question.

When	exactly	are	quasi-particles	present?	The	question	has	no	precise	answer.	It	is	essential	in	a	quasi-particle

formulation	of	a	solid-state	problem	that	the	quasi-particles	decay	only	slowly	relative	to	other	relevant	timescales

(such	as	their	time	of	flight)	and	when	this	criterion	(and	similar	ones)	is	met	then	quasi-particles	are	definitely

present.	When	the	decay	rate	is	much	too	high,	the	quasi-particles	decay	too	rapidly	to	behave	in	any

“particulate”	way,	and	the	description	becomes	useless	explanatorily;	hence,	we	conclude	that	no	quasi-particles

are	present.	It	is	clearly	a	mistake	to	ask	exactly	when	the	decay	time	is	short	enough	(2.54	×	the	interaction

time?)	for	quasi-particles	not	to	be	present,	but	the	somewhat	blurred	boundary	between	states	where	quasi-

particles	exist	and	states	when	they	don't	should	not	undermine	the	status	of	quasi-particles	as	real,	any	more	than

the	absence	of	a	precise	boundary	to	a	mountain	undermines	the	existence	of	mountains.

What	has	all	this	got	to	do	with	decoherence	and	Everett?	Just	this:	that	the	branches	which	appear	in

decoherence	are	precisely	the	kind	of	entities	that	special	sciences	in	general	tell	us	to	take	seriously.	They	are

emergent,	robust	structures	in	the	quantum	state,	and	as	such,	we	have	(it	seems)	as	much	reason	to	take	them

ontologically	seriously	as	we	do	any	other	such	structure	in	science—such	as	those	structures	that	we	identify	as

chairs	and	tables,	cats	and	dogs	and	tigers.	So—on	pain	of	rejecting	the	coherence	of	the	special	sciences	as	a

whole—we	should	accept	that	unitary	quantum	mechanics	is	already	a	many-worlds	theory:	not	a	many-exact-

worlds	theory	in	which	the	worlds	are	part	of	the	basic	mathematical	structure,	but	an	emergent-worlds	theory	in

which	the	worlds	are	instantiated	as	higher-level	structures	within	that	basic	structure.

In	this	sense,	advocacy	of	the	Everett	interpretation	has	come	full	circle:	the	rise	and	fall	of	many-exact-worlds

and	many-minds	theories	has	returned	us	to	Everett's	original	insight	that	unitary	quantum	mechanics	should	be

understood	as,	not	modified	to	become,	a	many-worlds	theory.

7.	Aspects	of	the	Probability	Problem

Concerns	about	probability,	and	attempts	to	resolve	concerns	about	probability,	have	been	part	of	the	Everett

interpretation	since	its	inception,	and	the	bulk	of	philosophical	work	on	the	interpretation	continues	to	focus	on	this

12
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issue,	so	that	I	can	do	no	more	here	than	provide	an	introduction.	I	will	do	so	by	briefly	considering	three	questions

that	might	be	(and	indeed	have	been)	raised	by	critics:

1.	How	can	probability	even	make	sense	in	the	Everett	interpretation,	given	that	it	is	deterministic	and	that	all

possible	outcomes	occur?

2.	What	justifies	the	actual	form	of	the	quantum	probability	rule	in	the	Everett	interpretation?

3.	How	can	the	Everett	interpretation	make	sense	of	the	scientific	process	by	which	quantum	mechanics	was

experimentally	tested?

Before	doing	so,	however,	I	make	two	more	general	observations.	First,	if	there	is	a	problem	of	probability	in	the

Everett	interpretation,	then	it	is	an	essentially	philosophical	problem.	There	is	no	mystery	about	how	probabilistic

theories	are	mathematically	represented	in	theoretical	physics:	they	are	represented	by	a	space	of	states,	a	set	of

histories	in	that	space	of	states	(that	is,	paths	through,	or	ordered	sequences	of	elements	drawn	from,	that	space),

and	a	probability	measure	over	those	histories	(that	is,	a	rule	assigning	a	probability	to	each	subset	of	histories,

consistent	with	the	probability	calculus).	Given	decoherence,	quantum	mechanics	provides	all	three	(at	the

emergent	level	where	branches	can	be	defined)	just	fine,	using	the	standard	modulus-squared	amplitude	rule	to

define	the	probability	of	each	branch;	indeed,	historically	much	of	the	motivation	of	the	decoherence	program	was

to	ensure	that	the	probability	calculus	was	indeed	satisfied	by	the	modulus-squared	amplitudes	of	the	branches.	So

a	physicist	who	objected	to	the	rather	philosophical	tenor	of	the	debates	on	probability	in	the	Everett	interpretation

would	be	missing	the	point:	insofar	as	he	is	unconcerned	with	philosophical	aspects	of	probability,	he	should	have

no	qualms	about	Everettian	probability	at	all.

Second,	it	has	frequently	been	the	case	that	what	appear	to	be	philosophical	problems	with	probability	in

Everettian	quantum	mechanics	in	fact	turn	out	to	be	philosophical	problems	with	probability	simpliciter.	Probability

poses	some	very	knotty	philosophical	issues,	which	often	we	forget	just	because	we	are	so	used	to	the	concept	in

practice;	sometimes	it	takes	an	unfamiliar	context	to	remind	us	of	how	problematic	it	can	be.

Note	that	it	is	of	no	use	for	a	critic	to	respond	that	all	the	same	we	have	a	good	practical	grasp	of	probability	in	the

non-Everettian	context	but	that	that	grasp	does	not	extend	to	Everettian	quantum	physics.	For	that	is	exactly	the

point	at	issue:	the	great	majority,	if	not	all,	of	the	objective	probabilities	we	encounter	in	science	and	daily	life

ultimately	have	a	quantum-mechanical	origin,	so	if	the	Everett	interpretation	is	correct,	then	most	of	our	practical

experience	of	probability	is	with	Everett-type	probability.

8.	Probability,	Uncertainty,	and	Possibility

How	can	there	be	probabilities	in	the	Everett	interpretation?	(asks	the	critic):	there	is	nothing	for	them	to	be

probabilities	of!	Defenders	will	reply	that	the	probabilities	are	probabilities	of	branches	(understood	via

decoherence),	but	the	objection	is	that	somehow	it	is	illegitimate	to	assign	probabilities	to	the	branches,	either

because	probabilities	require	uncertainty	and	it	makes	no	sense	to	be	uncertain	of	which	outcome	will	occur	in	a

theory	like	Everett's,	or	because	somehow	probabilities	quantify	alternative	possibilities	and	there	are	no

alternative	possibilities	in	the	Everett	interpretation.

The	conciliatory	approach	here	would	be	to	argue	that	these	concepts	do	after	all	find	a	home	in	Everettian

quantum	mechanics;	that	is,	to	argue	that	people	in	an	Everettian	universe	should	indeed	regard	different

branches	as	different	alternative	possibilities,	and	be	uncertain	as	to	which	one	will	actually	occur.	To	my

knowledge	this	was	first	argued	for	by	Saunders	(1998),	via	an	ingenious	thought	experiment	related	to	traditional

intuition	pumps	in	the	philosophy	of	personal	identity;	Saunders'	goal	was	to	make	it	intuitive	that	someone	in	an

Everettian	universe	should	indeed	be	uncertain	about	their	future,	even	if	they	knew	the	relevant	facts	about	the

future	branches	(though	see	Greaves	(2004)	for	an	attempted	rebuttal).	Subsequent	work	(much	of	it	building	on

Saunders')	has	tried	to	go	beyond	intuitive	plausibility	and	give	a	positive	account	of	what	would	ground

uncertainty	in	the	Everett	interpretation.

I	am	aware	of	three	broad	strategies	of	this	kind.	First,	and	most	directly,	Lev	Vaidman	points	out	(Vaidman	2002)

that	someone	who	carried	out	a	quantum	measurement	but	did	not	observe	the	result	would	be	in	a	state	of

genuine	(albeit	indexical)	uncertainty.	(There	would	be	multiple	copies	of	the	experimenter,	some	in	branches	with

one	result	and	some	in	branches	with	another,	but	each	would	be	in	subjectively	identical	states.)	It	is	unclear
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whether	this	notion	of	uncertainty	(which	does	not	appear	to	apply	to	pre-measurement	situations)	is	sufficient	to

assuage	concerns.

An	alternative	approach	via	indexical	uncertainty—this	time	also	applying	to	the	pre-measurement	situation—is	to

think	about	branches	as	four-dimensional	rather	than	three-dimensional	entities	(thus	entailing	that	branches

overlap	in	some	sense 	prior	to	whatever	quantum	event	causes	them	to	diverge.	Uncertainty	is	then	to	be

understood	as	uncertainty	as	to	which	four-dimensional	branch	an	observer	is	part	of.	For	exploration	and	defense

of	this	position,	see	Saunders	and	Wallace	(2008a,	2008b),	Saunders	(2010),	and	Wilson	(2010a,	2010b);	for

criticism,	see	Lewis	(2007b)	and	Tappenden	(2008).

The	third	strategy	is	closely	related	to	the	second,	but	takes	its	cue	from	semantics	rather	than	from	metaphysics:

namely,	consider	the	way	in	which	words	like	“uncertainty”	would	function	in	an	Everettian	universe	(possibly

given	some	theory	of	semantic	content	along	the	“charity”	lines	advocated	by	Lewis	(1974),	Davidson	(1973),	and

others)	and	argue	that	they	would	in	fact	function	in	such	a	way	as	to	make	claims	like	“one	or	other	outcome	of

the	measurement	will	occur,	but	not	both”	actually	turn	out	correct.	I	explore	this	idea	in	Wallace	(2005,	2006)	and

in	chapter	7	of	Wallace	(2012);	see	also	Ismael	(2003)	for	a	position	that	combines	aspects	of	the	second	and	third

strategies.	Whether	such	semantical	considerations	are	metaphysically	(let	alone	physically)	relevant	depends	on

one's	view	of	metaphysics;	Albert	(2010),	for	instance,	argues	that	they	are	irrelevant.

A	conciliatory	approach	of	a	rather	different	kind	is	to	concede	that	probability	has	no	place	in	an	Everettian	world

and	to	show	how	one	can	do	without	it;	typically,	this	is	done	by	arguing	that	human	activity	in	general,	and

science	in	particular,	would	proceed	as	if	quantum-mechanical	mod-squared	amplitude	was	probability,	even	if

“really”	it	was	not.	Deutsch	(1999)	and	Greaves	(2004)	advocate	positions	of	this	kind;	both	regard	“probability”

as	something	to	be	understood	decision-theoretically,	via	an	agent's	actions.	If	it	can	be	argued	that	(rational)

agents	in	an	Everettian	world	would	act	as	if	each	branch	has	a	certain	probability,	then	(Deutsch	and	Greaves

argue)	this	is	sufficient.

Of	course,	there	is	also	a	decidedly	nonconciliatory	response	available:	just	to	deny	the	claim	that	genuine

probability	requires	either	alternative	probabilities	or	any	form	of	uncertainty.	One	seldom	hears	actual	arguments

for	these	requirements;	typically	they	are	just	stated	as	if	they	were	obvious.	And	perhaps	they	are	intuitively

obvious,	but	it	is	not	clear	that	this	has	any	particular	bearing	on	anything.	Someone	who	adopts	the	(hopelessly

unmotivated)	epistemological	strategy	of	regarding	intuitive	obviousness	as	a	guide	to	truth	in	theoretical	physics

will	presumably	have	given	up	on	the	Everett	interpretation	long	ago	in	any	case.

This	response	is	actually	fairly	close	to	Deutsch's	and	Greaves's	position:	if	it	can	be	argued	that	mod-squared

amplitude	functions	exactly	like	probability	but	lacks	certain	standardly	required	philosophical	features	that

probability	has,	it	is	open	to	us	just	to	deny	that	those	philosophical	features	are	required,	and	to	adopt	the	position

that	insofar	as	mod-squared	amplitude	functions	exactly	like	probability,	that's	all	that's	required	to	establish	that	it

is	probability.	This	is	my	own	view	on	the	problem, 	developed	in	extenso	in	Wallace	(2012).

9.	The	Quantitative	Problem

Grant,	if	only	for	the	sake	of	argument,	that	it	is	somehow	legitimate	to	attach	probabilities	to	branches.	There	is	a

further	question:	Why	should	those	probabilities	be	required	to	equal	those	given	by	quantum	mechanics?

One	version	of	this	objection—going	right	back	to	Graham	(1973)—is	that	the	quantum	probabilities	cannot	be	the

right	probabilities,	because	the	right	probabilities	must	give	each	branch	equal	probability.	There	is	generally	no

positive	argument	given	for	this	claim,	beyond	some	gesture	to	the	effect	that	the	versions	of	me	on	the	different

branches	are	all	“equally	me”;	still,	it	has	a	strong	intuitive	plausibility.

It	can,	however,	be	swiftly	dismissed.	It	is	possible	to	argue	that	the	rule	is	actually	inconsistent	when	branching

events	at	multiple	times	are	considered, 	but	more	crucially,	decoherence	just	does	not	license	any	notion	of

branch	count.	It	makes	sense,	in	the	presence	of	decoherence,	to	say	that	the	quantum	state	(or	some	part	of	it)

branches	into	a	part	in	which	measurement	outcome	X	occurs	and	a	part	in	which	it	does	not	occur,	but	it	makes

no	sense	at	all	to	say	how	many	branches	comprise	the	part	in	which	X	occurs.	Study	of	a	given	branch	at	a	finer

level	of	detail	will	inevitably	show	it	to	consist	of	many	sub-branches;	eventually	this	will	cease	to	be	the	case	as
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decoherence	ceases	to	be	applicable	and	interference	between	branches	becomes	nonnegligible;	but	there	is	no

well-defined	point	at	which	this	occurs	and	different	levels	of	tolerance—as	well	as	small	changes	in	other	details	of

how	we	define	“branch”—lead	to	wildly	differing	answers	as	to	how	many	branches	there	are.	Put	plainly,“branch

number,”	insofar	as	it	is	defined	at	all	in	a	given	decoherence	formalism,	is	an	artifact	of	the	details	of	that

formalism.	(And	it	is	not	by	any	means	defined	in	all	such	formalisms;	many	use	a	continuum	framework	in	which

the	concept	makes	no	sense	even	inside	the	formalism.	For	more	details	on	this	and	on	the	general	question	of

branch	counting,	see	chapter	3	of	Wallace	(2012).)

So	much	for	branch	counting.	The	question	remains:	What	positive	justification	can	be	given	for	identifying	mod-

squared	amplitude	with	probability?	One	might	answer,	as	did	Simon	Saunders	in	the	1990s	(Saunders	1995,	1997,

1998),	by	rejecting	the	idea	that	any	“positive	justification”	is	needed:	after	all,in	general	we	do	not	argue	that	the

probabilities	in	a	physical	theory	are	what	they	are	(nor	indeed,	in	general,	that	the	other	physical	magnitudes	in	a

theory	have	the	interpretation	they	have);	we	just	postulate	it.	It	is	not	immediately	clear	why	this	response	is	any

less	justified	in	the	Everett	interpretation	than	in	non-Everettian	physics;	indeed,	arguably	it	works	rather	better	as

a	postulate,	since	it	is	at	least	clear	what	categorical,	previously	understood	magnitude	is	to	be	identified	with

probability.	By	contrast,	in	classical	physics	the	only	real	candidate	seems	to	be	long-run	relative	frequencies	or

some	related	concept,	and	even	establishing	that	those	have	the	formal	properties	required	of	probability	has

proven	fraught.	The	most	promising	candidate	so	far	is	Lewis's	“best	systems	analysis”	(Lewis	1986,	55,	128–131),

which	constructs	probabilities	indirectly	from	relative	frequencies	and	related	categorical	data;	even	if	that

analysis	succeeded	fully,	though,	it	would	deliver	no	more	than	quantum	physics	(together	with	decoherence)	has

already	delivered,	namely	a	set	of	quantities	with	the	right	formal	properties	to	be	identified	with	probability	but	no

further	justification	for	making	such	an	identification.

Papineau	(1996,	2010)	puts	essentially	the	same	point	in	a	more	pessimistic	way.	He	identifies	two	criteria	that	a

theory	of	probability	must	satisfy:	a	“decision-theoretic	link”	(why	do	we	use	probability	as	a	guide	to	action?)	and

an	“inferential	link”	(why	do	we	learn	about	probabilities	from	observed	relative	frequencies?)	and	concedes	that

Everettian	quantum	mechanics	has	no	good	explanation	of	why	either	is	satisfied—but,	he	continues,	neither	does

any	other	physical	theory,	nor	any	other	extant	philosophical	theory	of	probability.	The	Everett	interpretation

(Papineau	argues)	therefore	has	no	special	problem	of	probability.

In	fact,	in	recent	years	the	possibility	has	arisen	that	probability	may	actually	be	in	better	shape	in	Everettian

quantum	mechanics	than	in	non-Everettian	physics.	Arguments	originally	given	by	David	Deutsch	(1999)	and

developed	in	Wallace	(2003b,	2007)	suggest	that	it	may	be	possible	to	derive	the	quantum	probability	rule	from

general	principles	of	decision	theory,	together	with	the	mathematical	structure	of	quantum	mechanics	shorn	of	its

probabilistic	interpretation.	A	fully	formalized	version	of	this	argument	can	be	found	in	Wallace	(2010)	and	in

chapters	5	and	6	of	Wallace	(2012).

In	philosophical	terms,	what	such	arguments	attempt	to	do	is	to	show	that	rational	agents,	cognizant	of	the	facts

about	quantum	mechanics	and	conditional	on	believing	those	facts	to	be	true,	are	required	to	treat	mod-squared

amplitude	operationally	as	probability.	Specifically,	they	are	required	to	use	observed	relative	frequencies	as	a

guide	to	working	out	what	the	unknown	mod-squared	amplitudes	are	(Papineau's	inferential	link),	and	to	use	known

mod-squared	amplitudes	as	a	guide	to	action	(his	decision-theoretic	link).

Space	does	not	permit	detailed	discussion	of	this	approach	to	probability,	but	at	essence	it	relies	on	the

symmetries	of	quantum	mechanics.	There	is	a	long	tradition	of	deriving	probability	from	considerations	of

symmetry,	but	in	the	classical	case	these	approaches	ultimately	struggle	with	the	fact	that	something	must	break

the	symmetry,	simply	to	explain	why	one	outcome	occurs	rather	than	another.	This	is,	of	course,	not	an	issue	for

Everettian	quantum	mechanics!	From	this	perspective,	the	role	of	decision	theory	is	less	central	in	the	arguments

than	it	might	appear:	its	main	function	is	to	justify	the	applicability	of	probabilistic	concepts	to	Everettian	branches

at	all.	(And	conversely,	if	one	were	concerned	purely	with	the	question	of	what	the	probabilities	of	each	branch

were,	and	prepared	to	grant	that	branches	did	have	probabilities	and	that	they	satisfy	normal	synchronic	and

diachronic	properties,	it	is	possible	to	prove	the	quantum	probability	rule	without	any	mention	of	decision	theory;

cf.	Wallace	(2012,	ch.	4).)

If	this	last	approach	to	probability	works	(and	fairly	obviously,	I	believe	it	does),	it	marks	a	rather	remarkable	shift	in

the	debate;	probability,	far	from	being	something	that	makes	the	Everett	interpretation	unintelligible,	becomes
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something	that	can	be	understood	in	Everettian	quantum	mechanics	in	a	way	which	does	not	seem	available

otherwise.	(See	Saunders	(2010)	for	further	development	of	this	theme.)	I	feel	obliged	to	note	that	it	is	highly

controversial	whether	the	approach	does	indeed	work;	for	recent	criticism,	see	Albert	(2010),	Price	(2010),	and

other	articles	in	Saunders	et	al.	(2010).

10.	Epistemic	Puzzles

The	rise	of	decision-theoretic	approaches	to	Everettian	probability	(whether	to	make	sense	of	probability	or	to

derive	the	probability	rule)	has	led	to	a	new	worry	about	probability	in	the	Everett	interpretation.	Suppose	for	the

sake	of	argument	that	it	really	can	be	shown,	or	legitimately	postulated,	that	someone	who	accepts	the	Everett

interpretation	as	correct	should	behave,	at	least	for	all	practical	purposes,	as	if	mod-squared	amplitude	were

probability.	What	has	that	to	do	with	the	question	of	why	we	should	believe	the	Everett	interpretation	in	the	first

place?	Put	another	way,	how	would	it	license	us	to	interpret	the	usual	evidence	for	quantum	mechanics	as

evidence	for	Everettian	quantum	mechanics?

This	suggests	a	division	of	the	probability	problem	into	practical	and	epistemic	problems	(Greaves	2007a),	where

the	former	concerns	how	rational	agents	should	act	given	that	Everettian	quantum	theory	is	correct,	and	the

latter	concerns	how	evidence	bears	on	the	truth	of	quantum	theory	in	the	first	place,	given	that	it	is	to	be

interpreted	à	la	Everett.	Arguably,	Deutsch's	decision-theoretic	program	(and	my	development	of	it)	speaks	only	to

the	practical	problem;	indeed,	arguably	most	of	the	tradition	in	thinking	about	Everettian	probability	speaks	only	to

the	practical	problem.

The	last	decade	has	seen	the	development	of	a	small,	but	complex,	literature	on	this	subject.	In	essence,	there	are

two	strategies	that	have	been	developed	for	solving	the	epistemic	problem.	The	first	is	highly	philosophical:	if	it	can

be	established	that	mod-squared	amplitude	is	probability,	then	(it	is	claimed)	no	more	is	required	of	the	Everett

interpretation	than	of	any	other	physical	theory	as	regards	showing	why	probability	plugs	into	our	epistemology	in

the	way	it	does.	Strategies	of	this	form	rely	on	a	mixture	of	solutions	to	the	practical	problem	(cf.	section	9),

arguments	that	branching	leads	to	genuine	uncertainty	about	the	future	and/or	genuine	probabilities	(cf.	section	8),

and	appeal	to	the	no-double-standards	principle	I	mentioned	in	section	7.	The	strategy	is	tacit	in	Saunders	(1998);	I

defended	an	explicit	version	in	Wallace	(2006)	(and,	in	less	developed	form,	in	Wallace	(2002));	Wilson	(2010b)

defends	a	similar	thesis.

The	other	strategy	is	significantly	more	technical	and	formal:	namely,	construct	a	formal	decision-theoretic

framework	to	model	the	epistemic	situation	of	agents	who	are	unsure	whether	the	Everett	interpretation	is	correct,

and	show	that	in	that	situation	(perhaps	contingent	on	a	solution	to	the	practical	problem),	agents	regard

“ordinary”	evidence	as	confirmatory	of	quantum	mechanics	in	a	standard	way,	even	when	quantum	mechanics	is

understood	according	to	the	Everett	interpretation.	This	strategy	was	pioneered	by	Greaves	(2004)	and	brought	to

a	mature	state	in	Greaves	(2007a)	and	Greaves	and	Myrvold	(2010).	The	latter	two	papers,	on	slightly	different

starting	assumptions	(including	in	both	cases	the	Bayesian	approach	to	statistical	inference)	take	it	as	given	that

conditional	on	the	Everett	interpretation	being	true,	mod-squared	amplitude	functions	as	probability	in	decision-

making	contexts,	and	derive	that	agents	will	update	their	personal	probability	in	quantum	mechanics	via	standard

update	procedures,	whether	or	not	quantum	probabilities	are	to	be	understood	in	Everettian	terms.	As	such,	these

arguments	take	as	input	a	solution	to	the	practical	problem	(whether	postulated	or	derived	via	Deutsch's	and/or	my

arguments)	and	give	as	output	a	solution	to	the	epistemic	problem.	It	is	also	possible	(cf.	Wallace,	2012,	ch.	6)	to

combine	the	two	strategies	into	one	theorem,	which	makes	standard	decision-theoretic	assumptions	and	derives

solutions	to	the	epistemic	and	practical	problems	in	a	unified	fashion.

11.	Other	Topics

While	the	bulk	of	contemporary	work	on	the	Everett	interpretation	has	been	concerned	with	the	preferred-basis

and	probability	problems	(and,	more	generally,	has	been	concerned	with	whether	the	interpretation	is	viable,	rather

than	with	its	philosophical	implications	if	viable),	there	are	a	goodly	number	of	other	areas	of	interest	within	the

Everett	interpretation	(or,	as	I	would	prefer	to	put	it:	within	quantum	mechanics,	once	it	is	understood	that	it	should

be	interpreted	Everett-style),	and	I	briefly	mention	some	of	these	here.
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•	If	Everettian	quantum	mechanics	is	only	emergently	a	theory	of	branching	universes,	what	is	its	fundamental

ontology,	insofar	as	that	question	has	meaning?	That	is:	what	kind	of	physical	entity	is	represented	by	the

quantum	state?	Of	course,	this	question	can	be	asked	of	any	approach	to	quantum	theory	that	takes	the	state

as	representing	something	physically	real,	but	it	takes	on	a	particular	urgency	in	the	Everett	interpretation	given

that	the	theory	is	supposed	to	be	pure	quantum	mechanics,	shorn	of	any	additional	mathematical	structure.	For

various	approaches	to	the	problem,	see	Deutsch	and	Hayden	(2000),	Deutsch	(2002),	Wallace	and	Timpson

(2007,	2010),	Maudlin	(2010)	(who	argues	that	there	is	no	coherent	understanding	of	the	Everett	interpretation's

ontology),	Hawthorne	(2010)	(who	is	at	least	sympathetic	to	Maudlin),	Allori	et	al.	(2009),	and	(in	the	general

context	of	the	ontology	of	the	quantum	state)	Albert	(1996)	and	Lewis	(2004b).

(I	should	add	one	cautionary	note:	it	is	very	common	in	the	literature	to	phrase	the	question	as,	what	is	the

ontology	of	the	wave-function?	But	recall	that	the	wave-function	is	only	one	of	a	great	many	ways	to	represent

the	quantum	state,	and	one	which	is	much	more	natural	in	nonrelativistic	physics	than	in	quantum	field	theory.)

•	It	is	generally	(and	in	my	view	correctly)	held	that	the	experimental	violation	of	Bell's	inequalities 	shows	not

just	that	hidden	variable	theories	must	involve	superluminal	dynamics,	but	that	any	empirically	adequate	theory

must	involve	superluminal	dynamics. 	But	the	Everett	interpretation	is	generally	(and	again	correctly,	in	my

view)	viewed	as	an	exception,	essentially	because	it	violates	a	tacit	premise	of	Bell's	derivation,	that	only	one

outcome	actually	occurs. 	There	has,	however,	been	rather	little	exploration	of	this	issue;	Bacciagaluppi

(2002)	is	a	notable	exception.

•	There	is	an	ongoing	(and	somewhat	sensationalist)	discussion	in	the	literature	about	so-called	“quantum

suicide”:	the	idea	that	an	agent	in	an	Everettian	universe	should	expect	with	certainty	to	survive	any	process

which	third-party	observers	regard	him	as	having	nonzero	probability	of	surviving.	The	idea	has	been	around	in

the	physics	community	for	a	long	time	(see,	e.g.,	Tegmark	(1998);	it	was	first	introduced	to	philosophers	by

David	Lewis,	in	his	only	paper	on	the	Everett	interpretation	(Lewis	2004a)	and	has	been	discussed	further	by

Lewis	(2000)	and	Papineau	(2003).

•	Everett	was	originally	motivated	in	part	by	a	desire	for	an	interpretation	of	quantum	mechanics	that	was

suitable	for	cosmology	in	that	it	did	not	assume	an	external	observer.	The	Everett	interpretation	has	been	widely

influential	in	quantum	cosmology	ever	since:	for	an	introduction,	see	Hartle	(2010).	It	is	not	universally

acknowledged	that	quantum	cosmology	does	require	the	Everett	interpretation,	though;	for	dissenting	views

(from	widely	differing	perspectives),	see	Fuchs	and	Peres	(2000),	Smolin	(1997:	240–266),	and	Rovelli	(2004:

209–222).

•	The	de	Broglie-Bohm	“pilot	wave”	theory	(aka	Bohmian	mechanics)	has	sometimes	been	criticized	for	being

“Everett	in	denial”:	that	is,	being	the	Everett	interpretation	with	some	additional	epiphenomenal	structure.	For

examples	of	this	criticism,	see	Deutsch	(1996)	and	Brown	and	Wallace	(2004);	for	responses,	see	Lewis

(2007a)	and	Valentini	(2010)	(see	also	Brown's	(2010)	response	to	Valentini).	Allori	et	al.	(2008)	can	also	be

read	as	a	response,	insofar	as	it	advocates	a	position	on	the	ontology	of	a	physical	theory	far	removed	from

that	of	section	6	and	from	which	the	Everett-in-denial	objection	cannot	be	made.

12.	Further	Reading

Saunders	et	al.	(2010)	is	an	up-to-date	and	edited	collection	of	articles	for	and	against	the	Everett	interpretation,

including	contributions	from	a	large	fraction	of	the	physicists	and	philosophers	involved	in	the	contemporary

debate;	Saunders's	introduction	to	the	book	provides	an	overview	of	the	Everett	interpretation	complementary	to

this	chapter.	Barrett	(1999)	is	a	comprehensive	guide	to	discussions	of	the	Everett	interpretation	in	(mostly)	the

philosophy	of	physics	literature,	up	to	the	late	1990s.	DeWitt	and	Graham	(1973)	is	a	classic	collection	of	original

papers.	Wallace	(2012)	is	my	own	book-length	defense	of	the	Everett	interpretation;	Wallace	(2008)	is	a	review	of

the	measurement	problem	more	generally,	focused	on	the	role	of	decoherence	theory.	Greaves	(2007b)	reviews

work	in	the	probability	problem.

Afterword

I	have	left	undiscussed	the	often-unspoken,	often-felt	objection	to	the	Everett	interpretation:	that	it	is	simply

unbelievable.	This	is	because	there	is	little	to	discuss:	that	a	scientific	theory	is	wildly	unintuitive	is	no	argument	at

all	against	it,	as	twentieth-century	physics	proved	time	and	again.	David	Lewis	is	memorably	reported	to	have	said
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that	he	did	not	know	how	to	refute	an	incredulous	stare;	had	he	been	less	charitable,	he	might	have	said	explicitly

that	an	incredulous	stare	is	not	an	argument,	and	that	if	someone	says	that	they	are	incapable	of	believing	a	given

theory—philosophical	or	scientific—they	are	but	reporting	on	their	psychology.
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Notes:

(1)	Arguably	this	has	changed,	but	only	in	the	last	decade	or	so,	and	more	so	in	the	UK	than	elsewhere.	(Students

occasionally	ask	me	how	the	Everett	interpretation	is	perceived	outside	Oxford;	my	flippant	answer	is	that	there	is

a	significant	divide	between	philosophers	who	do	and	do	not	take	it	seriously,	and	the	divide	is	called	the	Atlantic

Ocean.)

(2)	This	is	largely	anecdotal;	see,	however,	Tegmark	(1998).

(3)	This	simplifies	slightly:	it	is	frequently	convenient—notably	in	cases	involving	symmetry—to	define	the	space	of

states	so	that	the	mathematics-to-physics	relation	is	many-to-one,	and	it	is	somewhat	controversial	in	some	such

cases	whether	it	is	many-to-one	(see,	e.g.,	Saunders	(2003)	and	references	therein.)	Such	concerns	are

orthogonal	to	the	quantum	measurement	problem,	though.

(4)	That	is:	what	is	the	correct	view	of	scientific	theories—semantic	or	syntactic	(cf.	Ladyman	and	Ross	(2007,

111–118)	and	references	therein).

(5)	In	the	case	of	dynamical-collapse	theories,	Tumulka	(2006)	has	produced	a	relativistically	covariant	theory	for

non-interacting	particles,	but	to	my	knowledge	there	is	no	dynamical-collapse	theory	empirically	equivalent	to	any

relativistic	theory	with	interactions.	There	has	been	rather	more	progress	in	the	case	of	hidden	variable	theories

(perhaps	unsurprisingly,	as	these	supplement	but	do	not	modify	the	already-known	unitary	dynamics);	for	three
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different	recent	approaches,	see	Dürr	et	al.	(2004,	2005)	(hidden	variables	are	particle	positions),	Struyve	and

Westman	(2006)	(hidden	variables	are	bosonic	field	strengths),	and	Colin	(2003)	and	Colin	and	Struyve	(2007)

(hidden	variables	are	local	fermion	numbers).	As	far	as	I	know,	no	such	approach	has	yet	been	demonstrated	to	be

empirically	equivalent	to	the	Standard	Model	to	the	satisfaction	of	the	wider	physics	community.

(6)	Perhaps	in	some	sense	there	are	multiple	interpretations	of	classical	electromagnetism:	perhaps	realists	could

agree	that	the	electromagnetic	field	is	physically	real	but	might	disagree	about	its	nature.	Some	might	think	that	it

was	a	property	of	spacetime	points;	others	might	regard	it	as	an	entity	in	its	own	right.	I	am	deeply	skeptical	as	to

whether	this	really	expresses	a	distinction,	but	in	any	case,	I	take	it	this	is	not	the	problem	that	we	have	in	mind

when	we	talk	about	the	measurement	problem.

(7)	A	move	criticized	on	technical	grounds	by	Foster	and	Brown	(1988).

(8)	Given	that	an	“observer”	is	represented	in	the	quantum	theory	by	some	Hilbert	space	many	of	whose	states

are	not	conscious	at	all,	and	that	conversely	almost	any	sufficiently	large	agglomeration	of	matter	can	be	formed

into	a	human	being,	it	would	be	more	accurate	to	say	that	we	have	a	consciousness	basis	for	all	systems,	but	one

with	many	elements	that	correspond	to	no	conscious	experience	at	all.

(9)	In	fact	many	adherents	of	many-minds	theories	(e.g.,	Lockwood	and	Donald)	embrace	this	conclusion,	having

been	led	to	reject	functionalism	on	independent	grounds.

(10)	It	would	actually	be	a	case	of	discarding	all	but	one	set	of	minds—one	for	each	observer.

(11)	Barbour	(1999)	might	be	an	exception;	so	might	Allori	et	al.	(2009),	though	it	is	unclear	if	Allori	et	al.	are

actually	advocating	the	interpretation	rather	than	using	it	to	illustrate	broader	metaphysical	themes.

(12)	For	an	elementary	introduction,	see,	e.g.,	Kittel	(1996);	for	a	more	systematic	treatment	see,	e.g.,	Tsvelik

(2003)	or	(old	but	classic)	Abrikosov,	Gorkov,	and	Dzyalohinski	(1963).

(13)	In	exactly	what	sense	is	controversial,	and	the	debate	arguably	overlaps(!)	with	others	in	mainstream

metaphysics;	see	Saunders	(2010)	and	Wilson	(2010a,	2010b)	for	further	discussion.

(14)	It	represents	a	departure	from	my	position	in	Wallace	(2006).

(15)	See	Wallace	(2012)	for	details;	I	learned	the	argument	from	David	Deutsch	in	conversation.

(16)	For	reasons	of	space	I	omit	detailed	discussion	of	the	parallel	tradition	in	Everettian	quantum	mechanics	of

identifying	probability	via	long-run	relative	frequency	(notably	by	Everett	himself	(1957)	and	by	Farhi,	Goldstone,

and	Gutmann(1989).	I	discuss	this	program	in	detail	in	chapter	4	of	Wallace(2012);	my	conclusion	is	that	it	works

about	as	well,	or	as	badly,	as	equivalent	classical	attempts,	though	there	is	no	direct	Everettian	analogue	to	the

best-systems	approach.

(17)	A	more	precise	way	of	stating	both	is	that	the	program	attempts	to	show	that	agents	are	rationally	required	to

act	as	if	mod-squared	amplitude	played	the	objective-probability	role	in	David	Lewis's	Principal	Principle;	cf.	Lewis

(1980).

(18)	See,	the	discussions	in	e.g.,	Bell	(1981a)	or	Maudlin	(2002).

(19)	That	the	dynamics	are	thereby	required	to	violate	Lorentz	covariance	does	not	uncontroversially	follow;	cf.

Myrvold	(2002),	Wallace	and	Timpson	(2010),	and	Tumulka	(2006).

(20)	For	a	more	detailed	analysis—which	gives	a	slightly	different	account	of	why	the	Everett	interpretation	is	an

exception	to	Bell's	result—see	Timpson	and	Brown	(2002).

(21)	Storrs	McCall	also	explores	these	issues	in	developing	his	approach	to	quantum	mechanics	(see,	e.g.,	McCall

(2000));	that	approach	is	related	to,	but	not	identical	to,	the	Everett	interpretation	(and,	insofar	as	it	relies	on	an

explicit	and	precise	concept	of	branching	without	offering	a	dynamical	explication	of	when	branching	occurs,

arguably	fails	to	solve	the	measurement	problem.)
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Abstract	and	Keywords

This	chapter	evaluates	whether	unitary	equivalence	is	an	appropriate	criterion	of	physical	equivalence	for

quantum	theories	that	fall	outside	the	scope	of	the	comforting	uniqueness	results.	It	describes	the	Stone-von

Neumann	and	Jordan-Wigner	uniqueness	results,	provides	examples	of	unitarily	inequivalent	representations,	and

proposes	an	alternative	to	unitary	equivalence	as	a	criterion	for	physical	equivalence.	The	chapter	also	offers	an

impressionistic	introduction	to	the	rudiments	of	operator	algebra	theory.

Keywords:	unitary	equivalence,	physical	equivalence,	uniqueness	results,	Stone-von	Neumann,	Jordan-Wigner,	inequivalent	representations,

operator	algebra	theory

1.	Introduction

By	tradition,	to	quantize	a	theory	of	classical	mechanics,	one	constructs	a	Hilbert	space	representation	of	a	set	of

magnitudes	obeying	canonical	commutation	relations	(CCRs)	characteristic	of	the	theory	in	question.	Similarly,	to

construct	a	quantum	theory	of	spin	systems,	one	finds	a	Hilbert	space	representation	of	characteristic	canonical

anticommutation	relations	(CARs)	for	spin	systems.	The	representations	in	question	take	the	form	of	symmetric

Hilbert	space	operators	satisfying	the	relevant	canonical	relations.	Following	standard	practice	of	eliding	the

distinction	between	operators	and	the	physical	magnitudes	(aka	observables)	they	represent,	I	will	call	such

operators	“canonical	observables.”	By	tradition,	other	observables	recognized	by	the	theory	can	be	obtained	as

polynomials	of,	and	limits	of	sequences	of	polynomials	of,	the	representation-bearing	canonical	observables.	By

tradition,	a	quantum	state	is	an	expectation	value	assignment	to	this	collection	of	magnitudes,	which	is	normed,

linear,	and	countably	additive.	Thus,	a	Hilbert	space	representation	of	the	canonical	relations	circumscribing	a

quantum	theory	supplies	a	kinematics	for	that	theory,	that	is,	an	account	of	the	states	it	recognizes	as	physically

possible	and	the	magnitudes	it	recognizes	as	physically	significant.	In	standard	Hilbert	space	quantum	mechanics,

the	Schrödinger	equation	equips	such	a	theory	with	a	dynamics.

Even	very	simple	quantum	theories,	so	realized,	harbor	provocative	difficulties.	The	quantum	theory	of	two	spin	½

systems	features	entangled	states	that	can	be	understood	to	predict	distant	correlations,	alarmingly	suggestive	of

spooky	action	at	a	distance.	This	is	the	difficulty	of	quantum	nonlocality.	The	quantum	theory	of	a	cat	and	a

radioactive	atom,	both	modeled	as	bivalent	systems,	when	equipped	with	what	for	all	the	world	seems	an

appropriate	model	of	purely	unitary	measurement,	deposits	the	cat	in	a	state	eerily	superposed	between	life	and

death.	This	difficulty	is	the	quantum	measurement	problem.	Foundational	discussions	of	quantum	non-locality	and

the	measurement	problem	are	legion.	They	are	also	largely	immune	to	a	foundational	anxiety	that	is	the	mission	of

this	contribution	to	induce.	The	anxiety	is	whether	the	definite	descriptions	earlier	in	the	paragraph	are

appropriate:	whether,	that	is,	the	quantum	theory	of	two	spin	½	systems	is	unique;	more	generally,	whether,	there

might	be	multiple,	physically	inequivalent	ways	to	concoct	a	quantum	theory	from	representations	of	the

canonical	relations	circumscribing	that	theory.
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The	substantial	literature	on	quantum	nonlocality	and	the	measurement	problem	is	largely	innocent	of	the

uniqueness	anxiety	because	it	largely	concerns	quantum	theories	that	fall	within	the	scope	of	two	results	taken	to

silence	that	anxiety.	These	are	the	Stone-von	Neumann	and	Jordan-Wigner	theorems.	According	to	the	former,

every	Hilbert	space	representation	of	the	CCRs	for	a	particular	classical	Hamiltonian	theory	of	finitely	many

particles	is	unitarily	equivalent	to	every	other. 	For	each	finite	n,	the	Jordan-Wigner	theorem	guarantees	that

representations	of	the	CARs	for	n	spin	systems	are	unique	up	to	unitary	equivalence. 	These	results	are	taken	to

silence	the	uniqueness	anxiety	because	unitary	equivalence	is	widely	supposed	to	explicate	physical	equivalence

for	(quantum	theories	obtained	via)	Hilbert	space	representations.	Given	the	supposition,	the	results	imply	that

superficially	variant	representations	of	the	canonical	relations	circumscribing	a	quantum	theory	are	merely	variant

means	of	expressing	the	same	quantum	kinematics.	That	is,	they	are	merely	variants	provided	the	quantum	theory

in	question	concerns	a	suitably	“finite”	system.

But	not	all	quantum	theories	do	concern	suitably	finite	systems.	Quantum	field	theory	(QFT),	and	the

thermodynamic	limit	of	quantum	statistical	mechanics	(QSM),	are	quantum	theories	whose	degrees	of	freedom	are

infinite	in	number.	A	typical	QFT	comes	about	as	the	quantization	of	a	classical	field	theory,	which	assigns	a	field

amplitude	to	every	point	of	spacetime.	To	take	QSM	to	the	thermo-dynamic	limit	is	to	allow	the	number	of

microconstituents	of	the	system	analyzed,	and	the	volume	they	occupy,	go	to	infinity	while	the	density	remains

finite.	Concerning	infinite	systems,	QFT	and	the	thermodynamic	limit	of	QSM—quantum	theories	which	I	will	lump

together	under	the	heading	“QM ”—fall	outside	the	scope	of	the	Jordan-Wigner	and	Stone-von	Neumann

uniqueness	theorems.	Indeed,	the	canonical	relations	circumscribing	a	theory	of	QM 	can	admit	continuously

many	unitarily	inequivalent	Hilbert	space	representations.	According	to	very	same	criterion	of	physical

equivalence,	that	warranted	the	reading	of	those	theorems	as	results	about	physical	equivalence,	theories	of	QM

can	admit	infinitely	many	presumptively	physically	inequivalent	Hilbert	space	representations.

This	contribution	addresses	quantum	theories	that	fall	outside	the	scope	of	the	comforting	uniqueness	results,	with

a	view	toward	assessing	whether	unitary	equivalence	is	an	appropriate	criterion	of	physical	equivalence	for	these

theories.	More	emphasis	is	put	on	means	of	assessment	and	what	motivates	them	than	on	endorsing	and	defending

a	particular	answer.	Indeed,	I	will	suggest	that	appropriate	criteria	of	physical	equivalence	for	quantum	theories	are

sensitive	to	factors	that	are	not	obviously	criteria	of	identity	for	those	theories,	factors	such	as	the	uses	to	which

those	theories	are	being	put	and	the	scientific	climates	in	which	they	find	themselves.

I	proceed	as	follows.	The	next	section	sketches	the	Stone-von	Neumann	and	Jordan-Wigner	uniqueness	results

and	explicates	the	assumptions	underlying	their	conventional	reading	as	results	about	the	physical	equivalence	of

quantum	theories.	Section	3	develops	two	accessible	examples	of	unitarily	inequivalent	representations.	With

these	examples	in	hand,	section	5	revisits	the	case	that	unitary	equivalence	is	criterial	for	physical	equivalence.

Articulating	a	new-fangled	alternative	criterion,	section	5	also	identifies	presuppositions	favoring	the	traditional

criterion	over	the	new-fangled	one.	These	include	presuppositions	about	which	relations	between	physical

observables	serve	to	define	other	physical	observables,	as	well	as	presuppositions	about	what	states	are	physical.

The	concluding	section	6	discusses	strategies	for	securing	these	presuppositions,	observes	certain	tensions	within

these	strategies,	and	comments	on	what	to	make	of	this	state	of	play.	Throughout,	the	exposition	is	informal,	with

references	to	more	thorough	and	rigorous	discussions	supplied.	In	an	effort	to	keep	the	discussion	self-contained

and	accessible,	a	technical	interlude	(section	4)	offers	an	incomplete	and	impressionistic	introduction	to	the

rudiments	of	operator	algebra	theory.

2.	The	“Uniqueness”	Results

2.1	Preliminaries

This	contribution	derives	its	dramatic	tension	from	the	fact	that	entrenched	criteria	of	physical	equivalence	for

quantum	theories	render	a	verdict	of	‘inequivalent!’	for	what	otherwise	seem	to	be	realizations	of	the	same	basic

quantum	theoretical	structure.	So	our	first	task	will	be	to	announce	a	criterion	of	individuation	for	quantum	theories.

With	that	criterion	in	hand,	we	can	turn	to	the	question	of	what	it	takes	for	superficially	different	realizations	of	the

theory,	so	individuated,	to	be	physically	equivalent.

What	makes	a	quantum	theory	the	theory	it	is?	There	is	a	consensus	among	the	community	of	people	who	work
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with	such	theories.	Fulling	reports	that	“most	theoretical	physicists,	following	Schwinger,	regard	the	action	principle

as	fundamental.	Theories	are	defined	by	Lagrangians”	(1989,	126).	By	fixing	the	symplectic	structure	of	a	classical

theory,	the	Lagrangian	fixes	the	commutation	relations	its	quantizer	seeks	to	represent. 	But	not	all	interesting

quantum	theories	descend	from	real	or	imagined	classical	Lagrangians.	Haag	observes,

The	idea	that	one	must	first	invent	a	classical	model	and	then	apply	to	it	a	recipe	called	“quantization”	has

been	of	great	heuristic	value.	In	the	past	two	decades,	the	method	of	passing	from	a	classical	Lagrangian

to	a	corresponding	quantum	theory	has	shifted	more	and	more	away	from	the	canonical	formalism	to

Feynman's	path	integral.	This	provides	an	alternative	(equivalent?)	recipe.	There	is,	however,	no

fundamental	reason	why	a	quantum	theory	should	not	stand	on	its	own	legs,	why	the	theory	could	not	be

completely	formulated	without	regardtoan	underlying	deterministic	principle.	(1992,	6)

Thus,	Fulling	proposes	a	liberalization	of	Schwinger's	conventional	wisdom:

There	is,	however,	another	point	of	view,	more	consistent	with	the	spirit	of	axiomatic	field	theory.	Any

commutation	or	anticommutation	relations	consistent	with	the	dynamics	can	define	a	possible	model.	…In

this	approach	a	formal	theory	consists	of	equations	of	motion	plus	commutation	rules	(or	some	more

general	algebraic	relations).	They	need	not	determine	each	other,	but	it	is	a	nontrivial	requirement	that

they	be	mutually	consistent.	(Fulling	1989,	126)

Agreeing	that	quantum	theories	are	to	be	defined	by	their	characteristic	commutation	relations	and	equations	of

motion,	Fulling	does	not	require	that	these	emanate	from	the	same	source,	or	that	that	source	be	a	Lagrangian.

To	keep	the	discussion	tractable,	we	will	focus	on	the	question	of	physical	equivalence	for	quantum	theories

specified	up	to	their	kinematics—that	is,	their	accounts	of	what	states	are	physically	significant,	and	(thinking	of	a

state	as	a	map	from	physical	magnitudes	to	their	expectation	values)	what	physical	magnitudes	lie	in	the	scope	of

those	states.	For	theories	specified	up	to	their	kinematics,	Fulling's	refinement	of	the	conventional	wisdom	identifies

canonical	commutation	or	anticommutation	relations	as	a	principle	of	individuation.	Where	 	is	a	set	of	such

relations,	let	Q 	be	the	quantum	theory	circumscribed	by	those	relations.	We	want	to	know:	When	are	different

kinematical	schemes	for	a	theory	Q 	physically	equivalent?

2.2	Quantizing

It	will	help	us	address	these	questions	to	review	some	basic	strategies	for	constructing	quantum	theories.

The	state	of	a	classical	Hamiltonian	system	is	given	by	its	position	and	momentum.	Take	the	simplest	case	of	a

single	system	moving	on	the	real	line.	The	position	and	momentum	variables,	real	numbers	q	and	p,	act	as

coordinates	for	the	phase	space	M	of	possible	states	of	the	system.	M	is	just	the	real	plane	ℝ .	For	more

complicated	systems—n	particles	in	Euclidean	three-space,	say—the	phase	space	of	possible	states	is	larger

(ℝ ),	but	constructed	along	the	same	principles.	A	classical	Hamiltonian	theory	with	phase	space	M	represents

physical	magnitudes	(aka	observables)	by	functions	from	M	to	ℝ.	The	position	and	momentum	observables	for	the

simplest	system	are	examples:	they	map	points	in	phase	space	to	their	q	and	p	coordinate	values,	respectively.	All

other	observables	pertaining	to	the	system	can	be	expressed	as	functions	of	these	observables.	The	Hamiltonian

observable	H,	which	usually	coincides	with	the	sum	of	the	system's	kinetic	and	potential	energies,	is	of	particular

significance.	Fed	into	Hamilton's	equations,	H	helps	determine	dynamically	possible	trajectories—the	system's

position	and	momentum	as	functions	q(t),	p(t)	of	a	time	variable	t—through	M.	For	more	complicated	systems,	the

classical	observable	set	and	the	dynamical	prescription	are	more	complicated,	but	the	principles	are	the	same.

The	canonical	Hamiltonian	quantization	recipe	exploits	the	fact	that	the	collection	of	classical	observables	just

described	exhibits	an	algebraic	structure.	As	smooth	functions	on	phase	space,	classical	observables	form	a	set

that	is	also	a	vector	space	over	the	real	numbers.	An	algebra	is	just	a	linear	vector	space	endowed	with	a	(not

necessarily	associative)	multiplicative	structure	(see	Kadison	and	Ringrose	1997	for	an	introduction).	The	vector

space	of	classical	observables	becomes	a	Lie	algebra	upon	being	endowed	with	a	multiplicative	structure	supplied

by	the	Poisson	bracket.	The	Poisson	bracket	f,	g	of	classical	observablesf	:	M	→	ℝ	and	g	:	M	→	ℝ	is	(1)
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For	the	canonical	observables	p 	and	q 	(2)

The	Poisson	bracket	also	affords	a	particular	expeditious	expression	of	Hamilton's	equations	(3)

A	description	of	the	time-evolution	of	a	general	observable	f	:	M	→	ℝ	follows:	

Given	its	centrality	both	to	the	structure	of	classical	observables	and	to	their	dynamics,	it	is	tempting	to	think	that

the	Poisson	bracket	structure	has	a	great	deal	to	do	with	making	a	classical	Hamiltonian	theory	the	theory	it	is.

According	to	the	canonical	Hamiltonian	quantization	recipe,	what	it	takes	to	quantize	such	a	theory	is	to	find	a

characteristically	quantum	mechanical	analog	of	that	theory's	Poisson	bracket	structure.	In	particular,	one

identifies	canonical	quantum	observables	with	symmetric	operators	 	acting	on	a	separable	Hilbert	space	

and	obeying	commutation	relations	corresponding	to	the	classical	Poisson	brackets	of	the	classical	theory.	When

the	classical	theory	has	phase	space	ℝ 	and	canonical	observables	q 	and	p ,	these	CCRs	are	(where	

	is	the	identity	operator,	and	Planck's	constant	ℏ	is	set	to	one)	(4)

For	a	classical	theory	with	phase	space	M	=	ℝ ,	the	Hamiltonian	quantization	recipe	is	typically	realized	by	the

Schrödinger	representation,	set	in	the	Hilbert	space	L (ℝ )	of	square	integrable	complex-valued	functions	of	ℝ .

For	n	=	1,	the	Schrödinger	representation	defines	 	and	 .

A	story	similarly	centered	on	algebraic	structures	can	be	told	about	quantum	theories	of	spin	systems.	To	build	the

quantum	theory	of	a	single	spin	system,	find	symmetric	operators	 	acting	on	a	Hilbert	space	

to	satisfy	the	Pauli	Relations,	which	include	(5)

Call	the	elements	 	satisfying	(5)	the	Pauli	spin	observables.	The	generalization	to	n	spin	systems	is

straightforward.	To	build	the	quantum	theory	for	n	spin	systems,	find	for	each	spin	system	k	a	Pauli	spin	

	satisfying	the	Pauli	Relations,	expanded	to	include	the	requirement	that	spin

observables	for	different	systems	commute.	A	set	of	operators	satisfies	the	Pauli	relations	if	and	only	if	they	satisfy

the	CARs	(see	Emch	1972,	271–272);	thus	(5)	can	be	taken	to	impose	the	algebraic	structure	of	the	CARs.

2.3	Unitary	Equivalence	as	Physical	Equivalence

A	Hilbert	space	representation	of	the	canonical	relations	 	circumscribing	a	quantum	theory	Q 	takes	the	form	of

operators	Ĉ 	acting	on	a	Hilbert	space	 	to	satisfy	 .	Having	obtained	such	a	representation,	the	aspiring

quantum	mechanic	cannot	rest.	She	needs	to	build	products	and	linear	combinations	of	her	canonical	observables

if	she	is	to	have	a	viable	theory	of	physics.	Where	 	and	 	are	her	canonical	observables,	she	will	use	 	to

describe	the	kinetic	energy	of	a	particle	of	mass	m.	Where	V	is	the	magnitude	of	some	configuration-dependent

potential	to	which	that	particle	is	subject,	she	will	use	 	to	describe	its	potential	energy	and	use	a	Hamiltonian

function,	which	is	a	sum	of	these,	to	describe	its	energy.	In	addition	to	such	polynomials	of	the	canonical

observables,	the	aspiring	quantum	mechanic	also	needs	observables	that	are	defined	as	limits	of	sequences	of

other	observables—for	instance,	the	unitary	Schrödinger	evolution	operators	Ȗ(t)	=	e 	are	limits	of	the	Taylor

series	of	polynomials	of	Ĥ.	Described	in	other	terms,	the	aspiring	quantum	mechanic	needs	to	build	an	observable

algebra	using	the	canonical	observables	Ĉ 	as	generators.	This	means	building	the	algebra	from	polynomials,	and

limits	of	sequences	of	polynomials,	of	those	observables.

Hereinafter	I	will	use	“ordinary	QM”	to	mean	the	tradition	in	which	the	observable	algebra	generated	by

representation-bearing	canonical	observables	C 	acting	on	 	will	coincide	with	 ,	the	full	set	of	bounded

operators	on	 .	In	more	technical	terms	(glossed	immediately	below),	the	aspiring	quantum	mechanic	has	begun

with	an	irreducible	representation	of	 ,	and	used	the	weak	operator	topology	to	determine	which	sequences	of
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polynomials	of	the	canonical	observables	converge.

{Ĉ }	acting	on	 	is	an	irreducible	representation	if	and	only	if	the	only	subspaces	of	 	invariant	under

the	action	of	{Ĉ }	are	the	0	subspace	and	 	itself.

Unless	otherwise	announced,	all	representations	discussed	here	will	be	irreducible.

A	sequence	Â 	of	operators	on	 	converges	to	an	operator	Â	in	 	weak	operator	topology	if	and	only

if	for	all	 	goes	to	0	as	i	goes	to	∞.

When	I	want	to	emphasize	that	the	algebra	 	is	generated	by	the	set	{Ĉ }	of	canonical	observables

representing	 ,	I	will	use	“ ”	to	designate	it.

In	ordinary	QM,	quantum	states	are	normalized,	linear,	positive,	and	countably	additive	maps	from	 	to	the

complex	numbers	ℂ.	Gleason's	theorem	tells	us	that	states	so	conceived	coincide	with	the	set	 	of	density

operators	on	 ,	provided	the	dimension	of	 	exceeds	2.	Each	 	determines	a	state	via	the	trace

prescription,	which	assigns	each	self-adjoint	 	the	expectation	value	Tr(ŴÂ).

Call	 	a	kinematic	pair	for	a	theory	of	ordinary	QM.	 	is	an	instance	of	a

general	scheme	 	for	kinematic	pairs.	The	first	entry	gives	the	algebra	of	physical	magnitudes	recognized	by

a	theory,	with	the	theory's	observables	corresponding	to	that	algebra's	self-adjoint	elements.	The	second	entry

gives	the	theory's	physical	states.	The	next	section	motivates	a	criterion	of	physical	equivalence	applicable	to

generic	kinematic	pairs,	then	argues	that	for	kinematic	pairs	of	the	form	 	favored	by	ordinary

QM,	that	criterion	reduces	to	unitary	equivalence.

2.4	Analyzing	Physical	Equivalence

The	basic	type	of	physical	possibility	recognized	by	a	quantum	theory	takes	the	form	of	an	expectation	value

assignment	to	the	family	of	magnitudes	recognized	by	that	theory.	There	is,	of	course,	a	further	interpretive

question	of	how	to	understand	the	nontrivial	probabilities	implicit	in	such	an	expectation	value	assignment,	and	in

particular	of	whether	multiple,	distinct	“value	states”	correspond	to	each	given	quantum	state.	Different

interpretations	of	ordinary	QM	urge	different	understandings	of	the	quantum	state,	and	thereby	eventuate	in

different	pictures	of	the	set	of	physical	possibilities	associated	with	a	quantum	theory.	But	these	disagreements

occur,	as	it	were,	“downstream”	from	the	identification	of	a	kinematic	pair	on	behalf	of	the	theory.	A	question	we

can	articulate	and	address	without	embroiling	ourselves	in	these	tendentious	questions	of	interpretation	is:	When

are	candidate	realizations	of	a	quantum	theory	Q ,	realizations	specified	up	to	kinematic	pairs,	physically

equivalent?

If	the	content	of	a	physical	theory	consists	in	the	set	of	physical	possibilities	it	recognizes,	then	physical	theories

have	the	same	content	just	in	case	they	admit	the	same	set	of	physical	possibilities.	On	this	picture,	a	necessary

criterion	for	the	physical	equivalence	of	 	and	 	is	a	one-to-one	correspondence	between	the

physical	possibilities	admitted	by	the	first	pair	and	the	physical	possibilities	admitted	by	the	second.	Claiming

Glymour	as	an	inspiration,	Clifton	and	Halvorson	(2001)	analyze	this	demand	into	two	conditions.	The	first	is	that

this	one-to-one	correspondence	‘preserve	expectation	values,’	in	the	sense	specified	by	a	criterion	I	will	call	PEV:

PEV.	There	are	bijections	i 	: 	and	i 	:	 	such	that	(6)

for	all	 	and	all	 .

Whenever	two	kinematic	pairs	satisfy	PEV,	to	each	state	ω	of	one	pair	there	corresponds	a	state	i (ω)	in	the

other	such	that	i (ω)'s	assignment	of	expectation	values	to	the	observable	i (A)	exactly	duplicates	ω	‘s

assignment	of	expectation	values	to	observable	A.	Part	of	how	quantum	theories	characterize	possibilities	is	as

maps	from	physical	magnitudes	to	their	expectation	values.	Kinematic	pairs	satisfying	PEV	characterize	exactly	the

same	set	of	possibilities	thus	conceived.	So	let	us	join	Clifton	and	Halvorson	in	supposing	that	two	theories
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specified	up	to	kinematic	pairs	are	physically	equivalent	only	if	they	satisfy	PEV	by	admitting	expectation-value-

preserving	bijections	of	the	sort	it	demands.

PEV	pays	no	obvious	heed	to	the	“algebraic	structure”	of	the	observable	sets	 	and	 .	Nor	does	PEV	engage	the

fact	that	those	sets	are	in	some	sense	descended	from	realizations	of	the	canonical	relations	 	circumscribing	the

quantum	theory	Q .	We	might	want	a	criterion	of	physical	equivalence	for	kinematic	pairs	that	is	sensitive	to	such

matters.	After	all,	part	of	what	makes	a	physical	theory	the	theory	it	is	is	the	functional	relationships	it	posits

between	the	physical	magnitudes	it	recognizes.	We	have	been	recognizing	this	implicitly	by	identifying	quantum

theories	by	appeal	to	their	constitutive	CARs/CCRs,	which	express	such	relationships.	Functional	relationships

between	observables	are	moreover	implicated	in	a	theory's	laws:	 	makes	the	energy	of	a	free	system

of	mass	m	a	function	of	its	momentum;	the	Schrödinger	equation	uses	the	energy	of	an	isolated	system	to	build	a

family	Ȗ(t)	=	e−iĤt	of	operators	describing	that	system's	time	evolution,	which	implies	(roughly	speaking)	that	the

operator	Ĥ	is	a	limit	of	a	sequence	of	functions	of	the	evolution	operators	Ȗ(t).	These	considerations	suggest	that

criteria	of	physical	equivalence	for	quantum	theories	specified	up	to	kinematic	pairs	should	include	a	demand	to

the	effect	that	the	algebraic	structures	of	their	observable	families	be	suitably	isomorphic.

Reflections	like	the	following	might	tempt	one	to	hope	that	when	one	demands	the	preservation	of	expectation

values	by	imposing	PEV,	one	gets	a	suitable	isomorphism	of	algebraic	structure	for	free:

Where	prime	and	unprimed	commodities	denote	elements	identified	by	the	bijections	satisfying	PEV,

suppose	that	i 	between	observable	algebras	failed	to	preserve	additive	algebraic	structure.	Then	there

exists	observables	X,	Y	such	that	(X	+	Y′)	≠	(X′	+	Y′).	Let	us	also	suppose	that	the	observables	(X	+	Y)′

and	X′	+	Y′	are	different	only	if	there	is	some	state	ω′	that	separates	them	in	the	sense	that	ω′[(X	+	Y)′]	≠

ω′	(X′	+	Y′).	If	PEV	is	satisfied,	this	separation	condition	implies	ω(X+Y)	≠	ω(X+	Y).	But	that	is	impossible.

So	PEV	cannot	be	satisfied	by	a	bijection	i 	that	fails	to	preserve	additive	algebraic	structure.

Similar	arguments	invoking	the	separation	condition	establish	that	PEV	is	satisfied	only	by	bijections	between

observable	sets	that	are	linear	and	preserve	their	identity	elements	(see	Roberts	and	Roepstorff	1969,	Prop.	3.1).

The	complete	hope	is	that	PEV	on	its	own	ensures	a	suitably	“physical”	isomorphism	between	the	observable

algebras	of	kinematic	pairs	that	satisfy	it.	Examples	dashing	this	hope	will	be	provided	in	section	5.	For	now,	let	us

take	their	existence	to	lend	urgency	to	a	(at	present	vague)	demand	that	physically	equivalent	kinematic	pairs

enjoy	suitably	isomorphic	observable	algebras,	and	try	to	make	that	demand	more	precise.

The	algebras	at	issue	are	each	supposed	to	be	generated	by	elements	satisfying	the	relations	 	circumscribing

the	quantum	theory,	relationships	such	as

Where	C 	satisfying	 	generate	the	observable	algebra	 	and	 	satisfying	 	generate	the	observable	algebra	

,	I	contend	that	a	bijection	i :	 	“preserves	relevant	algebraic	structure”	only	if	it	enables	the	primed

and	unprimed	theorists	agree	about	what	makes	the	canonical	magnitudes	canonical—only,	that	is,	if	i 	maps

observables	realizing	 	in	the	unprimed	theory	to	observables	realizing	 	in	the	primed	theory.	Continuing	the

convention	that	primed	and	unprimed	commodities	are	those	identified	by	i ,	this	agreement	requires	that	if	the

unprimed	theorist's	canonical	relations	are	realized	by	AB	−	BA	=	kI,	then	those	observables’	primed	counterparts

also	realize	the	canonical	relations:	(AB	−	BA)′	=	kI′	=	A′	B′	−	B′	A′	(where	the	first	and	last	term	are	different	ways

of	taking	primed	counterparts	of	observables	involved	in	the	canonical	relations).	The	linearity	of	i 	gives	us	(AB

−	BA)′	=	(AB)′	−	(BA)′.	We	are	very	close	to	drawing	another	conclusion	about	any	i 	that	satisfies	PEV.	Given

other	features	already	established	for	i ,	i 	will	qualify	as	an	isomorphism,	if	only	i 	could	be	shown	to	be

multiplicative.

Where	 	and	 	are	algebras,	a	map	α	:	 	is	a	morphism	if	and	only	if	α	is	linear,	multiplicative

(α(XY)	=	α(X)α(Y)	for	all	 ),	and	takes	the	identity	to	the	identity.	α	is	an	isomorphism	if	it	is	one-

to-one.

Alas,	we	cannot	use	the	separation	condition	tactic	to	argue	that	if	i 	satisfies	PEV,	then	(XY)′	=	X′Y′.	The	catch	is

that,	unlike	sums	of	self-adjoint	elements	of	our	observable	algebras,	products	of	self-adjoint	elements	need	not

themselves	be	self-adjoint—and	so	need	not	themselves	be	observables,	and	so	need	not	engage	the	gears	of	the

separation	condition.	So	shift	attention	to	symmetrized	products,	elements	of	the	form	XY	+	YX,	which	are	self-
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adjoint.	Then	a	separation	condition	argument	establishes	that	i 	satisfies	PEV	only	if	[*]

which	makes	i 	a	Jordan	homomorphism	(Roberts	and	Roepstorff	1969,	Prop.	6.1).	But	a	Jordan	homomorphism

need	not	be	an	isomorphism.	In	particular,	it	need	not	be	multiplicative.	[ ]	will	be	satisfied	just	in	case	(XY)′	=	X′	Y′

+	Z 	and	(YX)′	=	Y′X′	−	Z ,	even	if	Z 	is	a	nonzero	element	of	the	primed	algebra.	However,	our	requirement

that	i 	take	canonical	observables	to	canonical	observables,	along	with	the	separation	condition,	implied	that	(AB

−	BA)′	=	(AB)′	−	(BA)′	=	A′	B′	−	B′	A′.	That	cannot	be	true	unless	Z 	=	0—unless,	that	is,	i 	acts	multiplicatively

on	canonical	observables.	Because	canonical	observables	generate	the	algebra,	it	follows	that	i 	act

multiplicatively	on	the	algebra,	period.	And	that	completes	the	case	that,	supposing	our	observable	set	is	rich

enough	to	separate	states,	an	i 	satisfying	PEV	preserves	relevant	physical	structure	only	if	it	is	an	isomorphism

between	observables	algebras	 	and	 .

But	i 	must	accomplish	one	more	task	if	it	is	to	secure	physical	equivalence.	i 	is	an	isomorphism	between	the

observable	algebras	of	kinematic	pairs.	These	kinematic	pairs	cannot	be	physically	equivalent	if	they	do	not	agree

about	what	the	theory's	fundamental	canonical	magnitudes	are.	Thus,	they	are	not	physically	equivalent	unless

the	isomorphism	i 	identifies	the	canonical	magnitudes	generating	one	algebra	with	the	canonical	magnitudes

generating	the	other.

Let	us	consolidate	the	foregoing	reflections	on	what,	beyond	satisfying	PEV,	i 	must	accomplish	to	establish

physical	equivalence.	Where	Ĉ 	satisfying	 	generate	the	observable	algebra	 	and	 	satisfying	 	generate	the

observable	algebra	 ,	a	map	i 	preserves	relevant	physical	structure	just	in	case	it	Preserves	Algebraic

Structure	by	satisfying

PAS.	i 	is	an	isomorphism	between	 	and	 	such	that	(7)

for	all	i.

Our	analysis	of	physical	equivalence	for	quantum	theories	specified	up	to	generic	kinematic	pairs	is	thus:

Kinematic	pairs	 	and	 	for	a	quantum	theory	Q 	circumscribed	by	the	relations	 	are

physically	equivalent	if	and	only	if	there	exist	bijections	i 	:	 	and	i 	:	 	satisfying	both

PEV	and	PAS.

This	is	essentially	the	analysis	offered	by	Clifton	and	Halvorson,	although	the	justification	offered	here	uses	words

different	from	the	words	used	in	their	justification.

Now	we	are	getting	somewhere.	It	turns	out	that	kinematic	pairs	of	ordinary	QM's	form,	kinematic	pairs	

	and	 	satisfy	both	PEV	and	PAS	if	and	only	if	their	collections	C 	and	 	of	canonical

operators	are	unitarily	equivalent	in	the	following	sense:

A	Hilbert	space	 ,	and	a	collection	of	operators	 	is	unitarily	equivalent	to	 	if	and

only	if	there	exists	a	one-to-one,	linear,	invertible,	norm-preserving	transformation	(“unitary	map”)	U	:

	such	that	 	for	all	i.

Here	is	a	sketch	of	an	argument	that	 	and	 	satisfy	both	PEV	and	PAS	if	and

only	if	they	arise	from	unitarily	equivalent	representations	of	the	canonical	relations.	To	see	that	unitary

equivalence	is	sufficient,	notice	that	the	U	effecting	the	unitary	equivalence	of	primed	and	the	unprimed

representations	of	 	furnishes	both	a	bijection	i (Ŵ)	=	UŴU 	from	the	unprimed	kinematic	pair's	state	space	to

the	primed	pair's	state	space	and	a	bijection	i (Â)	=	UÂU 	from	the	unprimed	kinematic	pair's	observable

algebra	to	the	primed	pair's	algebra.	The	property	of	unitary	maps	that	UU 	=	U 	U	=	I	along	with	the	trace

prescription	guarantee	that	these	bijections	together	satisfy	PEV.	i 	is	moreover	an	isomorphism	between	the

observable	algebras,	because	of	truths	such	as	U(A	+	B)U 	=	UAU 	+	UBU .	Finally,	the	isomorphism	i ,

which	is	induced	by	a	map	identifying	canonical	elements	of	the	unprimed	algebra	with	canonical	elements	of	the

primed	algebra,	satisfies	(7),	and	therefore	satisfies	(PAS).	Notice	for	future	reference	that	because	a	unitary	map
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between	 	and	 	preserves	inner	products,	a	sequence	 	converges	weakly	to	an	element	

	if	and	only	if	the	sequence	 	converges	weakly	to	an	element	 .

To	see	that	the	unitary	equivalence	of	the	representations	{C }	and	 	underlying	the	kinematic	pairs	

	and	 	is	necessary	for	those	pairs	to	satisfy	both	PEV	and	PAS,	note	that	

	and	 	are	Type	I	von	Neumann	algebras.	Because	all	isomorphisms	between	Type	I	von	Neumann

algebras	are	implemented	unitarily,	an	isomorphism	i 	satisfies	PAS	only	if	it	is	induced	by	a	unitary	map	and

takes	C 	to	 .	But	such	an	isomorphism	is	available	only	if	the	representations	are	unitarily	equivalent.

To	summarize:	particularized	to	kinematic	pairs	of	ordinary	QM's	sort,	the	analysis	of	physical	equivalence	in	terms

of	PEV	and	PAS	implies	that	such	pairs	are	physically	equivalent	if	and	only	if	the	representations	of	 	generating

them	are	unitarily	equivalent.

In	1931,	von	Neumann	demonstrated	what	had	been	conjectured	the	previous	year	by	Stone:	the	unitary

equivalence	(up	to	multiplicity)	of	any	pair	of	Hilbert	space	representations	of	the	CCRs	arising	from	a	classical

theory	with	phase	space	ℝ .	The	Jordan-Wigner	theorem	likewise	establishes	the	uniqueness,	up	to	unitary

equivalence,	of	Hilbert	space	representations	of	the	CARs	for	n	degrees	of	freedom	(n	finite).	Given	our	analysis	of

physical	equivalence,	it	follows	that	once	we	have	settled	on	the	CCRs	or	CARs	circumscribing	a	quantum	theory	in

the	scope	of	these	results,	every	ordinary	QM-ish	kinematic	pair	we	can	construct	on	behalf	of	that	theory	is

physically	equivalent	to	every	other.	Disagree	howsoever	we	might	about	the	further	interpretation	of	that	theory,

we	can	at	least	agree	about	its	core	identity,	an	identity	provided	by	a	kinematic	pair	that	is	essentially	unique.

3.	Unitary	Inequivalence:	Some	Examples

This	section	musters	several	examples	of	quantum	theories	falling	outside	the	scope	of	the	Stone-von	Neumann

and	Jordan-Wigner	theorems.	The	canonical	relations	circumscribing	these	theories	admit	unitarily	inequivalent

representations.	Our	working	analysis	of	physical	equivalence	implies	that	ordinary	QM-ish	kinematic	pairs	based

on	such	representations	are	also	physically	inequivalent.	We	will	raise	some	worries	about	whether	‘physically

inequivalent!’	is	the	right	verdict	to	reach	about	the	representations	sketched	here.

3.1	The	Infinite	Spin	Chain

An	exceedingly	simple	quantum	theory	whose	CARs	admit	unitarily	inequivalent	representations	is	the	theory	of

infinitely	many	spin	½	systems	in	a	linear	array. 	As	a	warmup	for	our	encounter	with	this	theory,	consider	the

quantum	theory	of	a	finite	number	n	of	spin	½	systems,	arranged	in	a	one-dimensional	lattice.	To	construct	such	a

theory,	we	need	only	equip	each	location	k	in	the	lattice	with	a	Pauli	spina	 	in	such	a

way	that	the	collection	of	these	Pauli	spins	satisfies	the	Pauli	relations.

One	way	to	do	this	employs	a	vector	space	 	spanned	by	a	basis	whose	elements	correspond	to	sequences	s ,

where	each	entry	in	the	sequence	takes	one	of	the	values	±1,	and	k	ranges	from	1	to	n.	(Notice	that	there	are

finitely	many	distinct	such	sequences,	because	there	are	only	finitely	many	ways	to	map	a	set	of	finite	cardinality

into	the	set	+1,−1.)	We	introduce	operators	 	to	n	in	such	a	way	that	sequences	s 	whose	j 	entry	is

±	1	serve	as	 	eigenvectors	associated	with	the	eigenvalue	±1.	Along	with	operators	 ,

constructed	by	analogy	to	their	single	electron	counterparts,	these	operators	provide	a	representation	of	the	Pauli

relations,	and	thus	the	CARs,	for	n.

Of	course,	we	could	have	constructed	a	representation	of	Pauli	relations	by	many	other,	superficially	competing,

means.	But	because	we	are	considering	only	finitely	many	spin	systems,	the	Jordan-Wigner	theorem	guarantees

that	any	representation	of	the	CARs	for	n	is	unitarily	equivalent	to	any	other.

Let	us	belabor	a	consequence	of	that.	Imagine	that	Werner	and	Erwin	each	build	a	representation	of	the	Pauli

relations	for	chain	of	n	spin	system.	Let	σ 	(i) 	be	the	operator	on	 	by	which	Werner	represents	the	i

component	of	spin	for	the	k 	particle;	let	σ 	(i) 	be	the	operator	on	 	by	which	Erwin	represents	the	i

component	of	spin	for	the	k 	particle. 	If	Werner's	representation	and	Erwin's	are	unitarily	equivalent,	then	there

exists	a	unitary	map	U	:	 	such	that	(8)
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Because	unitary	maps	are	linear	and	norm	preserving,	this	unitary	map	not	only	identifies	each	Pauli	spin	operator

in	Erwin's	representation	with	a	Pauli	spin	operator	in	Werner's	representation,	it	also	extends	in	a	way	that

respects	the	identifications	between	Pauli	spins	to	a	bijection	between	the	full	sets	of	bounded	operators	on	each

theorist's	Hilbert	space.

The	polarization	of	a	system	will	be	of	particular	interest.	A	system's	polarization	is	described	by	a	vector	whose

magnitude	(∈	[0,	1])	gives	the	strength	and	whose	orientation	gives	the	direction	of	the	system's	net

magnetization.	On	a	single	electron,	it	is	represented	by	an	observable	 	whose	three	components	correspond	to

three	orthogonal	components	of	spin.	Thus	in	the	+1	eigenstate	|+)	of	 	(understood	as	the	z-component	of

spin),	the	polarization	has	an	expectation	value	of	+	1	along	the	z	axis.	For	a	finite	chain	of	spins,	the	polarization

observable	has	components	 ,	that	are	just	the	average,	over	links	in	the	chain,	of	the

corresponding	component	of	spin:	 .	Let	[s ] 	∊	{±1}	denote	the	j 	entry	of	the	sequence	s .	In

the	basis	sequence	s ,	the	z-component	of	polarization	 	takes	an	expectation	value	of	magnitude	 .

This	quantity	attains	extreme	values	(of	±1)	for	sequences	every	term	of	which	is	the	same.

From	their	representations	of	the	Pauli	relations,	Erwin	and	Werner	both	construct	a	kinematic	pair	of	the	ordinary

QM	form	 .	The	Jordan-Wigner	theorem	implies	that	any	other	representation	of	the	Pauli	relations

will	be	unitarily	equivalent	to	Werner's.	Werner's	and	Erwin's	kinematic	pairs	thus	satisfy	both	PEV	and	PAS.

Suppose	 	is	a	state	in	Werner's	state	set	assigning	 	the	expectation	value	+1.	Then	Erwin's	state	set	must

include	a	state	 	(the	image	of	 	under	the	isomorphism	induced	by	unitary	map	implementing	the	equivalence	of

the	representations)	and	an	observable	 	(the	image	of	 	under	that	map)	such	that	the	expectation	value

of	 	in	the	state	 	is	+1.

Now	let	us	leave	the	scope	of	the	Jordan-Wigner	theorem	to	consider	a	doubly	infinite	chain	of	spins,	its	sites

labeled	by	the	positive	and	negative	integers	ℤ	=…,−2,	−1,0,1,2,….	We	are	after	a	representation	of	the	CARs

that	associates	with	each	site	k	a	Pauli	spin	satisfying	the	Pauli	relations.	But	we	cannot	adapt	the	strategy	adopted

for	the	finite	spin	chain	to	do	so.	Such	an	adaptation	would	build	the	representing	Hilbert	space	from	a	basis

consisting	of	all	possible	maps	from	ℤ	to	±	1.	Because	the	set	of	such	maps	is	nondenumerable,	the	Hilbert

space	envisioned	would	be	nonseparable,	breaking	the	staunch	tradition	of	using	separable	Hilbert	spaces	for

physics.

One	way	to	build	a	separable	Hilbert	space	representation	is	to	start	with	the	“base”	sequence	[s ] 	=	+1	for	j	∈	ℤ,

and	add	all	sequences	that	differ	from	the	base	one	at	only	finitely	many	local	sites.	The	collection	of	such

sequences	forms	a	basis;	its	members	are	sequences	in	which	only	finitely	many	+	1s	appear.	A	Hilbert	space

spanned	by	the	basis	hosts	a	representation	of	the	Pauli	relations	modeled	on	that	of	the	finite	spin	chain.	In

particular,	it	features	operators	 .	Sequences	s 	whose	j 	entry	is	±1	are	 	eigenvectors

associated	with	the	eigenvalue	±1.	Call	this	the	 	representation	for	short.	Much	is	lost	in	the	abbreviation,	for

it	matters	to	the	algebraic	structure	of	this	representation	which	elements	of	 	play	the	role	of	which	Pauli

spins.

A	total	polarization	observable	 	can	be	defined	in	terms	of	the	 	representation	if	it	can	be	understood	to	be

an	element	of	the	observable	algebra	 	generated	by	that	representation.	To	be	an	element	of	 ,

the	polarization	observable	must	be	a	polynomial	of	Pauli	spins,	or	the	limit	(in	the	appropriate	sense)	of	a

sequence	of	such	polynomials.	Consider	the	sequence	of	partial	sums	 ,	which	define

the	z	component	of	net	polarization	of	finite	stretches	of	the	chain.	For	each	N,	 	is	a	polynomial	of	Pauli

spins	and	so	a	member	of	 .	The	z	component	of	net	polarization	for	the	entire	infinite	chain	would	be

given	by	the	N→	∞	limit	of	the	sequences	of	partial	sums	 ,	if	that	limit	exists.	In	 	weak	topology,	it
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does.

Recall	that	a	sequence	Â 	of	operators	on	 	converges	to	an	operator	Â	in	 	weak	operator	topology	if	and

only	if	for	all	 	goes	to	0	as	i	goes	to	∞.	Considering	the	sequence	 ,	remark

that	 	for	basis	sequences	s 	and	 .	Because	−	1	occurs	only	finitely

many	times	in	each	basis	sequence,	 	will	converge	to	1	as	N	→	∞,	no	matter	what	s 	and	 	are.

This	shows	that	the	sequence	 	converges	weakly.	Its	limit	is	an	operator	that	has	every	vector	in	 	as

an	eigenvalue	1	eigenvector	(because	every	element	of	 	basis	is	such	a	vector,	and	that	basis	spans	the

space).	In	other	words,	in	an	ordinary	QM-ish	observable	algebra	generated	by	taking	the	weak	closure	of	the	

	representation,	the	z-component	of	the	global	polarization	just	is	the	identity	operator	I 	on	 .

The	other	components	of	the	total	polarization	can	also	be	defined	as	weak	limits	of	polynomials	of	Pauli	spins.

Each	component	of	the	total	polarization	is	an	element	of	the	algebra	 ,	and	so	an	observable	in	ordinary

QM's	sense.

It	is	noteworthy	that	there	are	representations	of	the	Pauli	relations,	modeled	on	the	 	representation,	for	which

the	convergence	constituting	the	global	polarization	as	a	bona	fide	observable	fails	to	obtain.	Consider,	for

instance,	a	representation	whose	“base	state”	s 	is	a	sequence	for	which	 	does	not

converge	(e.g.,	the	sequence	[s ] 	=	+1	for	2 	〈	|j|≤2 	and	n	odd;	[s ] 	=	−	1	otherwise).	The	

representation	hosts	a	total	polarization	observable	only	because	 	weak	topology	facilitates	the	definition	of

such	an	observable.	For	other	representations,	this	need	not	be	so.	Whether	there	is	a	global	polarization

observable	hinges	on	our	choice	of	representation.	Supposing	kinematic	pairs	numbering	polarization	observables

among	their	bona	fide	magnitudes	differ	physically	from	kinematic	pairs	that	do	not,	this	is	a	hint	that	when	the	spin

chains	become	infinite,	the	choice	of	representation	could	have	physical	significance.

The	Jordan-Wigner	theorem	applies	to	representations	of	the	CARs	for	finitely	many	spin	systems.	Not	applying	to

the	infinite	spin	chain,	the	theorem	is	silent	about	whether	the	 	representation	is	unique	up	to	unitary

equivalence.	Indeed,	it	is	not.	Consider,	for	contrast,	a	representation	set	in	a	Hilbert	space	whose	basis	elements

correspond	to	the	sequence	[s ] 	=	−	1	for	j	∈	ℤ,	along	with	all	sequences	differing	from	this	one	in	only	finitely

many	places.	Operators	 	satisfying	the	Pauli	relations	are	introduced	in	such	a	way	that	[s ] ,	the	j 	entry	in

the	basis	sequence	s ,	gives	the	expectation	value	of	 .	Call	this	the	 	representation.	By	parity	of

reasoning,	the	z-component	of	the	total	polarization	 	is	an	observable	generated	by	this	representation.

Enjoying	every	vector	in	 	as	an	eigenvalue	−1	eigenvector,	 	coincides	with	 I .

To	establish	that	the	 	and	 	representations	are	not	unitarily	equivalent,	suppose,	for	contradiction,	that

they	were.	Then,	we	know	from	the	last	section,	the	unitary	map	between	these	representations	would	define

bijections	i 	and	i 	between	the	observable	algebras	and	state	sets	of	the	kinematic	pairs	

	and	 ,	bijections	satisfying	PEV	and	PAS.	Any	bijection	i 	that

preserves	algebraic	structure	(as	demanded	by	PAS)	must	map	each	 	in	the	 	representation	to	

in	the	 .	Preserving	this	correspondence	through	the	sequence	of	polynomials	of	Pauli	spins	whose	limit	defines

the	z-component	of	global	polarization,	a	unitarily	implemented	i 	obedient	to	PAS	maps	 	on	the	

representation	to	 	on	the	 	representation.	But	that	is	to	say	that	i 	maps	the	identity	operator	on	the

first	representation	to	−	1	times	the	identity	operator	on	the	second.	It	follows	that	no	bijection	i 	between	states

of	the	 	and	 	representations	can	consort	with	i 	to	preserve	expectation	values	as	demanded	by	PEV.

Such	an	i 	would	have	to	identify	a	state	ρ	on	the	 	representation	with	a	state	i (ρ)	on	the	

representation	in	such	a	way	that	i (ρ)	assigns	 	the	same	value	ρ	assigns	 .	But—keeping	in

mind	that	all	states	are	linear	and	normed—ρ	assigns	 	the	value	1,	because	 	is	the	identity	operator,

whereas	any	state	on	the	 	assigns	 	the	value	−1,	because	 	is	−1	times	the	identity

operator.	Thus,	no	bijection	i 	between	the	observable	sets	that	preserves	algebraic	structure	can	hope	also	to

preserve	expectation	values.	The	bijections	that	would	have	to	exist,	if	the	representations	were	unitarily
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equivalent,	cannot	exist.	We	conclude	that	the	representations	fail	to	be	unitarily	equivalent.

This	argument	that	the	 	and	 	representations	are	not	unitarily	equivalent	makes	striking	an	apparent

physical	difference	between	the	kinematic	pairs	based	on	those	representations.	In	an	ordinary	quantum	theory

built	up	from	the	 	representation,	states	whose	polarizations	differ	from	+1	in	the	z	direction	do	not	occur.	In

an	ordinary	quantum	theory	built	up	from	the	 	representation,	only	such	states	occur.	Thus,	the	values	of

global	polarization	allowed	distinguish	physically	between	theories	based	on	the	inequivalent	representations.

Indeed,	the	rival	quantum	theories	built	on	those	representations	can	be	subject	to	a	critical	test	in	the	form	of	a

measurement	of	the	z-component	of	global	polarization.	And	this	physical	difference	would	be	expected	to	persist

in	finer-grained	interpretations	of	the	kinematic	pairs	corresponding	to	the	representations,	supposing	those

interpretations	take	systems	in	eigenstates	of	an	observable	to	actually	possess	the	corresponding	eigenvalue	of

the	observable.

Section	3.3	will	raise	the	question	of	whether	we	can	with	good	conscience	regard	the	difference	just	elucidated	to

be	a	genuine	physical	difference	between	rival	quantum	theories.

3.2	The	Bead	on	a	Circle

To	leave	the	scope	of	the	Stone-von	Neumann	theorem,	we	need	only	consider	the	apparently	simple	system

consisting	of	a	single	particle	constrained	to	move	on	the	unit	circle	S .	The	canonical	variables	of	a	classical

Hamiltonian	treatment	of	this	system	are	its	position,	given	by	an	angular	variable	Φ∈	[0,2π],	and	its	angular

momentum	ℓ	∈	ℝ.	Thus	its	configuration	space	is	the	circle	S 	and	its	phase	space	is	the	cylinder	S 	×	ℝ.

Before	quantizing ,	a	change	of	variables	from	the	standard	cylindrical	coordinates	(Φℓ)	is	in	order.	We	are	aiming

in	our	quantization	to	reproduce	the	Poisson	bracket	structure	of	the	classical	theory	(at	least	insofar	as	it	applies

to	canonical	observables)	in	corresponding	commutation	relations	between	Hilbert	space	operators.	The	variable	φ

is	not	a	classical	observable,	because	classical	observables	are	continuous	functions	on	phase	space,	but	Φ	is

not.	The	discontinuity	occurs	as	Φ	approaches	2π,	and	occurs	because	the	configuration	space	of	the	system	is	a

circle.	So	we	will	instead	characterize	the	classical	algebraic	structure	in	terms	of	the	variables	(9)

which	are	continuous	on	the	cylinder.

Among	these	variables,	the	standard	Poisson	brackets	are	given	by	(10)

Following	the	Poisson	bracket	goes	to	commutator	rule,	we	build	a	quantum	theory	of	the	particle	on	the	circle,	by

finding	a	Hilbert	space	representation	of	the	Circular	Canonical	Commutation	Relations	(CCCRs)	corresponding	to

the	Poisson	brackets	(10):	(11)

These	CCCRs	(11)	have	a	standard	representation	in	terms	of	Hilbert	space	operators	acting	on	L 	(S ),	the	space

of	functions	ψ(Φ)	:	S 	→	ℂ	that	are	square	integrable	with	respect	to	the	measure	 .	(12)

Happily,	the	spectrum	of	 	and	ŷ	is	[−1,	1],	which	is	exactly	as	it	should	be	for	a	system	whose	configuration

space	is	the	unit	circle	S .	Also	happily,	ẑ's	spectrum	is	2π	n,	n	∈	0,1,2,….	That	is,	it	is	the	angular	momentum

spectrum	for	a	particle	on	a	circle	suggested	by	our	boundary	conditions	and	the	de	Broglie	relations.

The	Stone-von	Neumann	theorem	concerns	representations	of	CCRs	expressing	the	quantization	of	a	classical

theory	with	phase	space	ℝ .	But	the	CCCRs	are	not	the	CCRs,	and	the	phase	space	for	a	bead	on	the	circle	is	not

ℝ 	for	any	n,	but	the	cylinder	S 	×	ℝ.	Thus	the	Stone-von	Neumann	theorem	does	not	imply	that	the	standard

representation	(12)	of	the	CCCRs	is	unique	up	to	unitary	equivalence.	And	it	is	not.	Instead,	there	exists	a	family

representations	of	the	CCCRs	labeled	by	θ	∈	[0,	1]	(see	Isham	1983,	1270–1272	for	details).	These	representations

are	related	to	the	standard	one	by:	(13)
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The	θ	=	0	member	of	this	family	is	just	the	standard	representation,	which	we	will	call	Q .	For	θ	≠	0,	the

representation	Q 	agrees	with	the	Q 	representation	about	the	spectra	of	the	configuration	observables	x	and	y.

But	it	disagrees	about	the	angular	momentum	spectrum.	In	the	standard	representation	Q ,	the	angular	momentum

spectrum	is	2π	n	for	integer	n;	in	Qθ,	the	angular	momentum	spectrum	is	2π(n	−	θ).	Representations	Q 	and

Q 	are	unitarily	equivalent	only	if	θ	=	θ.	Thus	we	have	a	veritable	host	of	unitarily	inequivalent	representations	of

the	CCCRs.

This	indicates	a	signature	of	the	physical	difference	between	ordinary	quantum	theories	based	on	unitarily

inequivalent	representations:	their	momentum	spectra. 	States	possible	according	to	an	ordinary	quantum	theory

built	up	from	the	Q 	representation	include	ẑ 	eigenstates	in	which	the	bead's	angular	momentum	vanishes.	States

possible	according	to	an	ordinary	quantum	theory	built	up	from	the	Q 	representation	include	no	ẑ 	eigenstates

in	which	the	bead's	angular	momentum	vanishes.

The	family	Q 	of	unitarily	inequivalent	representations	of	the	CCCRs	are	not	idle	mathematical	curiosities.	They	are

related	to	the	θ	angles	of	Yang-Mills	theory.	With	minor	adjustments,	they	can	be	applied	to	the	Bohm-Aharonov

effect,	wherein	an	electron	translated	around	an	(infinitely	extended)	solenoid	experiences	a	phase	rotation

determined	by	the	flux	through	the	solenoid. 	Excluding	the	electron	from	the	region	of	space	occupied	by	the

solenoid,	we	attribute	it	a	configuration	space	that	is	ℝ 	with	a	cylinder	removed.	Like	the	circle,	this	topologically

non-ℝ 	configuration	space	frames	a	Hamiltonian	theory	that	admits	a	family	of	inequivalent	quantizations.	Different

members	of	this	family	correspond	to	different	fluxes	through	the	solenoid	and	hence	to	different	phase	shifts	for

the	transported	electron	(see	Landsman	1990	for	details).

Thinking	big,	observe	that	mechanics	set	in	a	spatially	compact	universe	(such	as,	presumably,	our	own)	will	have

a	topologically	non-ℝ 	phase	space,	placing	its	quantization	outside	the	scope	of	the	Stone-von	Neumann

theorem.

3.3	Other	Unitarily	Inequivalent	Representations

The	foregoing	examples	hardly	exhaust	the	field	of	unitarily	inequivalent	representations.	Other	examples	drawn

from	QFT	have	elicited	the	attention	of	philosophers	of	physics.	These	include:	Fock	space	representations

quantizing	the	free	Klein-Gordon	field	associated	with	‘incommensurable’	particle	notions	(Clifton	and	Halvorson

2001;	Arageorgis,	Earman,	and	Ruetsche	2003);	the	standard	Minkowski	vacuum	representation	and	infrared

coherent	representations	(Baker	2009);	representations	associated	with	different	states	of	broken	symmetry

(Earman	2004;	Liu	and	Emch	2005);	representations	generated	from	one	another	by	time	evolution	in	nonsta-

tionary	spacetimes	(Arageorgis,	Earman,	and	Ruetsche	2002).	Examples	from	the	thermodynamic	limit	of	QSM

include	representations	associated	with	equilibrium	states	at	different	temperatures,	or	associated	with	different

phases	at	the	same	temperature	(Ruetsche	2003;	Emch	2007).	Even	the	simplest	quantum	mechanical	system—a

single	particle	confined	to	the	real	line—admits	unitarily	inequiva-lent	representations	in	the	form	of	the	‘position’

and	‘momentum’	representations	(Halvorson	2001).	Running	roughshod	over	conventional	expectations	(see	Teller

1979),	the	former	makes	available	exact	position	eigenstates;	the	latter	does	the	same	for	momentum.

Even	on	their	own,	the	examples	developed	above	should	inspire	us	to	interrogate	the	assumptions	underlying	our

reception	of	unitary	equivalence	as	criterial	for	physical	equivalence.	These	include	assumptions	about	the	proper

configuration	of	kinematic	pairs	for	quantum	theories,	as	well	as	the	proper	analysis	of	physical	equivalence	for

kinematic	pairs	generically	conceived.	When	kinematic	pairs	of	ordinary	QM's	form	 	are	subject

to	criteria	of	physical	equivalence	explicated	by	PEV	and	PAS,	it	follows	that	kinematic	pairs	based	on

representations	of	canonical	relations	 	are	physically	equivalent	just	in	case	those	representations	are	unitarily

equivalent.

With	respect	to	the	bead	on	the	circle,	embracing	the	criterion	limits	the	angular	momentum	spectrum	for	the

system	to	the	one	given	by	a	single	member	of	the	family	Q 	of	representations.	Such	a	limitation	hamstrings	the

quantum	theory's	capacity	to	model	the	Bohm-Aharonov	effect,	as	well	as	other	phenomena	admitting	descriptions

in	terms	of	“double-valued”	wave	functions,	not	to	mention	the	applications	catalogued	in	the	penultimate
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paragraph	of	section	3.2.

With	respect	to	the	infinite	spin	chain,	embracing	the	criterion	requires	us	to	deny	that	physically	possible

conditions	of	the	chain	include	both	states	in	which	its	global	polarization	takes	the	value	+1	in	the	z-direction	and

states	in	which	its	global	polarization	takes	the	value	−1	in	the	z-direction.	Such	a	denial	is	in	tension	with	the

behavior	of	ferromagnetic	substances,	which	exhibit	both	kinds	of	spontaneous	magnetization. 	This	exhibition	is

moreover	an	example	of	a	critical	phenomenon	engaging	in	what	is	known	as	universal	behavior.	The	behavior	of

a	wide	variety	of	ferromagnetic	substances	is	described	by	a	phase	diagram	of	a	ferromagnet	(see	figure	14.1)

characterized	by	the	same	critical	exponents.	The	theory	of	universal	phenomena	is	described	elsewhere	in	the

volume.	The	present	point	is	that	to	use	a	phase	diagram	such	as	figure	14.1	to	describe	a	system,	thereby

bringing	it	within	the	ambit	of	this	theory,	is	to	allow	it	distinct	possible	states	of	spontaneous	magnetization.

Taking	unitary	equivalence	to	be	criterial	for	physical	equivalence	cancels	this	allowance.

Figure	14.1 	Phase	diagram	for	a	ferromagnet

Resistance	to	the	criterion	also	derives	from	a	very	different	sort	of	attitude	toward	the	infinite	spin	chain. 	It	is	a

commonplace	among	philosophers	of	space	and	time	that	solutions	to	the	fundamental	equations	defining	a

spacetime	theory,	solutions	connected	by	a	spacetime	symmetry	of	those	equations,	are	physically	equivalent.

And	it	is	easy	to	imagine	embedding	the	infinite	spin	chain	into	a	spacetime	theory	in	such	a	way	that	(for	instance)

the	base	state	of	the	 	representation	is	connected	to	the	base	state	of	 	representation	by	the	space	time

symmetry	of	flipping	over	the	z-axis.	This	symmetry	moreover	extends	to	the	Hilbert	spaces	in	their	entireties,

identifying	each	vector	in	 	with	its	‘flipflop’	in	 .	Implying	that	each	pair	of	symmetry-connected	vectors

represents	the	same	physical	situation,	the	metaphysical	commonplace	implies	that	the	collections	of	states

implemented	by	density	operators	on	 	and	on	 	represent	the	very	same	collection	of	physical	situations.

Accepting	unitary	equivalence	as	a	criterion	of	physical	equivalence	means	rejecting	the	metaphysical

commonplace.

This	suggests	that	widespread	metaphysical	intuitions,	as	well	as	the	use	that	practicing	physicists	make	of

unitarily	inequivalent	representations,	stand	intension	with	the	established	accounts	of	what	quantum	theories	are

and	when	they	are	physically	equivalent.	After	a	technical	interlude,	section	5	explores	reactions	to	this	distressing

circumstance.

4.	Technical	Interlude

For	the	sake	of	formulating	and	evaluating	various	responses	to	the	prevalence	in	QMQ 	of	unitary	inequivalent

representations	of	the	canonical	relations	identifying	a	quantum	theory,	it	is	time	for	us	to	take	on	board	some

formal	notions.	As	previously	announced,	my	exposition	of	these	notions	will	be	unrigorous.

There	is	an	abstract	algebraic	structure	that	all	concrete	Hilbert	space	representations	of	the	canonical	relations	

circumscribing	a	quantum	theory	Q 	have	in	common.	This	is	the	structure	of	the	C 	algebra	 	generated	by	 .

One	way	to	construct	 	is	to	start	with	a	concrete	Hilbert	space	representation	of	 ,	form	polynomials	of	the

canonical	operators	affording	that	representation,	then	close	in	the	uniform	(aka	the	norm)	operator	topology	of

the	representing	Hilbert	space. 	The	C 	algebra	 	results.	(A	concrete	C 	algebra	is	a	uniformly	closed	subset	of
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the	bounded	operators	on	some	Hilbert	space.)	If	starting	from	another	representation	of	 ,	we	followed	the	same

recipe	to	obtain	a	C 	algebra	 ,	we	would	find	that	 	and	 	are	isomorphic:	there	exists	a	one-to-one	map

between	the	algebras	preserving	algebraic	structure.	As	representation-independent,	this	is	the	algebraic	structure

shared	by	all	of	 	Hilbert	space	representations.

Ordinary	QM-ish	observable	algebras,	algebras	of	the	form	 ,	are	weakly	closed,	and	indeed	can	be

regarded	(as	section	2	presents	them)	as	generated	on	behalf	of	a	quantum	theory	Q 	by	following	the	 	recipe	of

the	preceding	paragraph,	but	substituting	weak	for	uniform	closure	in	the	last	step.	(Because	weakly	closed	sets

are	also	uniformly	closed,	every	 	is	also	a	C 	algebra.)	The	criterion	of	convergence	supplied	by	the	uniform

topology	is	harder	to	satisfy	than	the	criterion	of	convergence	supplied	by	the	weak	topology.	So	there	are

sequences	of	Hilbert	space	operators	that	converge	weakly,	but	not	uniformly.	For	instance,	the	sequence	of

partial	sums	of	n	pairwise	orthogonal	projection	operators	on	a	separable	infinite	dimensional	Hilbert	space

converges	weakly	to	the	identity	operator	as	n	goes	to	infinity.	That	same	sequence	of	partial	sums	fails	to

converge	uniformly.	Given	a	concrete	irreducible	representation	of	canonical	relations	 	on	some	Hilbert	space	

,	its	uniform	closure,	which	is	isomorphic	to	the	canonical	C 	algebra	 ,	can	turn	out	to	be	a	proper	subalgebra

of	 ,	the	observable	algebra	ordinary	QM	generates	by	weak	closure	from	the	concrete	representation.

(Recall	the	example	of	the	infinite	spin	chain.	The	convergence	of	the	limit	that	defines	the	global	polarization

observable	is	representation-dependent.	That	observable	belongs	to	 ,	but	has	no	counterpart	in	 ,

the	C 	algebra	generated	as	the	uniform	closure	of	a	representation	of	the	Pauli	relations.)	One	difference	between

unitarily	inequivalent	representations	of	 	arises	from	observables	that	make	it	into	the	weak,	but	not	the	uniform,

closures	of	concrete	representations	of	 .

The	canonical	C 	algebra	 	can	be	considered	in	abstraction	from	any	concrete	Hilbert	space,	as	the	algebraic

structure	all	representations	of	 	share.	But	an	abstract	C 	algebra	A	will	always	admit	a	concrete	Hilbert	space

representation,	a	morphism	π	from	 	into	 .	Two	representations	 	and	 	of	the	same	algebra

	are	unitarily	equivalent	just	in	case	there	exists	a	unitary	map	 	such	that	for	each	

.	Even	if	representations	π	and	π′	are	not	unitarily	inequivalent,	there	is	still	a

isomorphism	between	 	⊊	 and	 	⊊	 —just	not	one	implemented	unitarily,	and	so	not	one

that	extends	to	an	isomorphism	between	 	and	 	in	their	entirety.

The	foregoing	apparatus	frames	a	C 	algebraic	approach	to	quantum	theories,	which	includes	the	Hilbert	space

approach	of	ordinary	QM	as	a	special	case.	The	C 	algebraic	approach	associates	the	observables	of	a	quantum

theory	with	the	self-adjoint	elements	of	a	C 	algebra	 	appropriate	to	that	theory.	(In	the	special	case	of	ordinary

QM,	that	algebra	takes	the	form	of	 	for	some	Hilbert	space	 .)	The	C 	algebraic	approach	identifies

quantum	states	on	the	observable	algebra	 	with	linear	functionals	 	that	are	normed	(ω)(I)	=	1))and

positive	(ω(A 	A)	≥	0	for	all	 ).	ω(A)	may	be	understood	as	the	expectation	value	of	(self-adjoint)	 .

These	states	are	uniformly	continuous:	if	A 	is	a	sequence	of	elements	of	 	that	converges	uniformly	to	A	and	ω	is

a	state	on	 ,	then	ω(A )	converges	in	the	good-old	fashioned	sense	to	ω(A).	Ordinary	QM	adds	an	extra	codicil	to

its	conception	of	states:	admissible	states	on	 	need	also	be	countably	additive—a	virtue	that	lacks	a

natural	representation-independent	account.	Countably	additive	states	on	 	are	ultraweakly	continuous:	if	A

is	a	sequence	of	elements	of	 	that	converges	in	 	ultraweak	operator	topology 	to	A	and	ω	is	a

countably	additive	state,	then	the	expectation	values	ω	assigns	A 	converge	to	the	expectation	value	ω	assigns	A.

Like	the	states	of	ordinary	QM,	the	set	of	states	on	a	C 	algebra	 	is	convex.	Its	extremal	elements—that	is,	states

ω	which	cannot	be	expressed	as	nontrivial	convex	combinations	of	other	states—are	pure	states;	all	other	states

are	mixed.

It	is	straightforward	that	a	countably	additive	ordinary	QM	state	implemented	by	a	density	operator	 	acting	on	a

Hilbert	space	 	carrying	a	representation	 	of	an	algebra	 	defines	a	state	ω	on	 .	Simply	set	

	for	all	 .	It	is	gratifying	that	we	can	travel	in	the	other	direction.	Let	ω	be	a	state	on	a

C 	algebra	 .	Then	there	exists	a	Hilbert	space	 ,	a	faithful 	representation	 	of	the	algebra,

and	a	cyclic 	vector	 	such	that,	for	all	 ,	the	expectation	value	the	algebraic	state	ω	assigns	A

is	duplicated	by	the	expectation	value	the	Hilbert	space	state	vector	|ψω〉	assigns	the	Hilbert	space	observable

π(A).	The	triple	 	is	unique	up	to	unitary	equivalence,	and	known	as	the	state's	GNS	representation.
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Clearly,	other	states	φ	on	 	can	be	implemented	as	density	operator	states	on	ω's	GNS	representation.	For

example	any	 	acting	on	 	defines	a	state	φ	on	 	via	 	for	all	 .	The	set	of

states	thus	definable	as	density	operators	on	ω's	GNS	representation	comprise	what	is	known	as	ω's	folium.

If	 	admits	unitarily	inequivalent	representations,	not	every	state	on	 	lies	in	ω's	folium.	Recalling	the	infinite	spin

chain,	consider,	for	example,	the	state	on	the	algebra	 	implemented	by	the	base	state	of	the	

representation.	This	is	the	state	that	assigns	the	z-component	of	every	Pauli	spin,	as	well	as	the	z-component	of

every	finite	subchain	polarization	observable,	the	eigenvalue	+1.	Call	this	state	ω .	We	can	regard	the	

representation	as	ω 's	GNS	representation.	We	have	argued	that	in	 	weak	operator	topology,	the	finite

subchain	operators	 	converge	in	the	N→	∞	limit	to	the	identity	operator	I .	This	implies	that	they	converge

ultraweakly	to	I 	as	well.	A	state	on	 	that	cannot	be	implemented	by	a	density	operator	on	ω 	's	GNS

representation	is	the	state,	call	it	ω ,	implemented	by	the	base	state	of	the	 	representation.	ω 	is	the	state	in

which	the	spin	at	every	site	points	in	the	negative	z	direction.	So	for	each	k,	ω (σ (z) )	=	−	1.	Hence	for	each	N,	

.	But	ω (I )	had	better	be	+	1,	because	ω 	is	a	state	and	I 	is	the	identity	operator.	So	

converges	ultraweakly	to	I ,	but	 	does	not	converge	to	ω (I ).	But	that	means	ω 	fails	to	be

ultraweakly	continuous	in	 .	If	ω 	were	implemented	by	a	density	operator	on	 ,	it	would	be	ultraweakly

continuous.	ω 	is	not	implementable	by	a	density	operator	on	ω 's	GNS	representation.	Every	state	in	ω 's	folium

is	thus	implementable.	So	ω 	lies	outside	ω 's	folium.

When	the	GNS	representations	π 	and	π 	of	two	algebraic	states	are	unitarily	equivalent,	the	folia	of	those

algebraic	states	coincide.	If	two	pure	algebraic	states	φ	and	ω	have	unitarily	inequivalent	GNS	representations,

their	folia	are	disjoint:	no	algebraic	state	expressible	as	density	matrix	on	φ's	GNS	representation	is	so-expressible

on	ω's	and	vice	versa.	(With	mixed	algebraic	states,	the	situation	is	more	delicate.	See	Kadison	and	Ringrose

1997,	ch.	4	for	details.)	Disjoint	states	are	states	whose	folia	are	disjoint.	The	states	ω 	and	ω 	on	 	are

disjoint.

Section	2.3	explicated	physical	equivalence	for	generic	kinematic	pairs	by	means	of	the	pair	of	conditions	PEV	and

PAS,	and	promised	an	argument	that	kinematic	pairs	satisfying	the	expectation-value	preserving	condition	(PEV)

will	not	in	general	thereby	satisfy	the	algebraic-structure	preserving	condition	PAS.	We	are	now	in	a	position	to	give

that	argument,	which	underscores	the	incapacity	of	PEV	on	its	own	to	capture	a	robust	sense	of	physical

equivalence.	Let	 	be	the	canonical	C 	algebra	for	a	quantum	theory	Q ,	and	let	ω	and	φ	be	disjoint	pure	states

on	it.	Q 's	grip	on	which	physical	possibilities	are	which	begins	with	the	canonical	relations	 	and	the	expectation

values	assigned	observables	satisfying	those	relations.	States	assigning	different	expectation	values	to	canonical

observables	correspond	to	different	physical	possibilities.	In	order	to	be	disjoint,	ω	and	φ	have	to	be	different

states,	that	is,	there	has	to	be	some	canonical	observable	regarding	whose	expectation	value	ω	and	φ	disagree.

Now	consider	two	ordinary	QM-ish	kinematic	pairs	for	 	and	 .	Every

separable	infinite	dimensional	Hilbert	space	is	isomorphic	to	every	other,	and	in	particular	there	is	a	unitary	map	

.	This	U	defines	a	pair	of	bijections	i 	and	i 	between	observable	algebra	and	state	sets	of	the

kinematic	pairs:	for	all	 ,	for	all	 .	It	is	trivial

that	these	bijections	together	satisfy	PEV.	But	it	is	mad	to	take	states	identified	by	the	bijections	to	represent	the

same	physical	possibility.	No	state	in	the	first	kinematic	pair	can	reproduce	the	expectation	value	assignment	to

canonical	observables	of	any	state	in	the	second	kinematic	pair.	(That	is	just	what	it	is	for	the	representations	to	be

disjoint.)	i 	therefore	identifies	states	that	act	differently	on	 ,	states	corresponding	to	different	physical

possibilities.	But	i 	was	supposed	to	identify	states	corresponding	to	the	same	physical	possibility.	Something

has	gone	wrong.

A	natural	diagnosis	is	that	the	bijections	defined	by	the	unitary	map	above	have	gone	astray	by	failing	to	respect

Q 's	algebraic	structure.	In	particular,	where	C 	are	the	elements	satisfying	the	constitutive	relationships	 	and

generating	 	violates	the	(7)	clause	of	the	condition	PAS,	which	requires:

(We	know	this	because	if	i 	satisfied	this	condition,	the	representations	would	be	unitarily	equivalent,	which	by

hypothesis	they	are	not.)	Violating	(7),	i 	satisfies	PEV	in	a	way	that	loses	track	of	which	observables	are
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canonical.	That	is	why	states	identified	by	i 	differ	in	the	values	they	assign	canonical	observables.

5.	Why	Unitary	Equivalence

5.1	Competing	Criteria	of	Equivalence

The	disclosures	of	the	technical	interlude	inspire	an	interpretive	strategy	Arageorgis	(1995)	has	dubbed	“Algebraic

Imperialism.”	The	Algebraic	Imperialist	conceives	of	a	theory	of	QM 	not	in	terms	of	a	particular	concrete	Hilbert

space	representation	of	the	canonical	relations	 	circumscribing	that	theory,	but	in	terms	of	the	abstract	algebraic

structure	every	such	representation	shares.	That	is,	the	Imperialist	supposes	the	theory's	physical	magnitudes	to

be	given	by	the	self-adjoint	part	of	the	C 	algebra	 ,	and	takes	possible	states	to	be	the	set	 	of	states	in	the

algebraic	sense	on	 .

The	Algebraic	Imperialist	equips	a	theory	Q 	with	a	kinematic	pair	of	the	form	 .	For	a	quantum	theory

that,	like	a	typical	theory	of	QM ,	admits	unitarily	inequivalent	representations,	the	Imperialist	thereby	rejects

ordinary	QM's	conception	of	a	kinematic	pair	as	a	double	 	for	some	concrete	Hilbert	space	 .

Generated	as	the	weak	closure	of	a	concrete	Hilbert	space	representation	of	 ,	the	ordinary	QM	observable

algebra	 	generally	contains	elements	without	counterpart	in	the	Imperialist's	observable	algebra	 .	And

the	Imperialist's	state	set	 	generally	includes	states	not	implementable	by	members	of	the	ordinary	QM	state	set	

.	The	Imperialist	takes	more	states	to	be	physically	possible	than	can	be	ratcheted	into	an	ordinary	QM

account.	She	also	takes	fewer	observables	to	be	physically	significant.

Section	2.3	anointed	unitary	equivalence	a	criterion	of	physical	equivalence	for	kinematic	pairs	of	the	form	

	on	the	grounds	that	(i)	any	two	such	pairs	satisfied	the	demands	PEV	(preservation	of

expectation	values)	and	PAS	(preservation	of	algebraic	structure)	just	in	case	their	generating	representations

were	unitarily	equivalent,	and	(ii)	the	demands	PEV	and	PAS	appropriately	explicated	physical	equivalence	for

theories	specified	up	to	kinematic	pairs.	For	the	Imperialist,	(i)	is	true,	but	irrelevant:	she	assigns	theories	of	QM

kinematic	pairs	different	in	kind	from	those	of	ordinary	QM.	She	should,	however,	take	(ii)	to	be	both	true	and

relevant.	If	anything,	more	sensitive	to	the	physical	import	of	algebraic	structure	than	the	advocate	of	ordinary	QM,

the	Imperialist	should	welcome	the	criterion	(PAS).	Moreover	the	Imperialist	has	no	special	reason	to	resist	the

preservation	of	expectation	values	as	a	criterion	for	physical	equivalence.	So	she	should	accept	section	2.3's

gloss	of	physical	equivalence	in	terms	of	the	pair	of	conditions	(PEV	and	PAS),	but	deny	that	it	be	applied	to

kinematic	pairs	of	ordinary	QM's	sort.	Rather,	the	Imperialist	would	apply	those	conditions	to	kinematic	pairs	

	of	the	sort	she	recognizes.

When	the	criteria	PAS	and	PEV	for	physical	equivalence	are	applied	to	kinematic	pairs	of	the	sort	favored	by

Imperialists,	unitary	equivalence	emerges	as	sufficient,	but	not	necessary,	for	physical	equivalence.	Let

	be	kinematic	pairs	for	a	theory	Q 	circumscribed	by	the	canonical	relations	 ,	and	suppose

the	algebras	 	have	canonical	generators	 ,	respectively.	Assume	there	is	an	isomorphism	

such	that	 	for	all	i.	Because	it	is	an	isomorphism	on	the	algebras’	generators,	α	extends	to	their

products,	linear	combinations	and	uniform	limits	(Kadison	and	Ringrose	1997,	Thm	4.1.8).	Between	 	and	 ,	α

provides	a	bijection	i (A)	=	α(A)	that	satisfies	PAS.	Conversely,	if	there	is	no	such	isomorphism,	there	is	no

bijection	satisfying	PAS.	α	also	generates	a	bijection	between	states:	i 	:	ω	→	ω	◦	α	where	ω	◦	α 	assigns

each	 	the	value	ω	assigns	α (A).	Together,	i 	and	i 	satisfy	PEV.	So	kinematic	pairs	

	satisfy	PEV	and	PAS	if	and	only	if	there	is	an	isomorphism	 	such	that	

for	all	i.

Unitary	equivalence	emerged	as	a	criterion	for	physical	equivalence	for	kinematic	pairs	cast	in	ordinary	QM	form

.	It	emerged	from	the	analysis	of	physical	equivalence	for	general	kinematic	pairs	in	terms	of

PAS	and	PEV.	We	have	just	seen	that	applying	that	same	general	analysis	to	kinematic	pairs	cast	in	Algebraic

Imperialist	form	 	eventuates	in	algebraic	isomorphism	as	a	criterion	of	physical	equivalence.

Our	overarching	question	is:	Is	unitary	equivalence	a	suitable	criterion	of	physical	equivalence	for	kinematic	pairs

realizing	quantum	theories	that	fall	outside	the	scope	of	the	Stone-von	Neumann	and	Jordan-Wigner	theorems?	We
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now	have	a	provisional	answer.	It	depends.	It	depends	on	how	we	ought	to	construe	the	kinematic	pairs	for	such

theories—in	ordinary	QM's	form,	in	Algebraic	Imperialist	form,	or	some	other	way.	But	which	form	is	the	right	one?

The	next,	and	concluding,	section	presents	some	approaches	to	this	question.

6.	Principles?

The	infinite	spin	chain	evoked	an	anxiety:	its	possible	states	should	include	the	states	on	 	we	have	called	ω

and	ω ,	but	any	theory	of	ordinary	QM	reckoning	ω 	to	be	a	possible	state	of	the	infinite	spin	chain	is	physically

inequivalent	to	any	theory	of	ordinary	QM	reckoning	ω 	to	be	a	possible	state.	The	last	section	charts	a	strategy

for	alleviating	this	anxiety:	ditch	ordinary	QM's	account	of	quantum	kinematics	and	embrace	instead	the

Imperialist's	account.	Limiting	observables	pertaining	to	the	infinite	spin	chain	to	self-adjoint	elements	of	 ,	we

constitute	a	quantum	theory	according	to	which	both	ω 	and	ω 	are	possible	states	of	the	chain.

But	at	a	cost.	Among	the	observables	we	have	given	up	is	the	global	polarization	observable,	the	observable	that

distinguishes	most	conspicuously	and	directly	between	the	states	ω 	and	ω ,	the	observable	that	labels	an	axis	of

the	phase	diagram	distilling	a	ferromagnet's	universal	behavior.	The	Imperialist	strategy	for	welcoming	both	ω 	and

ω 	as	physical	undermines	the	physics	some	people	would	like	to	do	with	those	states.

Of	course,	other	people—those	with	a	particular,	but	widespread	set	of	metaphysical	scruples	about	symmetry—

would	reject	any	observable	that	marked	a	physical	difference	between	ω 	and	ω ,	on	the	grounds	that,	as

symmetry-connected,	ω 	and	ω 	represent	the	same	physical	situation.	Those	committed	to	such	scruples	also

have	reason	to	resist	the	ordinary	QM	picture	of	quantum	theories—ω 	and	ω 	cannot	represent	the	same

physical	situation	if	one's	a	possible	state	only	if	the	other	is	not.	The	Imperialist's	picture	presents	them	with	no

such	immediate	absurdity.	It	does,	however,	require	the	symmetricians	to	do	some	work	to	avert	inanity.

Symmetries	like	the	flip-flop	symmetry	connecting	ω 	and	ω 	are	implemented	by	automorphisms	of	 .	(As	the

name	suggests,	an	automorphism	 	of	an	algebra	 	is	just	an	isomorphism	that	maps	 	to	itself.)	It	turns

out	that	for	every	pair	of	pure	states	on	 ,	there	is	some	automorphism	that	connects	them.	So	if	every

automorphism	implements	a	symmetry,	the	symmetricians’	commitment	to	identify	symmetry-connected	states

collapses	the	state	space	of	the	theory	to	a	single	point.	A	physical	theory	with	such	a	state	space	is	inane.	To

avert	inanity,	symmetricians	need	to	distinguish	automorphisms	that	implement	symmetries	from	automorphisms

that	do	not.

Section	5	determined	that	the	explication	of	physical	equivalence	for	theories	of	QM 	depends	on	the	sorts	of

kinematic	pairs	it	is	appropriate	to	attribute	such	theories.	We	have	just	seen	two	principled	attitudes	toward	ω

and	ω 	which	concur	in	rejecting	kinematic	pairs	of	ordinary	QM's	sort	as	inappropriate.	One	attitude	reckons	ω

and	ω 	to	be	physically	distinct	possible	states	of	the	infinite	spin	chain,	on	the	principle	that	this	arrangement

supports	explanatory	aspirations,	exercises	in	unification,	and	programs	of	theory	development.	The	other	attitude

reckons	ω 	and	ω 	to	be	physically	identical	states,	on	the	principle	that	they	are	connected	by	a	symmetry.

United	in	their	departure	from	ordinary	QM,	these	principles	soon	diverge.	Those	in	the	grip	of	the	explanation-

honoring	principle	cannot	abide	the	Imperialist's	account	of	quantum	kinematics,	for	that	account	obliterates	what

they	take	to	be	the	physically	fruitful	distinction	between	ω 	and	ω .	Those	in	the	grip	of	the	symmetry-honoring

principle	can	live	with	the	Imperialist's	account,	provided	they	can	supplement	their	metaphysical	principle	with

another	one,	a	principle	able	to	identify	those	automorphisms	of	 	which	implement	symmetries.	This	illustrates

a	typical	predicament:	the	question	of	what	sort	of	kinematic	pair	it	is	appropriate	to	attribute	theories	of	QM —the

question	on	whose	answer	turns	the	explication	of	physical	equivalence	for	such	theories—is	a	question	to	which

there	are	many	responses,	guided	by	many	principles,	some	of	which	are	in	mutual	(or	even	internal)	tension.

We	can	try	to	simplify	the	question	about	kinematic	pairs	by	breaking	it	into	component	questions:	What

observable	algebras	should	we	attribute	theories	of	QM ,	and	what	state	sets?	Take	the	former	question	first.

Suppose	all	hands	agree	that	observables	realizing	the	canonical	relations	 	circumscribing	a	quantum	theory	Q

are	physically	significant.	Because	expressing	the	relations	 	requires	forming	linear	combinations	and	products

of	canonical	observables,	suppose	that	all	hands	agree	as	well	that	that	the	set	of	physical	observables	is	closed

under	those	algebraic	operations.	Then	all	we	need	to	induce	agreement	among	all	hands	about	Q 's	observable

algebra	is	to	get	all	hands	to	agree	about	what	criterion	of	convergence	is	appropriate	to	use	in	adding	limit	points

to	the	algebra	generated	by	the	canonical	observables.	If	they	agree	to	uniform	convergence,	they	agree	as	well
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that	the	C 	algebra	 	is	the	observable	algebra	for	Q .	If	they	agree	to	convergence	in	the	weak	operator

topology	of	a	Hilbert	space	 	bearing	a	representation	of	 ,	they	agree	to	 	as	the	observable	algebra.

Segal	(1959)	struck	on	an	argument	favoring	uniform	convergence.	The	conceptual	crux	of	Segal's	argument	is	the

claim	that	if	a	sequence	of	observables	A 	converges	to	another	observable	A,	the	world	had	better	not	be	able	to

get	itself	into	a	state	ω	such	that	ω(A )	fails	to	converge	to	ω(A).	Segal	used	a	broadly	operationalist	outlook	to

secure	this	claim.	Protocols	for	measuring	A	will	include	ones	where	we	measure	many	members	of	the	sequence

A 	and	extrapolate	to	the	limit	of	the	sequence	of	outcomes	obtained.	This	protocol	would	break	down	if	ω(A )	failed

to	converge	to	ω(A).	Lest	our	experimental	protocols	lose	their	grip	on	the	observables	they	are	meant	to	measure,

Segal	contends,	we	should	regard	as	observables	only	those	quantities	defined	by	limiting	relationships	A 	→	A

such	that	ω(A )	converges	to	ω(A),	no	matter	what	ω	is.	To	deal	weak	convergence	the	coup	de	grâce,	Segal

remarks	that	for	any	representation	 	of	a	canonical	algebra	 	admitting	unitarily	inequivalent

representations,	there	will	be	sequences	 	and	states	ω	on	 	such	that	π(A )	converges	in	 	weak

topology,	but	ω(A )	fails	to	converge.	(States	ω	on	 	not	implementable	by	a	density	operator	state	on	the

representation	 	will	have	this	feature.)	If	we	added	the	weak	limit	of	the	sequence	π(A )	to	our	catalog	of

observables,	we	would	recognize	an	observable	whose	value	we	could	not	gauge	even	by	the	most	careful

sequence	of	measurements	performed	on	systems	in	the	state	ω.	To	a	good	operationalist,	a	quantity	whose	value

eludes	experimental	assessment	is	no	real	quantity.	To	build	an	observable	algebra	containing	only	genuine

quantities,	Segal	urges,	avoid	weak	limits.	By	his	lights,	uniform	limits	are	fine.	Because	all	states	on	 	are	uniformly

continuous,	if	A 	converges	uniformly	to	A,	no	matter	what	ω	is,	ω(A )	converges	to	ω(A)	as	well.

This	is	an	admirably	principled	argument	for	attributing	Q 	the	observable	algebra	 	generated	by	uniform

closure,	rather	than	any	larger	algebra	 	generated	by	weak	closure.	But	as	Segal	develops	it,	the	argument

quite	obviously	makes	covert	appeal	to	a	particular	answer	to	a	question	it	was	the	aim	of	our	simplifying	strategy

to	set	aside:	What	states	are	physical?	If	Q 's	physical	states	were	required	to	reside	in	the	folium	of	the

representation	whose	weak	operator	topology	was	used	to	obtain	 ,	then	for	every	weakly	convergent

sequence	of	observables	A 	→	A	and	every	physical	state	ω,	ω(A )	would	converge	to	ω(A),	and	the	limiting

observables	would	survive	Segal's	test	for	significance. 	Segal's	criterion	for	the	significance	of	an	observable

cannot	operate	in	isolation	from	an	account	of	which	states	are	physical.	Operating	in	concert	with	different

accounts	of	physical	states,	Segal's	criterion	makes	different	judgments	about	which	observables	are	physical.

Operating	in	isolation	from	an	account	of	physical	states,	Segal's	criterion	makes	no	judgment	at	all.

We	are	after	a	principled	way	of	settling	the	question	of	what	sort	of	kinematic	pair	 	to	attribute	a	theory	Q .

Even	supposing	we	accept	Segal's	principle	that	the	continuity	properties	of	physical	states	march	in	lockstep	with

the	continuity	properties	of	algebras	of	observables,	we	need	a	principled	way	to	fix	either	the	state	set	S	or	the

observable	algebra	 	of	Q 	to	precipitate	a	kinematic	pair	from	that	principle.	The	good	news	is	that	there	are	a

variety	of	principles	we	might	invoke	to	configure	either	 	or	 .	The	bad	news	is	that	different	principles

eventuate	in	different	kinematic	pairs,	which	in	turn	are	suited	to	different	philosophical	and	physical	projects.

Adopting	a	single	and	uniform	principle	inevitably	stymies	some	of	those	projects.	Here	are	some	examples	of

principles,	and	the	projects	they	sustain	and	frustrate.

•	The	Hadamard	condition	is	a	principle	for	identifying	physically	significant	states	on	the	canonical	algebra	

for	a	quantum	field	theory	on	curved	spacetime	(see	Wald	1994,	ch.	4	for	an	account).	States	that	fulfill	the

Hadamard	condition	are	states	for	which	a	point-splitting	prescription	for	assigning	the	stress	energy	tensor	an

expectation	value	succeeds.	Such	success	is	essential	to	the	pursuit	of	semi-classical	quantum	gravity,	an

approach	that	marries	quantum	theory	to	the	general	theory	of	relativity	by	replacing	the	stress	energy	tensor

T 	in	Einstein's	field	equations	with	its	expectation	value	〈T 〉 .	For	a	QFT	Q 	set	in	a	closed	spacetime,	the

Hadamard	condition	fosters	significant	progress	on	the	question	of	what	kinematic	pair	to	assign	Q .	In	such	a

spacetime	setting,	every	Hadamard	state	is	unitarily	equivalent	to	every	other.	Thus,	states	satisfying	the

Hadamard	condition	are	confined	to	those	expressible	as	density	operators	on	a	particular	concrete

representation	 	of	 .	With	states	so	confined,	Segal's	coordination	principle	delivers	 —perhaps

with	the	stress-energy	observable	added	‘by	hand’—as	the	observable	algebra	appropriate	to	Q .

In	open	spacetimes	the	story	is	not	so	neat:	unitarily	inequivalent	Hadamard	states	abound.	Perhaps	more

distressingly,	when	it	comes	to	sustaining	the	aspirational	pursuit	of	quantum	gravity,	the	Hadamard	condition	is

a	mixed	bag.	One	triumph	of	semi-classical	quantum	gravity	is	its	role	in	predicting	the	“phenomenon”	of	black
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hole	evaporation.	In	black	hole	evaporation,	the	region	of	spacetime	exterior	to	a	black	hole	occupies	a

quantum	state	that	is	a	thermal	state	at	a	temperature	related	to	the	surface	gravity	of	the	black	hole,	which

eventually	radiates	its	substance	away.	This	Hawking	radiation	and	the	associated	model	of	black	hole

thermodynamics	serve	fledgling	projects	in	quantum	gravity	as	something	like	a	datum.	To	be	considered

plausible,	theories	of	quantum	gravity	should	be	able	to	accommodate	and	predict	black	hole	evaporation.	The

catch	is	that	the	QFT	state	that	in	some	respects	best	models	the	Hawking	radiation	exterior	to	a	black	hole

during	its	evaporation	is	a	state	that	violates	the	Hadamard	condition	(see	Candelas	1980).	Dismissing	that	state

from	physical	relevance	frustrates	the	pursuit	of	quantum	gravity	by	undermining	one	of	our	best	models	of	a

“phenomenon”	quantum	gravity	is	meant	to	save.

•	Let	 	be	the	canonical	algebra	for	a	QFT	Q 	set	in	a	spacetime	M.	Axiomatic	approaches	to	QFT	include	an

axiom	demanding	that	M's	spacetime	symmetries	be	implemented	unitarily	(see	Dimock	1980).	We	can	cast	this

axiom	as	a	principle	that	in	order	for	a	state	ω	to	be	physical,	its	GNS	representation	must	be	one	on	which	M's

symmetries	are	unitarily	implementable.	Again,	given	the	right	sort	of	M,	this	principle	for	identifying	physical

states	helps	identify	a	kinematic	pair.	Coupled	with	other	axioms	for	Minkowski	spacetime,	the	principle	singles

out	a	privileged	vacuum	state	ω	 	on	 .	Taking	the	physical	states	of	the	theory	to	be	those	in	ω	 's	folium	and

applying	Segal's	coordination	principle,	we	attribute	Q 	the	kinematic	pair	 .

In	more	general	spacetime	settings,	the	story	is	not	so	neat.	But	even	confining	attention	to	Minkowski

spacetime,	the	kinematic	pair	underwritten	by	the	principle	that	symmetries	be	unitarily	implementable	stymies

certain	projects	in	physics.	For	instance,	so-called	“infra-red	states,”	invoked	in	models	of	soft-photon

scattering	(see	Strocchi	1985,	87),	fall	outside	the	pale	of	physical	possibility	limned	by	this	kinematic	pair.	But

these	states	are	integral	to	our	modeling	and	understanding	a	significant	class	of	experimental	particle	physics

phenomena.	Rejecting	infrared	states	on	principle	limits	the	explanatory	reach	of	Q .

This	list	can	be	continued:	for	instance,	insisting	that	dynamics	be	well	defined	mitigates	in	favor	of	abstract

algebraic	approaches	when	dynamics	cannot	be	implemented	unitarily	on	a	fixed	Hilbert	space	(Arageorgis	et	al.

2002),	but	in	favor	of	concrete	Hilbert	space	representations	when	the	existence	of	a	dynamics	is	representation-

dependent	(see	Emch	and	Knops	1970).	But	even	in	its	short	form,	the	list	suggests	a	moral	that	complicates	the

search	for	overarching	and	univocal	criteria	of	physical	equivalence	appropriate	to	theories	of	QM .	Those	criteria

will	depend	on	the	sorts	of	kinematic	pair	suited	to	theories	of	QM .	Their	capacity	for	wide	application	is	a	virtue	of

theories	of	QM .	Any	recipe	that,	given	 ,	generated	a	kinematic	pair	for	Q 	without	looking	for	guidance	to	the

details	of	Q 's	applications,	threatens	to	erode	that	virtue.
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Notes:

(1)	Subject	to	provisos	beautifully	explained	by	Summers	1999.

(2)	For	an	introduction,	see	Emch	1972,	269–275.

(3)	For	an	introduction,	see	Wald	1994,	ch.	2.

(4)	See	Butterfield	2007	and	Belot	2007	for	this	idea	elaborated.

(5)	This	is	a	restriction	for	the	sake	of	simplicity,	and	a	drastic	one.	Almost	generically,	QM 	systems	are	described

by	states	associated	with	reducible—that	is,	not	irreducible—representations.	See	Earman	and	Ruetsche	2005	for	a

discussion.

(6)	What	if	my	theory	differs	from	yours	only	in	a	trivial	scale	transformation?	That	is,	we	don't	satisfy	PEV,	but	there

are	bijections	i :	 	and	i 	:	 	such	that	(say)	i (ω)(i (A))	=	2	×	ω(A).	Wouldn't	it	be

mad	to	take	this	failure	to	satisfy	PEV	to	disqualify	our	theories	from	physical	equivalence?!	I	am	not	sure	it	would

be.	Notice	that	at	least	one	of	the	theories	entertains	only	states	that	fail	to	be	normalized.	And	notice	as	well	that

we	can	restore	unitary	equivalence	by	attributing	the	theorists	the	same	observable	algebra	but	different

conventions	for	coordinating	self-adjoint	elements	of	that	algebra	and	measurement	procedures.	(Thanks	to	Dave

Baker	and	Bryan	Roberts,	who	independently	raised	this	point.)

(7)	Here	is	one	reason	linearity	is	important.	Since	only	the	self-adjoint	elements	of	 	and	 	correspond	to

observables,	PEV	should	take	i 	to	be	a	bijection	between	the	self-adjoint	parts	 	and	 	of	those	algebras,

rather	than	a	bijection	between	the	algebras	in	their	entirety.	But	for	any	element	Q	of	 ,	there	are	

such	that	Q	=	A+	iB.	So	if	an	i 	restricted	to	the	self-adjoint	parts	of	the	observable	algebras	acts	linearly—a

supposition	the	result	just	cited	secures—	it	induces	a	bijection	between	the	entire	algebras,	which	bijection	we	will

continue	to	call	i .
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(8)	I	am	suppressing	a	further	condition	arising	from	the	fact	that	a	quantum	algebras	has	an	adjoint	operation	 .	It

is	that	α(X )	=	(α(X)) .	We	will	want	i 	to	satisfy	this	condition	because	we	will	want	it	to	identify	observables,	self-

adjoint	elements,	with	observables.

(9)	Clifton	and	Halvorson	(2001)	follow	Glymour's	analysis	of	physical	equivalence,	which	supposes	physical

theories	to	be	interpreted	as	axiomatic	systems.	For	Glymour,	such	theories	are	physically	equivalent	only	if

intertranslatable	in	such	a	way	that	axioms	get	translated	as	axioms	and	theorems	get	translated	as	theorems.

Roughly	speaking,	Clifton	and	Halvorson	assimilate	the	generators	of	an	observable	algebra	to	axioms	and	its	other

elements	to	theorems,	thereby	motivating	(7)	as	the	axiom-to-axiom	demand	and	PEV	as	the	theorem-to-theorem

demand.	I	take	my	reconstruction	to	agree	in	spirit	with	theirs.

(10)	Here	I	follow	Sewell	2002,	§2.3,	to	which	I	refer	the	reader	for	details.

(11)	For	the	duration	of	this	explication,	I	am	dropping	hats	over	operators	to	minimize	notational	clutter.

(12)	Simon	expresses	a	commitment	to	the	tradition	as	he	launches	into	an	exposition	of	those	aspects	of

functional	analysis	he	considers	most	central	to	physics:	“Throughout,	all	our	Hilbert	spaces	will	be	separable

unless	otherwise	indicated.	Many	of	the	results	extend	to	non-separable	spaces,	but	we	cannot	be	bothered	with

such	obscurities”	(1972,	18).	Although	there	are	some	ways	in	which	the	mathematics	of	separable	Hilbert	spaces

are	“nicer”	(for	instance,	some	operator	topologies	are	first-countable),	I	am	not	aware	of	a	canonical	explanation

of	the	tradition.

(13)	A	project	in	which	my	impressionistic	exposition	tries	to	follow	the	careful	treatments	of	Isham	(1983)	and

Gotay	(2000).	Thanks	are	owed	to	Gordon	Belot	for	help	with	this.	Blame	for	persisting	misunderstandings	is	not.

(14)	Another	approach	is	to	let	the	configuration	variable	be	unitary	instead	of	self-adjoint.	See	Lèvy-Leblond	1976.

(15)	See	Dürr	et	al.	for	an	argument	that	Bohmian	mechanics	“provides	a	sharp	mathematical	justification”	(2006,

791)	of	the	expectation	that	classical	theories	with	topologically	exotic	configuration	spaces	have	unitarily

inequivalent	quantizations.

(16)	Appropriately	weighted	superpositions	of	ẑ 	eigenstates	might	assign	expectation	value	0	to	angular

momentum,	but	can	be	empirically	distinguished	from	ẑ 	eigenstates	by	repeated	non-disturbing	measurements	of

angular	momentum.

(17)	For	why	this	might	be	interesting,	see	Belot	1998	or	Healey	2007.	Dürr	et	al.	2006	catalogs	other	topologically

non-ℝ 	phase	spaces	with	physical	applications.

(18)	Another	suppressed	complication:	the	ferromagnetic-paramagnetic	phase	transition	does	not	occur	in	the	1-d

model	provided	by	the	infinite	spin	chain,	but	does	in	models	of	higher	dimension.	See	Emch	and	Liu	2002	for

further	discussion.

(19)	It	will	not	escape	the	reader's	notice	that	the	morals	drawn	in	this	paragraph	undermine	the	considerations	of

the	last	paragraph.	Since	I	am	here	only	trying	to	motivate	discontent	with	unitary	equivalence	as	a	criterion	of

physical	equivalence,	that	is	fine	with	me:	whether	you	are	drawn	by	the	consideration	of	the	last	paragraph	or	the

present	paragraph,	you	have	a	reason	to	be	unhappy	with	the	criterion.	Since	I	myself	am	drawn	by	both	sorts	of

considerations,	I	face	a	real	puzzle,	which	deserves	more	attention	than	it	gets	here.

(20)	This	sounds	simpler	than	it	is;	see	Belot	(this	volume).

(21)	This	problem	is	addressed	systematically	in	Baker	(forthcoming).

(22)	Kadison	and	Ringrose	1997,	ch.	4,	gives	a	more	formal	introduction.

(23)	‘Closing	in	the	uniform	topology’	means	adding	to	the	algebra	the	limit	points	of	all	uniformly	convergent

sequences	of	elements	that	have	made	their	way	into	the	algebra	by	other	means.

(24)	A	near-relative	of	weak	convergence:	A 	converges	ultraweakly	to	A	just	in	case	for	each	density	operator	W,

|	Tr(WA )	−	Tr(WA)	|	converges	to	0.
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(25)	π	is	faithful	iff	π	(A)	=	0	implies	A	=	0	for	all	 .

(26)	|ψ〉	is	cyclic	for	 	means	 	is	dense	in	 .

(27)	Ruetsche	2011	uses	considerations	of	Segal's	sort	to	sketch	reasons,	innocent	of	operationalism,	for

coordinating	a	quantum	theory's	state	space	and	its	observable	algebra.

(28)	The	continuity	claim	follows	from	the	fact	that	every	density	operator	state	on	 	is	ultra-weakly

continuous.

Laura	Ruetsche

Laura	Ruetsche	is	Professor	of	Philosophy	at	the	University	of	Michigan.	Her	Interpreting	quantum	theories:	The	art	of	the	possible
(Oxford,	2011)	aims	to	articulate	questions	about	the	foundations	of	quantum	field	theories	whose	answers	might	hold	interest	for

philosophy	more	broadly	construed.
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Substantivalist	and	Relationalist	Approaches	to	Spacetime

Oliver	Pooley
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Abstract	and	Keywords

This	chapter	provides	an	up-to-date,	comprehensive	discussion	of	substantivalist	and	relationalist	approaches	to

spacetime.	It	analyzes	why	Isaac	Newton	postulated	absolute	space	before	examining	the	so-called	kinematic	shift

argument	and	evaluates	orthodox	spacetime	substantivalism.	The	chapter	also	describes	the	strategies	the

relationalist	can	pursue	in	the	face	of	the	challenge	posed	by	Galilean	covariance,	and	evaluates	the	relevance	of

the	Einstein's	Hole	Argument	in	the	substantivalist–relationalist	debate.

Keywords:	spacetime,	Isaac	Newton,	absolute	space,	kinematic	shift	argument,	spacetime	substantivalism,	Galilean	covariance,	Einstein's	Hole

Argument

1.	Introduction

A	significant	component	of	the	philosophical	interpretation	of	physics	involves	investigation	of	what	fundamental

kinds	of	things	there	are	in	the	world	if	reality	is	as	physics	describes	it	to	be.	One	candidate	entity	has	proven

perennially	controversial:	spacetime. 	The	argument	about	whether	spacetime	is	an	entity	in	its	own	right	goes	by

the	name	of	the	substantivalist–relationalist	debate.	Substantivalists	maintain	that	a	complete	catalog	of	the

fundamental	objects	in	the	universe	lists,	in	addition	to	the	elementary	constituents	of	material	entities,	the	basic

parts	of	space-time.	Relationalists	maintain	that	spacetime	does	not	enjoy	a	basic,	nonderivative	existence.

According	to	the	relationalist,	claims	apparently	about	spacetime	itself	are	ultimately	to	be	understood	as	claims

about	material	entities	and	the	possible	patterns	of	spatiotemporal	relations	that	they	can	instantiate.

In	his	Principia,	Newton	famously	distinguishes	absolute	from	relative	space	and	states	that	the	former	“of	its	own

nature	without	reference	to	anything	external,	always	remains	homogeneous	and	immovable”	(Newton	1999,	408).

Newton's	description	of,	and	arguments	for,	absolute	space	are	commonly	(and	rightly)	taken	to	be	a	statement

and	defense	of	substantivalism.	In	section	2,	I	consider	Newton's	reasons	for	postulating	absolute	space	before

examining,	in	section	3,	one	of	the	strongest	arguments	against	its	existence,	the	so-called	kinematic	shift

argument.	These	arguments	highlight	the	close	connection	between	the	spatiotemporal	symmetries	of	a	dynamical

theory	and	the	spacetime	ontology	that	the	theory	is	naturally	interpreted	as	committed	to.	It	turns	out	that	the

Galilean	covariance	of	Newtonian	mechanics	tells	against	both	substantival	space	and	the	most	obvious

relationalist	alternative.

With	hindsight,	the	natural	substantivalist	response	to	this	predicament	is	to	jettison	space	for	spacetime.	Section	4

reviews	orthodox	spacetime	substantivalism.	The	most	defensible	substantivalist	interpretation	of	Newtonian

physics	has	much	in	common	with	a	very	natural	interpretation	of	relativistic	physics.	From	this	perspective,	our

current	best	theory	of	space	and	time	vindicates	Newton	rather	than	his	relationalist	critics,	contrary	to	what	early

philosophical	interpreters	claimed	(e.g.,	Reichenbach,	1924).

Section	5	is	a	skeptical	review	of	two	antisubstantivalist	themes	that	motivate	some	contemporary	relationalists.	Its

1
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conclusion	is	that	the	aspiring	relationalist's	best	hope	is	Ockham's	razor,	so	the	focus	shifts	onto	the	details	of

relationalists'proffered	alternatives	to	substantivalism.	The	move	to	a	four-dimensional	perspective	expands	the

range	of	possibilities	available	to	the	classical	relationalist.	In	section	6	I	distinguish	three	strategies	that	the

relationalist	can	pursue	in	the	face	of	the	challenge	posed	by	Galilean	covariance	and	consider	how	the

corresponding	varieties	of	relationalism	fare	when	one	moves	from	classical	to	relativistic	physics.	It	turns	out	that

a	number	of	well-known	relationalist	views	find	a	natural	home	in	this	framework.

A	review	of	the	substantivalist–relationalist	debate	cannot	get	away	without	mention	of	Earman	and	Norton's

(in)famous	adaptation	of	Einstein's	Hole	Argument.	In	the	final	section,	I	highlight	what	many	see	as	the	most

promising	substantivalist	response	and	relate	it	to	so-called	structural	realist	approaches	to	spacetime.

2.	Newton's	Bucket

Newton's	best-known	discussion	of	absolute	space	comes	in	a	scholium	to	the	definitions	at	the	start	of	the

Principia.	According	to	the	once-standard	reading,	Newton's	purpose	in	the	Scholium	is	to	argue	for	the	existence

of	substantival	space	via	the	existence	of	absolute	motion,	which	he	supposedly	takes	to	be	established	by	his

famous	bucket	experiment	and	two-globes	thought	experiment	(see,	e.g.,	Sklar,	1974,	182–184).	While	there	is

now	widespread	agreement	that	this	account	badly	misrepresents	Newton's	arguments,	there	is	less	consensus

over	how	they	in	fact	should	be	understood. 	Thanks	to	Koyré	(1965)	and	Stein	(1967),	it	is	now	recognized	that,	in

order	to	understand	Newton's	Scholium,	one	has	to	appreciate	that	Newton	was	in	large	part	reacting	to

Descartes's	claims	about	the	nature	of	motion.	I	briefly	review	the	relevant	Cartesian	background	before	giving	an

account	of	Newton's	arguments	that	is	essentially	in	agreement	with	that	of	Rynasiewicz	(1995).

Descartes	was	one	of	the	first	natural	philosophers	to	put	the	principle	of	inertia—the	claim	that	bodies	unaffected

by	net	external	forces	remain	at	rest	or	move	uniformly	in	a	straight	line—at	the	center	of	his	physics	(Descartes

1644,	II	37,	39).	At	the	same	time,	and	apparently	without	recognizing	the	problem,	he	espoused	an	account	of

motion	that	is	hopelessly	incompatible	with	it.	Descartes	distinguishes	motion	in	an	everyday	sense	of	the	term

from	motion	in	a	strict,	philosophical	sense.	Motion	in	the	ordinary	sense	is	said	to	be	change	of	place	(ibid.,	II:	24)

and	Descartes	gives	a	relational	definition	of	a	body's	place	in	terms	of	that	body's	position	relative	to	external

reference	bodies	(ibid.,	II:	10,	13).	Which	bodies	are	to	be	treated	as	reference	bodies	is	an	arbitrary	matter.

Descartes's	ordinary	notion	of	motion	is	therefore	a	relative	one:	a	given	body	may	be	said	to	be	moving

uniformly,	nonuniformly,	or	not	moving	at	all,	depending	on	which	other	bodies	are	taken	to	be	at	rest	(ibid.,	II:	13).

In	contrast,	Descartes's	definition	of	motion	in	the	strict	sense,	while	still	relational,	was	supposed	to	secure	a

unique	proper	motion	for	each	body	(ibid.,	II:	31).	True	motion	is	defined	as	“the	transfer	of	one	piece	of	matter,	or

of	one	body,	from	the	vicinity	of	the	other	bodies	which	are	in	immediate	contact	with	it,	and	which	are	regarded

as	being	at	rest,	to	the	vicinity	of	other	bodies”	(ibid.,	II;	25,	emphasis	in	the	original).

Newton	gave	a	single	definition	of	motion,	as	change	of	place,	but	he	also	recognized	two	kinds	of	motion,

depending	on	whether	the	places	in	question	were	the	parts	of	a	relative	space	(defined	in	terms	of	distances

relative	to	material	reference	bodies)	or	the	parts	of	substantival	space.	Newton's	relative	motion,	therefore,

corresponds	closely	to	Descartes's	motion	in	the	ordinary	sense.	It	is	the	motion	we	most	directly	observe	and,

Newton	agreed,	it	is	what	we	mean	by	“motion”	in	everyday	contexts.	But,	he	insisted,	when	it	comes	to	doing

physics,	we	need	to	abstract	from	such	observations	and	consider	a	body's	true	motion,	which,	he	argued,	has	to

be	defined	in	terms	of	an	independently	existing	absolute	space.

Newton's	arguments	appeal	to	alleged	“properties,	causes,	and	effects”	of	true	motion.	His	aim	is	to	show	that

various	species	of	relative	motion,	including	Cartesian	proper	motion	(though	this	is	not	targeted	by	name),	fail	to

have	the	requisite	characteristics.	If	one	assumes,	as	Newton	tacitly	did,	that	true	motion	can	only	be	some	kind	of

privileged	relative	motion	or	else	is	motion	with	respect	to	an	independently	existing	entity,	Newton's	preferred

option	wins	by	default.	That	each	body	has	a	unique,	true	motion	and	that	such	motion	has	the	purported

properties,	causes	and	effects,	are	unargued	assumptions.

Newton's	claims	about	the	properties	of	true	motion	arguably	beg	the	question	against	the	Cartesian.	The

arguments	from	causes	and	effects	are	more	interesting,	both	because	they	connect	with	physics	and	because

their	premises	were	accepted	by	the	Cartesians.	The	particular	effect	of	true	motion	that	Newton	cites	is	almost	an

immediate	corollary	of	the	principle	of	inertia:	bodies	that	are	undergoing	genuine	circular	motion	“endeavour	to
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recede	from	the	axis”	because,	at	each	instant,	their	natural,	inertial	motion	is	along	the	tangent	at	that	point;	they

only	follow	their	curved	path	because	of	the	application	of	a	centripetal	force.

Descartes	fully	endorsed	these	claims	about	circular	motion.	Indeed,	they	formed	a	central	component	of	his	model

of	planetary	motions	and	the	cosmos	(e.g.,	Descartes,	1644,	III:	58–62).	His	definition	of	true	motion,	however,	fails

to	fit	these	phenomena,	as	Newton's	bucket	experiment	was	designed	to	illustrate.	Newton	asks	us	to	consider	a

water-filled	bucket	suspended	by	a	wound	cord.	Once	released,	as	the	cord	unwinds,	the	bucket	starts	to	rotate.

Initially,	the	water	is	at	rest	and	its	surface	is	flat.	As	friction	gradually	transfers	the	bucket's	motion	to	the	water,

the	water's	surface	becomes	ever	more	concave	until	its	rate	of	rotation	reaches	a	maximum	and	it	is	comoving

with	the	bucket.	The	concavity	of	the	water's	surface	reveals	its	endeavour	to	recede	from	the	axis	of	rotation.

According	to	Descartes's	definition	of	true	motion,	however,	the	water	is	at	rest	both	before	the	bucket	is	released

and	at	the	end	of	the	experiment,	when	the	water	and	bucket	are	once	again	at	relative	rest,	even	though	the

water	now	manifests	an	effect	of	true	rotation.	It	might	also	seem	that	Descartes	should	count	the	water	as	truly

moving	just	after	the	bucket	has	been	released,	because	it	is	transferred	from	the	vicinity	of	bodies	in	immediate

contact	with	it	(viz.,	the	sides	of	the	bucket),	even	though,	at	this	stage,	the	water's	surface	is	flat.	The	effects	of

true	motion	are	not	correlated	with	true	motion	as	defined	by	Descartes	in	the	way	they	are	supposed	to	be.

Newton	concludes	that	the	effect	revealing	true	rotation	“does	not	depend	on	the	change	of	position	of	the	water

with	respect	to	[immediately]	surrounding	bodies,	and	thus	true	circular	motion	cannot	be	[defined	in	terms	of]

such	changes	of	position”	(Newton	1999,	413).

The	Principia's	Scholium	on	space,	time,	and	motion	is	no	longer	our	only	source	for	Newton's	views	on	these

topics.	In	the	1960s,	a	pre-Principia	manuscript,	known	after	its	first	line	as	De	Gravitatione,	was	published	for	the

first	time	(Newton,	2004).	In	De	Grav,	Newton	quite	explicitly	targets	Descartes,	and	one	argument	is	particularly

telling. 	Newton	points	out	that,	according	to	Descartes's	definition	of	motion,	no	body	has	a	determinate	velocity,

and	there	is	no	definite	trajectory	that	it	follows.	From	moment	to	moment	a	body's	motion	is	defined	with	respect	to

those	bodies	in	immediate	contact	with	it,	which	(for	any	body	in	motion)	change	from	moment	to	moment.	There	is

nothing	in	this	picture	that	allows	us	to	identify	at	some	time	the	exact	places	through	which	a	body	has	traveled

and	so	a	fortiori	nothing	that	can	tell	us	whether	these	places	constitute	a	straight	line	which	the	body	has

traversed	at	a	uniform	rate.	Descartes's	account	of	true	motion,	therefore,	cannot	secure	a	fact	of	the	matter	about

whether	a	body	is	moving	uniformly,	as	the	principle	of	inertia	requires.	Newton	concludes:	“So	it	is	necessary	that

the	definition	of	places,	and	hence	of	local	motion,	be	referred	to	some	motionless	being	such	as	…	space	in	so	far

as	it	is	seen	to	be	truly	distinct	from	bodies”	(Newton,	2004,	20–21).

Talk	of	a	“being”	that	is	“truly	distinct	from	bodies”	indicates	that	Newton's	alternative	to	Cartesian	motion	involves

a	variety	of	substantivalism.	The	waters	are	muddied,	however,	by	Newton's	explicit	denial	in	De	Grav	that	space	is

a	substance.	Newton's	position	does	qualify	as	a	version	of	substantivalism	as	defined	above:	according	to

Newton,	space	is	a	genuine	entity	of	a	fundamental	kind.	Newton's	denial	that	space	is	a	substance	comes	in	a

passage	where	he	also	denies	both	that	it	is	merely	a	property	(“accident”)	and	that	it	is	“nothing	at	all.”	In	fact,	of

the	three	categories—substance,	accident,	or	nothing—Newton	states	that	space	is	closest	in	nature	to	substance.

His	two	reasons	for	denying	that	space	is	a	substance	relate	only	to	how	this	category	was	understood	in	the	then-

dominant	Scholastic	tradition.	In	particular,	space	was	disqualified	from	being	a	substance	because,	on	Newton's

view,	it	does	not	act	and	because,	in	a	certain	rather	technical	sense,	Newton	did	not	regard	it	as	a	self-subsistent

entity.

In	postulating	space	as	an	entity	with	its	own	manner	of	existence,	Newton	was	directly	following	a	number	of	the

early	modern	atomists,	such	as	Patrizi	(1943,	227,	240–241),	Gassendi	(see,	e.g.,	Grant,	1981,	209)	and	Charleton

(1654,	66).	These	authors	all	treated	space	as	more	substantial	than	traditional	Aristotelian	substances.	And	there

are	striking	structural	parallels	between	some	of	the	arguments	in	De	Grav	and	those	in	Charleton's	book,	which	we

know	from	one	of	Newton's	early	notebooks	that	Newton	had	studied.	The	conclusion	must	be	that	in	postulating

substantival	space	Newton	adopted,	albeit	for	truly	original	reasons,	a	metaphysical	package	already	very	much

on	the	table.

3.	The	Puzzle	of	Galilean	Invariance

For	Newton's	first	two	laws	of	motion	to	make	sense,	there	needs	to	be	a	fact	of	the	matter	about	whether	a	body's
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motion	is	uniform	and,	if	it	is	not,	a	quantitative	measure	of	how	it	is	changing.	Newton	recognized	that	Descartes's

definitions	of	motion	failed	to	secure	this	and	signed	up	to	a	metaphysics	that	underwrites	the	required	quantities.

There	is	a	sense,	though,	in	which	Newton's	absolute	space	underwrites	too	much.	The	problem	arises	because	of

the	symmetries	of	Newtonian	mechanics,	in	particular	its	Galilean	invariance.

3.1	Spacetime	and	Dynamical	Symmetries

The	relevant	notions	of	symmetry	can	be	introduced	in	terms	of	coordinate	transformations.	Given	our	topic,	a	little

care	is	needed	because	the	substantivalist	and	the	relationalist	do	not	share	a	conception	of	a	coordinate	system.

Roughly	speaking,	a	spacetime	coordinate	system	is	a	map	from	spacetime	into	ℝ 	but,	of	course,	only	the

substantivalist	thinks	of	spacetime	as	an	genuine	entity. 	The	relationalist	thinks	of	a	coordinate	system	as

assigning	quadruples	of	real	numbers	 	to	material	events	rather	than	to	spacetime	points.	And,

whereas	the	substantivalist	will	view	every	quadruple	of	a	coordinate	system	as	assigned	to	something,	the

relationalist	will	view	some	sets	of	coordinate	values	(those	that	the	substantivalist	thinks	of	as	assigned	to

unoccupied	regions)	as	simply	not	assigned	to	anything	at	all.

Despite	this	difference,	both	substantivalists	and	relationalists	will	view	certain	coordinate	systems	as

kinematically	privileged	in	the	sense	of	being	optimally	adapted	to	the	particular	spatiotemporal	quantities	that

they	each	recognize.	In	the	context	of	classical	mechanics,	the	natural	relationalist	alternative	to	Newton's

substantivalism	is	Leibnizian	relationalism. 	According	to	this	view,	a	possible	history	of	the	universe	is	given	by	a

sequence	of	relative	particle	configurations:	the	primitive	spatiotemporal	facts	about	the	universe	are	composed

solely	of	facts	about	the	instantaneous	relative	distances	between	particles	(assumed	to	obey	the	constraints	of

Euclidean	geometry)	and	facts	about	the	time	intervals	between	the	successive	instantaneous	material

configurations.	The	ways	in	which	a	coordinate	system	can	be	adapted	to	these	quantities	is	straightforward.	The

time	coordinate,	t,	is	chosen	so	that,	for	any	material	events	e	and	e′,	the	difference,	t(e)	−	t(e′),	corresponds	to

the	temporal	interval	between	e	and	e′,	and	is	positive	or	negative	according	to	whether	e	occurs	later	or	earlier

than	e′.	Finally,	spatial	coordinates	are	chosen	so	that,	for	all	particles	i,j	and	for	all	times,	

,	where	r 	is	the	instantaneous	inter-particle	distance	between	i

and	j.	Assuming	that	these	distances	evolve	smoothly	over	time,	one	also	requires	that	each	particle's	spatial

coordinates	are	smooth	functions	of	the	time	coordinate.

Coordinate	systems	that	encode	the	Leibnizian	relationalist	quantities	in	this	way	are	sometimes	known	as	rigid

Euclidean	coordinate	systems	(Friedman,	1983,	82).	If	a	particular	coordinate	system	 	satisfies	these

constraints	then	so	will	any	 	related	to	it	by	a	member	of	the	Leibniz	group 	of	transformations:	(Leib)

R(t)	is	an	orthogonal	matrix	that	implements	a	time-dependent	rotation.	The	components	of	 	are	smooth

functions	of	time	that	implement	an	arbitrary	time-dependent	spatial	translation	and	d	is	an	arbitrary	constant	that

changes	the	choice	of	temporal	origin.

The	manner	in	which	a	coordinate	system	can	be	adapted	to	the	Newtonian's	spatiotemporal	quantities	is	very

similar.	Mutatis	mutandis,	the	substantivalist	imposes	the	same	constraints	as	the	relationalist,	although	now	the

spatial	and	temporal	distance	relations	to	which	the	coordinate	values	are	to	be	adapted	hold	between	the	points

of	spacetime	rather	than	(only)	between	material	events. 	There	are	also	the	substantivalists'	trademark	“same

place	over	time”	facts	to	encode.	Here	we	simply	require	that	the	spatial	coordinates	of	each	point	of	space	remain

constant.	The	transformations	that	relate	coordinate	systems	adapted	to	the	full	set	of	Newtonian	spatiotemporal

quantities	form	a	proper	subgroup	of	the	Leibniz	group	(it	might	appropriately	be	labeled	the	Newton	group ),

since	the	only	rotations	and	spatial	translations	that	preserve	the	extra	constraint	are	time-independent:	(New)

Identified	in	this	way,	the	Leibniz	and	Newton	groups	are	examples	of	spacetime	symmetry	groups:	they	are
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groups	of	transformations	that	preserve	spatiotemporal	structure	(as	encoded	in	coordinate	systems).	A

conceptually	distinct	route	to	identifying	special	classes	of	coordinate	transformations	goes	via	the	dynamical	laws

of	a	particular	theory.	A	dynamical	symmetry	group	is	a	group	that	preserves	the	form	of	the	equations	that

express	the	dynamical	laws.	Since	the	Leibnizian	relationalist	holds	that	every	rigid	Euclidean	coordinate	system	is

optimally	adapted	to	all	the	real	spatiotemporal	quantities,	they	might	expect	such	coordinate	systems	to	be

dynamically	equivalent.	In	other	words,	it	is	natural	for	someone	who	thinks	that	the	Leibniz	group	is	a	spacetime

symmetry	group	to	expect	it	to	be	a	dynamical	symmetry	group	as	well.	This	might	indeed	be	the	case	if,	for

example,	the	dynamical	laws	dealt	directly	with	the	relative	distances	between	bodies.	But	Newton's	laws	do	not.

Instead	they	presuppose	that	individual	bodies	have	determinate	motions	independently	of	their	relations	to	other

bodies.	If	Newton's	laws	take	their	canonical	form	in	a	given	coordinate	system	K	(which,	we	may	imagine,	is

adapted	to	Newtonian	space	and	time),	then	they	will	not	take	the	same	form	in	a	coordinate	system,	K′,	related	to

K	by	an	arbitrary	member	of	the	Leibniz	group.	The	equations	that	hold	relative	to	K′	will	involve	additional	terms

corresponding	to	source-free	“pseudo	forces”	that,	the	Newtonian	maintains,	are	artefacts	of	K′'s	acceleration	with

respect	to	substantival	space.

3.2	The	Kinematic	Shift	Argument

The	mismatch	between	dynamical	symmetries	and	(what	Leibnizian	relationalists	regard	as)	spacetime	symmetries

is	a	problem	for	the	relationalist.	But	a	similar	problem	afflicts	the	Newtonian	substantivalist.	While	the	Newton	group

is	a	dynamical	symmetry	group	of	classical	mechanics,	it	is	not	the	full	symmetry	group.	The	equations	that

express	Newton's	three	laws	of	motion	and	particular	Newtonian	force	laws	(such	as	the	law	of	universal

gravitation)	are	invariant	under	a	wider	range	of	coordinate	transformations,	namely	those	constituting	the	Galilei

group:	(Gal)

As	in	(New),	the	rotation	matrix	is	time-independent,	but	now	uniform	time-dependent	translations	of	the	spatial

coordinates	(“boosts”)	are	allowed.

Let's	stipulate	that	two	coordinate	systems	are	adapted	to	the	same	frame	of	reference	if	and	only	if	they	are

related	by	an	element	of	the	Newton	group. 	Two	coordinate	systems	related	by	a	nontrivial	Galilean	boost	are

then	adapted	to	different	frames	of	reference.	However,	if	Newton's	laws	hold	with	respect	to	either	frame,	they

hold	with	respect	to	both	of	them.	In	particular,	both	frames	might	be	inertial	frames	in	that,	with	respect	to	them,

force-free	bodies	move	uniformly	in	straight	lines.

This	gives	rise	to	the	following	epistemological	embarrassment	for	the	Newtonian	substantivalist.	Imagine	a	possible

world	W′	just	like	the	actual	world	except	that,	at	every	moment,	the	absolute	velocity	of	each	material	object	in	W′

differs	from	its	actual	value	by	a	fixed	amount	(say,	by	two	meters	per	second	in	a	direction	due	North).	W′	is	an

example	of	a	world	that	is	kinematically	shifted	relative	to	the	actual	universe.	Two	kinematically	shifted	worlds	are

observationally	indistinguishable	because,	by	construction,	the	histories	of	relative	distances	between	material

objects	in	each	world	are	exactly	the	same.	The	worlds	differ	only	over	how	the	material	universe	as	a	whole	is

moving	with	respect	to	space.	Since	substantival	space	is	not	directly	detectible,	this	is	not	an	observable

difference.	Further,	the	Galilean	invariance	of	Newtonian	mechanics	means	that	any	two	kinematically	shifted

worlds	either	both	satisfy	Newton's	laws,	or	neither	does.

The	upshot	is	that	the	Newtonian	substantivalist	is	committed	to	the	physical	reality	of	certain	quantities,	absolute

velocities,	that	are	in	principle	undetectable	given	the	symmetries	of	the	dynamical	laws.	Given	how	W′	was

specified	in	the	previous	paragraph,	we	know	it	is	not	the	actual	world.	But	consider	a	world,	W",	just	like	the	actual

world	in	terms	of	the	relative	distances	between	bodies	at	each	moment	but	in	which,	at	12	a.m.	on	1	January	2000,

the	absolute	velocity	of	the	Eiffel	Tower	is	exactly	527ms 	due	North.	For	all	we	know,	Wʺ	is	the	actual	world. 	To

paraphrase	Maudlin	(1993,	192),	there	may	be	no	a	priori	reason	why	all	physically	real	properties	should	be

experimentally	discoverable	but	one	should	at	least	be	uneasy	about	empirically	inaccessible	physical	facts;

ceteris	paribus,	one	should	prefer	a	theory	that	does	without	them.

The	conclusion	of	this	section	is	that	the	Galilean	invariance	of	Newtonian	physics	poses	something	of	an
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interpretative	dilemma.	On	the	one	hand,	to	make	sense	of	the	successful	dynamical	laws	it	seems	that	we	have	to

acknowledge	more	spacetime	structure	than	the	Leibnizian	relationalist	is	prepared	to	countenance.	On	the	other

hand,	Newton's	manner	of	securing	a	sufficiently	rich	structure	introduces	more	than	is	strictly	required	and

therefore	underwrites	empirically	undetectable	yet	allegedly	genuine	quantities.	Absent	an	alternative	way	to	make

sense	of	Newtonian	physics,	one	might	learn	to	live	with	Newton's	metaphysics.	However,	the	irritant	of	absolute

velocities	motivates	a	search	for	an	alternative.	In	the	next	section,	I	consider	a	substantivalist	way	out	of	the

dilemma.	Relationalist	strategies	are	explored	in	section	6.

4.	Spacetime	Substantivalism

4.1	Neo-Newtonian	Spacetime

The	substantivalist	can	do	away	with	unwanted	absolute	velocities	by	adopting	the	essentially	four-dimensional

perspective	afforded	by	spacetime.	In	this	framework,	there	is	an	elegant	way	of	characterizing	a	spatiotemporal

structure	that	might	seem	to	be	neither	too	weak	nor	too	strong	for	Newtonian	physics. 	The	dynamical	quantities

of	classical	mechanics	presuppose	the	simultaneity	structure,	instantaneous	Euclidean	geometry	and	temporal

metric	common	to	the	Leibnizian	relationalist	and	the	Newtonian	substantivalist.	They	additionally	require	some

extra	transtemporal	structure.	Geometrically,	what	is	needed	is	a	standard	of	straightness	for	paths	in	spacetime

(provided	in	differential	geometry	by	an	affine	connection).	The	possible	trajectories	of	ideal	force-free	bodies

correspond	to	those	straight	lines	in	spacetime	that	do	not	lie	within	surfaces	of	simultaneity.	These	straight	lines

fall	into	families	of	nonintersecting	lines	that	fill	spacetime.	Each	family	of	lines	are	the	trajectories	of	the	points	of

the	“space”	of	some	inertial	frame.	The	resulting	spacetime	is	known	as	Galilean	or	neo-Newtonian	spacetime

(see,	e.g.,	Sklar	1974,	202–206;	Earman,	1989,	33).

Now,	it	is	one	thing	to	give	a	nonredundant	characterization	of	the	spacetime	structure	that	Newtonian	mechanics

assumes.	It	is	another	to	provide	a	satisfactory	account	of	its	metaphysical	foundations	(that	is,	of	what,	in	reality,

underwrites	this	structure).	The	obvious	option	is	to	take	the	unitary	notion	of	spacetime	(rather	than	space	and

time	separately)	ontologically	seriously.	One	regards	spacetime	as	something	that	exists	in	its	own	right	and	which

literally	has	the	geometric	structure	that	the	affine	connection,	among	other	things,	encodes.	In	terms	of	such

ontology,	one	can	provide	a	metaphysical	account	of	the	distinction	between	absolute	and	relative	motion	in	a	way

that	respects	the	physical	equivalence	of	inertial	frames.

It	will	facilitate	comparison	with	relativistic	theories	to	introduce	a	formulation	of	Newton	mechanics	that	makes

explicit	reference	to	this	geometrical	structure.	In	abstract	terms,	physical	theories	often	have	the	following	general

form.	A	space	of	kinematically	possible	models	(KPMs)	is	first	specified.	The	job	of	the	theory's	equations	(which

relate	the	quantities	in	terms	of	which	the	KPMs	are	characterized)	is	then	to	single	out	the	subspace	 	of	

containing	the	dynamically	possible	models	(DPMs). 	The	KPMs	can	be	thought	of	as	representing	the	range	of

metaphysical	possibilities	consistent	with	the	theory's	basic	ontological	assumptions.	The	DPMs	represent	a

narrower	set	of	physical	possibilities.

In	a	coordinate-dependent	formulation	of	Newtonian	theory	like	that	so	far	considered,	the	KPMs	might	be	sets	of

inextendible	smooth	curves	in	ℝ 	which	are	nowhere	tangent	to	surfaces	of	constant	t	(where	 ).	The

models	assign	to	the	curves	various	parameters	(m,…).	Under	the	intended	interpretation,	the	curves	represent

possible	trajectories	of	material	particles,	described	with	respect	to	a	canonical	coordinate	system,	and	the

parameters	represent	various	dynamically	relevant	particle	properties,	such	as	mass.	The	space	of	DPMs	consists

of	those	sets	of	curves	that	satisfy	the	standard	form	of	Newton's	equations.

In	the	local	spacetime	formulation	of	the	theory,	one	takes	the	KPMs	to	be	n-tuples	of	the	form	M,	t ,h ,	∇ ,

 , ,	…). 	M	is	a	four-dimensional	differentiable	manifold	and	t ,	h 	and	∇ 	are	geometric-object	fields	on	M	that

encode,	respectively,	the	temporal	structure	(both	the	simultaneity	surfaces	and	the	temporal	metric),	the

Euclidean	geometry	of	instantaneous	space	and	the	inertial	structure	(that	is,	which	paths	in	spacetime	are

straight).	Together	they	represent	neo-Newtonian	spacetime.	The	“matter	fields”	 ,	which	represent	the	material

content	of	the	model,	can	be	curves	(maps	from	the	real	line	into	M,	representing	particle	trajectories)	or	fields

(maps	from	M	into	some	space	of	possible	values,	either	encoding	force	potentials	or	continuous	matter

distributions).
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The	theory's	DPMs	are	picked	out	by	a	set	of	equations	that	relate	these	various	objects.	Some	of	these	will	involve

both	the	spacetime	structure	and	the	matter	fields.	For	example,	Newton's	second	law	becomes:	(N2)

For	those	not	familiar	with	the	tensor	notation,	the	essential	points	to	note	about	this	equation	are	the	following.	F

and	ξ 	are	spacetime	four-vectors.	F 	stands	for	the	four-force	on	the	particle.	As	in	more	traditional	formulations	of

Newtonian	theories,	it	will	be	specified	by	one	or	more	additional	equations.	ξ 	is	the	four-velocity	of	the	particle;	it

is	the	tangent	vector	to	the	particle's	spacetime	trajectory	if	that	trajectory	has	been	parameterized	by	absolute

time. 	Note,	in	particular,	the	explicit	appearance	of	∇ 	in	the	equation.	ξ 	∇ ξ 	is	the	four-acceleration	of	the

particle;	it	characterizes	how	the	particle's	trajectory	deviates	from	the	adjacent	tangential	straight	line	in

spacetime	(that	is,	from	the	relevant	inertial	trajectory).

4.2	Symmetries	Revisited

In	section	3	the	Galilei	group	and	the	Leibniz	group	were	introduced	as	sets	of	coordinate	transformations,	and	the

dynamical	symmetries	of	Newtonian	mechanics	were	characterized	in	terms	of	the	form	invariance	of	its	equations.

We	now	see	that	the	implementation	of	this	approach	is	not	completely	straightforward:	various	formulations	of

Newtonian	mechanics	involve	different	sets	of	equations,	and	these	can	have	different	invariance	properties.	In

particular,	when	Newton's	laws	are	recast	so	as	to	make	explicit	reference	to	the	geometrical	structure	of	neo-

Newtonian	spacetime,	the	resulting	equations	are	either	generally	covariant	(they	hold	with	respect	to	a	set

coordinate	systems	related	by	smooth	but	otherwise	arbitrary	coordinate	transformations)	or	they	are	coordinate-

independent	(they	directly	equate	certain	geometrical	objects,	rather	than	the	values	of	the	objects'	components

in	some	coordinate	system).

There	is	an	alternative	way	to	characterize	the	symmetries	of	a	spacetime	theory.	Rather	than	focusing	on	the

theory's	equations,	one	considers	their	solutions.	Suppose,	now,	that	a	group	G	of	maps	from	spacetime	to	itself

has	a	natural	action	on	the	space	of	KPMs.	G	is	a	symmetry	of	the	theory	if	and	only	if	it	fixes	the	solution	space

. 	Note	the	need	to	relativize	this	characterization	of	symmetry	to	groups	of	maps	from	spacetime	to	itself.	If	we

were	allowed	to	consider	any	action	of	any	group	on	the	space	of	KPMs,	the	requirement	that	 	be	fixed	would	be

too	easily	satisfied.	In	particular,	for	any	two	points	s ,s 	in	 ,	we	could	find	a	group	action	on	the	space	of	KPMs

such	that	 	is	fixed	and	s 	is	mapped	to	s .	That	is,	every	point	in	 	would	be	mapped	to	every	other	by	some

symmetry	transformation	or	other.

If	the	KPMs	and	DPMs	of	Newtonian	mechanics	are	defined	according	to	the	first	formulation	above	(as	certain

classes	of	curves	in	ℝ ),	the	symmetry	group	of	the	theory	turns	out,	as	one	might	have	expected,	to	be	the	Galilei

group.	This	is	not	so	if	the	local	spacetime	formulation	of	the	theory	is	adopted.	The	space	of	KPMs	then	carries	an

action	of	the	diffeomorphism	group	Diff	(M):	for	any	 	and	for	any	d	∈	Diff(M),	

. 	It	follows	from	the	tensorial	nature	of	the	equations	that	pick	out

the	solution	subspace	that,	if	M,t ,h ,∇ ,	i	satisfies	the	equations	then	so	does	M,d 	t ,d 	h,d 	∇ ,d 	i)

(Earman	and	Norton,	1987,	520).	In	other	words,	the	full	group	Diff	(M)	fixes	 	and	therefore	counts	as	a	symmetry

group	of	this	formulation	of	the	theory.

At	this	point	it	might	look	as	if	the	formulation-dependence	that	afflicts	a	definition	of	dynamical	symmetries	in	terms

of	the	invariance	of	equations	has	simply	been	reproduced	at	the	level	of	models.	We	can,	however,	reintroduce

the	distinction	between	spacetime	and	dynamical	symmetries	in	model-theoretic	terms.	Our	characterization	of	the

models	of	a	local	spacetime	formulation	of	Newtonian	mechanics	involved	distinguishing	those	geometric-object

fields	on	M	that	represent	spacetime	structure	from	those	that	represent	the	material	content	of	spacetime.	Let's

write	M,A ,…,A ,P ,…,	P 	for	a	generic	spacetime	model,	where	the	A s	stand	for	the	fields	that	represent

spacetime	structure	and	the	P s	stand	for	the	fields	that	represent	the	matter	content.	Recall	that	the	coordinate-

dependent	definition	of	spacetime	symmetries	given	in	section	3	required	that	the	encoding	of	spacetime	structure

by	the	coordinate	system	was	preserved.	Analogously,	we	can	identify	a	theory's	spacetime	symmetry	group	as

the	set	of	elements	of	Diff	(M)	that	are	automorphisms	of	the	spacetime	structure;	that	is,	we	require	that	d 	A 	=	A

for	each	field	A . 	In	the	case	of	our	Newtonian	theory,	the	proper	subgroup	of	Diff	(M)	that	leaves	each	of	t ,	h

and	∇ 	invariant	is	the	Galilei	group.
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An	alternative	method	of	singling	out	a	subgroup	of	Diff	(M)	focuses	on	the	matter	fields	rather	than	the	spacetime

structure	fields.	Typically	the	matter	content	of	a	solution	will	have	no	nontrivial	automorphisms	and,	if	it	does,

there	will	be	other	solutions	whose	matter	content	does	not	share	these	symmetries.	We	can,	however,	ask

whether	a	diffeomorphism	acting	solely	on	the	matter	fields	maps	solutions	to	solutions.	In	other	words,	we	pick	out

a	subgroup	of	Diff	(M)	via	the	requirement	that	(for	a	given	choice	of	A )	for	all	

	should	also	be	in	 . 	Note	that,	in	this	definition,	d	acts	only	on	the	matter

fields	and	not	on	the	spacetime	structure	fields.	The	subgroup	of	diffeomorphisms	with	this	property	is	sometimes

identified	as	a	theory's	dynamical	symmetry	group	(Earman,	1989,	45–46).	Again,	in	the	spacetime	formulation	of

Newtonian	theory	set	in	neo-Newtonian	spacetime,	if	this	group	turns	out	to	be	the	Galilei	group	one	has	a	perfect

match	between	the	spacetime	symmetry	group	and	the	dynamical	symmetry	group.

The	model-theoretic	perspective	supports	the	idea	that	the	problems	faced	by	both	the	Leibnizian	relationalist	and

the	Newtonian	substantivalist	involve	mismatches	between	these	two	symmetry	groups.	Whenever	the	spacetime

symmetry	group	is	a	proper	subset	of	the	dynamical	symmetry	group,	the	theory	will	admit	nonisomorphic	models

whose	material	submodels	are	nevertheless	isomorphic.	(Such	models	will	be	related	by	dynamical	symmetries	that

are	not	also	spacetime	symmetries.)	This	will	give	rise	to	supposedly	meaningful	yet	physically	undiscoverable

quantities:	models	will	differ	over	some	quantities	in	virtue	of	different	relations	of	matter	to	spacetime	structure	and

yet	(assuming	the	material	content	of	the	models	encompasses	all	that	is	observable)	such	differences	will	be

undetectable.	This	is	exactly	the	situation	of	the	Newtonian	substantivalist,	who	postulates	a	richer	spacetime

structure	than	that	of	neo-Newtonian	spacetime.	Models	related	by	Galilean	boosts	of	their	material	content	differ

over	undetectable	absolute	velocities.

The	mismatch	faced	by	the	Leibnizian	relationalist	is	of	the	opposite	kind:	the	Galilei	group	is	a	proper	subset	of	the

Leibniz	group.	Strictly	speaking,	this	is	not	a	case	where	the	dynamical	symmetry	group	of	some	theory	is	smaller

than	the	spacetime	symmetry	group.	For	that	we	would	need	a	spacetime	formulation	of	a	theory	that	(i)	was	set	in

so-called	Leibnizian	spacetime	and	(ii)	had	the	Galilei	group	as	its	dynamical	symmetry	group	(e.g.,	in	virtue	of	an

isomorphism	between	the	set	of	its	matter	submodels	and	those	of	standard	Newtonian	theory).	But	the	way	in

which	the	equations	of	the	spacetime	formulation	of	standard	Newtonian	theory	single	out	its	matter	submodels

uses	the	full	structure	of	neo-Newtonian	spacetime.	The	mismatch	between	the	two	groups	is	precisely	what	stands

in	the	way	of	constructing	such	a	relational	theory.

Before	considering	the	spacetime	substantivalist	interpretation	of	relativistic	physics,	a	brief	comment	on	the

relation	between	the	two	formulations	of	Newtonian	mechanics	that	I	have	been	discussing:	I	first	characterized	the

privileged	coordinate	systems	of	the	coordinate-dependent	form	of	Newtonian	physics	as	those	adapted	to	the

spatiotemporal	quantities	recognized	by	the	Newtonian.	From	this	perspective,	the	spacetime	formulation	of	the

theory	simply	makes	explicit	structure	that,	while	implicit,	is	no	less	present	in	the	coordinate-dependent,	Galilean-

covariant	formulation	of	the	theory.	Suppose	one	starts	with	(the	coordinate	expressions	of)	the	equations	of	the

spacetime	formulation	of	a	Newtonian	theory.	These	equations	will	be	generally	covariant.	However,	one	can	use

the	symmetries	of	the	theory's	spacetime	structure	to	pick	out	a	special	class	of	coordinate	systems	in	which	the

values	of	the	components	of	the	fields	representing	the	space-time	structure	take	on	constant	or	vanishing	values.

In	these	coordinate	systems	the	otherwise	generally	covariant	equations	apparently	simplify.	In	other	words,	the

Galilean	covariant	equations	just	are	the	generally	covariant	equations,	written	with	respect	to	coordinate	systems

that	“hide”	the	objects	that	represent	spacetime	structure.

4.3	Relativistic	Spacetimes

In	the	previous	section,	I	maintained	that	the	geometrical	structure	of	neo-Newtonian	spacetime	featured,	implicitly

or	otherwise,	in	the	various	formulations	of	classical	mechanics.	A	similar	claim	holds	true	for	special	relativity.	This

is	most	obvious	in	generally	covariant	or	coordinate-free	formulations	of	the	equations	of	any	specially	relativistic

theory,	where	the	Minkowski	metric	structure,	encoded	by	the	tensor	field	η ,	figures	explicitly.	But	it	is	equally

true	of	the	“standard”	formulations	of	the	equations	that	hold	true	only	relative	to	privileged	inertial	coordinate

systems	related	by	Lorentz	transformations.	One	can	think	of	these	coordinate	systems	as	the	spacetime

analogues	of	Cartesian	coordinates	on	Euclidean	space:	the	coordinate	intervals	encode	the	spacetime	distances

via	the	condition	 .	Minkowski	geometry	is	thus	implicit	in	the	standard	formulation	of

the	laws.
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Because	of	the	manner	in	which	spacetime	geometry	features	in	the	formulation	of	the	laws,	substantivalists	hold

that	it	explains	certain	features	of	the	phenomena	covered	by	those	laws. 	Consider,	for	example,	the	“twin

paradox”	scenario.	Of	two	initially	synchronized	clocks,	one	remains	on	Earth	while	the	other	performs	a	round	trip

at	near	the	speed	of	light.	On	its	return	the	traveling	clock	has	ticked	away	less	time	than	the	stay-at-home	clock.

The	geometrical	facts	behind	this	phenomenon	are	straightforward:	the	inertial	trajectory	of	the	stay-at-home	clock

is	simply	a	longer	timelike	path	than	the	trajectory	of	the	traveling	clock.	Note	that	the	substantivalist	does	not

simply	assert	that	the	number	of	a	clock's	ticks	is	proportional	to	the	spacetime	distance	along	its	trajectory.	Clocks

are	complicated	systems	the	parts	of	which	obey	various	(relativistic)	laws.	One	should	look	to	these	laws	for	a

complete	understanding	of	why	the	“ticks”	of	such	a	system	will	indeed	correspond	to	equal	temporal	intervals	of

the	system's	trajectory.	But	since,	for	the	substantivalist,	these	laws	make	(implicit	or	explicit)	reference	to

independently	real	geometric	structure,	an	explanation	that	appeals	to	the	laws	will,	in	part,	be	an	explanation	in

terms	of	such	geometric	structure,	postulated	as	a	fundamental	feature	of	reality.

Soon	after	formulating	his	special	theory	of	relativity,	Einstein	began	a	decadelong	quest	for	a	theory	of	gravitation

that	was	compatible	with	the	new	notions	of	space	and	time.	The	triumphant	culmination	of	this	effort	was	his

publication	of	the	field	equations	of	his	general	theory	of	relativity	(GR)	in	1915. 	These	equations,	known	as	the

Einstein	Field	Equations	(EFEs),	relate	certain	aspects	of	the	curvature	of	spacetime,	as	encoded	in	the	Einstein

tensor,	G ,	to	the	matter	content	of	spacetime,	as	encoded	in	the	energy	momentum	tensor,	T : 	(EFE)

One	goal	above	all	others	guided	Einstein's	search:	the	generalization	of	the	“special”	principle	of	relativity	to	a

principle	that	upheld	the	equivalence	of	frames	of	reference	in	arbitrary	states	of	relative	motion.	In	this,	Einstein

was	motivated	by	the	belief	that	the	role	of	primitive	inertial	structure	in	explaining	phenomena	in	both	Newtonian

physics	and	in	special	relativity	was	“epistemologically	suspect”:	real	effects,	he	believed,	should	be	traceable	to

observable,	material	causes.

In	the	early	stages	of	his	search,	Einstein	had	a	crucial	insight,	which	he	thought	would	play	a	key	role	in	the

implementation	of	a	generalized	relativity	principle.	According	to	his	Principle	of	Equivalence,	an	inertial	frame	in

which	there	is	a	uniform	gravitational	field	is	physically	equivalent	to	a	uniformly	accelerating	frame	in	which	there

is	no	gravitational	field.	It	is	not	hard	to	see	why	one	might	take	this	principle	to	extend	the	principle	of	relativity

from	uniform	motion	to	uniform	acceleration.

When	Einstein	first	published	the	field	equations	of	GR,	he	believed	that	their	general	covariance	ensured	that	they

implemented	a	general	principle	of	relativity.	Since	smooth	but	otherwise	arbitrary	coordinate	transformations

include	transformations	between	coordinate	systems	adapted	to	frames	in	arbitrary	relative	motion,	it	might	seem

that	there	can	be	no	privileged	frames	of	reference	in	a	generally	covariant	theory.	Almost	immediately,

Kretschmann	(1917)	pointed	out	that	this	cannot	be	correct,	arguing	that	it	should	be	possible	to	recast	any

physical	theory	in	generally	covariant	form.

Compared	to	its	predecessors,	GR	is	without	doubt	a	very	special	theory.	But	one	will	do	more	justice	to	its

conceptual	novelty,	not	less,	by	seeking	as	much	common	ground	with	previous	theories	as	possible.	We	have

already	met	generally	covariant	formulations	of	Newtonian	and	specially	relativistic	physics.	As	these	examples

attest,	Kretschmann's	instincts	were	sound	and	it	is	now	well	understood	that	the	general	covariance	of	GR	does

not	implement	a	general	principle	of	relativity.	In	fact,	GR	arguably	includes	privileged	frames	of	reference	in	much

the	same	way	as	pre-relativistic	theories.

It	is	illuminating	to	consider	a	concrete	example.	Compare	the	local	spacetime	formulation	of	specially	relativistic

electromagnetism	to	its	generally	relativistic	version.	Models	of	the	former	are	of	the	form	M,η ,	F ,	J ),	where	η

encodes	the	Minkowski	spacetime	distances	between	the	points	of	M,	the	covariant	tensor	field	F 	represents	the

electromagnetic	field	and	the	vector	field	J 	represents	the	charge	current	density.	The	dynamically	possible

models	can	be	picked	out	via	the	coordinate-free	form	of	Maxwell's	equations:	(Maxwell)

The	only	difference	between	this	theory	and	the	generally	relativistic	theory	is	that,	in	the	latter,	the	Minkowski

metric	η 	is	replaced	by	a	variably	curved	Lorentzian	metric	field,	g .	Maxwell's	equations	remain	as	constraints

26

27

ab ab
28

29

30

ab ab
a

ab

ab

a

ab ab

PDF Compressor Free Version 



Substantivalist and Relationalist Approaches to Spacetime

Page 10 of 48

on	the	DPMs	of	the	GR	version,	and	the	same	relativistic	version	of	Newton's	second	law	(which	is	formally	identical

to	the	nonrelativistic	version:	equation	(N2)	of	section	4.1)	holds	in	both	theories. 	But,	whereas	the	specially

relativistic	metric	was	stipulated	to	be	flat,	to	be	physically	possible	according	to	GR,	combinations	of	g ,	F 	and

J 	must	now	obey	the	EFEs.

In	the	case	of	SR,	the	standard,	Lorentz-invariant	form	of	Maxwell's	equations	is	recovered	by	choosing	inertial

coordinate	systems	adapted	to	the	spacetime	distances. 	The	only	reason	that	the	same	cannot	be	said	of	GR	is

that	the	pattern	of	spacetime	distances	catalogued	by	g 	does	not	allow	for	global	coordinate	systems	that

encode	them.	One	can,	however,	always	chose	a	coordinate	system	that	is	optimally	adapted	the	spacetime

distances	in	the	infinitesimal	neighborhood	of	any	point	p	∈	M.	In	any	coordinate	system	in	which,	at	p,	g 	=

diag(1,	−1,	−1,	−1)	and	g 	=	0,	the	laws	governing	matter	fields	will	take	their	standard	Lorentz-invariant	form	at

p.

It	is	in	terms	of	this	strong	equivalence	principle	that	the	phenomena	that	figure	in	Einstein's	original	principle	are

nowadays	understood. 	From	a	modern	perspective,	apparent	“gravitational	fields”	have	precisely	the	same

status	as	the	potentials	that	give	rise	to	the	centrifugal	and	coriolis	forces	in	Newtonian	physics:	they	correspond

to	pseudo	forces	that	are	artifacts	of	the	failure	of	the	relevant	coordinate	systems	to	be	fully	adapted	to	the	true

geometry	of	spacetime.	The	“force”	that	holds	us	on	the	surface	of	the	Earth	and	the	“force”	pinning	the	astronaut

to	the	floor	of	the	accelerating	rocket	ship	are	literally	of	one	and	the	same	kind.	In	GR,	gravitational	phenomena

are	not	understood	as	resulting	from	the	action	of	forces.

5.	Reasons	to	be	a	Relationalist?

We	have	seen	that	substantivalism	is	recommended	by	a	rather	straightforward	realist	interpretation	of	our	best

physics.	This	physics	presupposes	geometrical	structure	that	it	is	natural	to	interpret	as	primitive	and	as	physically

instantiated	in	an	entity	ontologically	independent	of	matter.	Although	I	have	only	considered	nonquantum	physics

explicitly,	the	claim	is	equally	true	of	both	nonrelativistic	and	relativistic	quantum	theories	(Weinstein,	2001).	One

might	therefore	wonder:	why	even	try	to	be	a	relationalist?	For	some,	the	Hole	Argument,	discussed	below	in

section	7,	is	the	major	reason	to	seek	an	alternative	to	substantivalism.	Here	I	wish	to	review	some	other

antisubstantivalist	themes	that	have	motivated	relationalists.	The	conclusion	will	be	that	the	only	strong

consideration	in	favor	of	relationalism	is	Ockham's	razor:	if	a	plausible	relational	interpretation	of	empirically

adequate	physics	can	be	devised,	then	the	standard	reasons	for	postulating	the	substantivalist's	additional

ontology	are	undermined.

5.1	A	Failure	of	Rationality?

In	Section	6.2	I	review	Julian	Barbour's	approach	to	dynamics.	According	to	Barbour,	there	is	something	“irrational”

about	standard	Newtonian	mechanics.	Barbour	sets	up	the	problem	in	terms	of	the	data	required	for	the	Newtonian

initial	value	problem:	given	the	equations	of	a	Newtonian	theory,	what	quantities	must	be	specified	at	an	instant	in

order	to	fix	a	solution?	Following	Poincaré,	Barbour	emphasizes	that	the	natural	relational	data—instantaneous

relative	distances	and	their	first	derivatives—	are	almost	but	not	quite	enough.	Inaddition,	three	further	parameters,

which	specify	the	magnitude	and	direction	of	the	angular	momentum	of	the	entire	system,	are	needed. 	Barbour

claims	that	there	is	something	odd	about	this	fact	(see,	e.g.,	Barbour,	2011,	§2.2).

Fixing	the	Euclidean	relative	distances	between	N	particles	and	their	rates	of	change	requires	the	specification	of

6N	−	12	numbers;	6N	numbers	are	required	to	specify	their	positions	and	velocities	in	absolute	space.	The

Newtonian	initial	value	problem,	however,	requires	6N	−	9	numbers.	Six	of	the	6N	numbers	that	specify	the

particles'	absolute	positions	and	velocities	can	be	thought	of	as	specifying	the	orientation	of	the	system	as	a	whole

and	the	position	of	its	center	of	mass.	States	that	differ	solely	in	terms	of	these	quantities	only	differ

nonqualitatively,	in	terms	of	which	particular	points	of	space	are	related	to	the	material	system	in	(qualitative)

ways	common	to	both	situations;	the	structural	pattern	of	relations	between	space	and	matter	is	shared	by	both

states.	Even	if	such	differences	are	to	be	regarded	as	real	differences	(something	to	be	questioned	in	section	7),

Newtonian	physics	should	not	be	expected	to	take	them	into	account	(pace	Barbour,	1999,	83).	It	does	not,	after

all,	single	out	particular	points	of	space	by	name.	The	remaining	three	parameters	can	be	thought	of	as	specifying

the	absolute	velocity	of	the	center	of	mass.	As	we	have	seen,	while	the	Newtonian	substantivalist	regards	this	as	a
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genuinely	qualitative	matter,	the	spacetime	substantivalist	does	away	with	these	quantities	by	embracing	neo-

Newtonian	spacetime.	Arguably,	6N	−	9	numbers	is	precisely	what	the	spacetime	substantivalist	should	expect	to

be	needed	as	Newtonian	initial	data.

What,	then,	is	“irrational”	about	Newtonian	mechanics?	In	Barbour's	view	it	fails	to	be	maximally	predictive:

relative	to	the	Leibnizian	data,	there	is	an	apparent	breakdown	of	determinism,	which	is	only	restored	by

specifying	the	global	angular	momentum.	At	one	level,	this	simply	amounts	to	a	prejudice	in	favor	of	the	relational

quantities	over	the	Newtonian	ones.	For	Barbour,	this	preference	is	based	on	the	fact	that	it	is	the	relational

quantities	that	are	“directly	observable”	(see,	e.g.,	Barbour,	2010,	1280)	but	(i)	direct	observability	is	an	extreme

criterion	for	determining	ontological	commitment	and	(ii)	instantaneous	relative	distances	are	not	directly

observable. 	One	can	still	agree	with	Barbour's	less	ambitious	point.	Without	accepting	that	there	is	something

inherently	objectionable	about	standard	Newtonian	theory,	one	might	nevertheless	prefer	a	theory	that	does	as

well	(is	at	least	as	explanatory	etc.)	but	with	fewer	resources.	Barbour's	observations	about	initial	data	highlight

that,	if	an	adequate	relational	theory	of	the	envisaged	type	can	be	found,	it	will	be	more	predictive,	because	its

initial	data	form	a	proper	subset	of	those	of	the	Newtonian	theory.

5.2	The	Spacetime	Explanation	of	Inertia

In	section	6.3	I	consider	the	dynamical	approach	to	special	relativity,	defended	in	Brown	(2005)	and	Brown	and

Pooley	(2006).	I	noted	above	that	substantivalists	view	the	postulated	spacetime	geometry	as	explanatory.	Brown

is	suspicious	of	this	doctrine.	In	assessing	it,	the	putative	explanatory	roles	of	affine	structure	and	of	metric

structure	should	be	treated	separately.	Here	I	only	consider	the	former;	the	latter	is	discussed	in	section	6.3.

The	idea	that	affine	structure	plays	a	quasicausal	role	in	explaining	the	motions	of	bodies	figures	significantly	in

Einstein's	criticism	of	Newtonian	mechanics	and	SR	and	in	his	subsequent	understanding	of	GR.	Consider	Einstein's

example	from	his	early	review	paper	on	GR,	of	two	fluid	bodies	separated	by	a	great	distance	and	in	relative

rotation	about	the	line	joining	their	centres.	The	two	are	of	the	same	size,	shape,	and	nature	except	that	one	body

is	spherical	whereas	as	the	other	is	oblate.	In	Newtonian	mechanics	the	explanation	of	this	difference	is	that	the

oblate	body,	but	not	the	spherical	body,	is	rotating	with	respect	to	the	inertial	frames:	the	absolute	rotation	of	the

oblate	body	causes	its	oblateness.	Einstein	labels	the	Newtonian	spacetime	structure	with	respect	to	which	such

rotation	is	defined	as	a	“merely	factitious	cause”	of	the	difference;	he	held	that	a	genuine	explanation	should

instead	cite	another	“observable	fact	of	experience”	(Einstein,	1916,	112–	113).	He	initially	maintained	that	this

requirement	was	met	in	GR	because	he	believed	that	the	theory	satisfied	what	he	later	called	Mach's	Principle

(Einstein,	1918,	241–242):	if	the	metric	field	g 	were	fully	determined	by	the	distribution	of	matter	throughout	the

universe,	then	the	difference	between	the	inertial	behavior	of	the	two	bodies	would	be	traceable	to	differences	in

their	relations	to	distant	(observable)	masses.

As	Einstein	soon	recognized,	GR	does	not	satisfy	Mach's	Principle	so	defined. 	Inertial	structure,	as	encoded	in

g ,	is	influenced	but	not	determined	by	the	matter	content	of	spacetime. 	Einstein	ceased	to	regard	the	field

describing	inertial	structure	as	having	a	secondary	status	relative	to	ponderable	matter.	By	1921,	the	objection	to

Newtonian	absolute	space	was	no	longer	that	it	was	invisible.	Instead	the	fact	that	it	acted	without	being	acted

upon	was	held	up	as	problematic;	a	“defect”	not	shared	by	the	spacetimes	of	GR	(Einstein,	1922,	61–62). 	At

around	the	same	time,	Weyl	advocated	a	similar	conception	of	the	role	of	inertial	structure	(he	called	it	the	“guiding

field”),	which	he	regarded	as	“physically	real”	in	both	pre-relativistic	physics	and	in	GR	(Weyl,	1922,	§27).

What	does	Brown	object	to	in	this	picture?	Consider	the	“conspiracy	of	inertia”:	the	relatively	simple	case	of	the

force-free	motions	of	a	collection	of	Newtonian	particles	(Brown,	2005,	15,	141).	Despite	the	fact	that,	ex

hypothesi,	the	particles	are	not	influencing	one	another,	they	move	in	a	highly	coordinated	way:	there	are

spacetime	coordinate	systems	with	respect	to	which	all	the	trajectories	are	straight	lines. 	As	we	have	seen,	the

coordinate-free	geometrical	description	of	this	state	of	affairs	regards	the	trajectories	as	coinciding	with	the	straight

lines	of	an	affine	connection	on	spacetime,	the	flatness	of	which	allows	for	the	global	inertial	coordinate	systems	in

terms	of	which	the	phenomenon	was	stated.	For	the	substantivalist,	inertial	structure	is	an	element	of	reality	that

exists	independently	of	the	particles	and	their	motions.	On	this	view,	aspects	of	the	geometry	play	a	role	in

explaining	the	phenomenon	because,	as	stated	in	the	substantivalist	version	of	Newton's	first	law,	the	particles'

trajectories	are	constrained	as	a	matter	of	physical	necessity	to	be	aligned	with	features	of	this	realistically

construed	geometry.	For	Brown,	this	is	merely	verbal	pseudo-explanation.	His	preferred	point	of	view	reverses	the
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arrow	of	explanation:	the	geometry	is	just	a	codification	of	the	phenomenon,	which	(in	pre-relativistic	physics)

must	be	taken	as	primitive.

If	the	only	role	of	inertial	structure	was	to	explain	pure	inertial	motion,	Brown's	complaint	against	the	substantivalist

would	have	some	intuitive	force;	a	flat	affine	connection	could	be	thought	of	as	a	rather	direct	codification	of	the

regularities	manifest	in	the	phenomena	via	the	“coordinative	definition”	of	spacetime	geodesics	as	the	trajectories

of	force-free	bodies. 	Explaining	inertial	motion,	though,	is	not	the	real	purpose	of	inertial	structure.	Inertial

structure	figures	centrally	in	the	explanation	of	noninertial	motion.	In	contrast	to	the	force-free	case,	the	sequence

of	relative	distances	between	interacting	particles	manifest	over	time	in	a	Newtonian	universe	displays	no	obvious

regularity.	It	is	a	rather	remarkable	fact	that,	by	postulating	a	highly	symmetric	geometrical	structure	in	terms	of

which	the	motions	of	individual	particles	are	to	be	understood,	one	can	provide	an	elegant	explanation,	in	terms	of

simple	force	laws,	of	the	complicated	and	irregular	history	of	relational	quantities.	Anyone	who	is	not	amazed	by

this	conspiracy	has	not	understood	it.	Since	the	postulated	deep	structure	is	not	manifest	in	the	surface

phenomena	it	seems	genuinely	explanatory	and	not	a	mere	codification.	It	is	from	an	application	of	standard

inference-to-the-best-explanation	reasoning	to	this	type	of	scenario	that	substantivalism	gets	its	real	support.

Brown	suggests	that,	around	1927,	Einstein	ceased	to	assign	a	quasi-casual	role	to	spacetime	in	determining	the

inertial	trajectories	of	bodies	(Brown	2005,	161).	The	alleged	reason	is	that,	at	this	time,	Einstein	came	to	recognize

that	the	principle	of	inertia	does	not	need	to	be	postulated	as	a	basic	law	in	GR;	it	is	instead	a	theorem. 	In

Brown's	view	this	fact	undermines	the	idea	that	spacetime	structure	“in	and	of	itself”	acts	“directly”	on	force-free

bodies	because	it	shows	that,	in	GR,	when	such	bodies	undergo	geodesic	motion,“such	motion	is	ultimately	due	to

the	way	the	Einstein	field	g 	couples	to	matter,	as	determined	by	the	field	equations”	(Brown,	2005,	162–163).

Brown's	picture	is,	then,	that	the	relationship	of	the	motions	of	force-free	bodies	to	inertial	structure	in	GR	is

radically	different	to	this	relationship	in	Newtonian	physics	and	SR.	In	the	latter	theories,	inertial	structure	is	a	mere

codification	of	basic,	mysterious	inertial	behavior.	In	the	former,	it	receives	a	dynamical	explanation	via	the

coupling	of	matter	fields	to	the	metric,	as	described	by	the	EFEs.

The	substantivalist	should	not	be	especially	troubled	by	Brown's	claim,	for	it	concedes	that,	in	our	best	(classical)

theory	of	spacetime,	the	metric	structure	of	spacetime	is	a	primitive	element	of	reality	that	plays	a	role	in

determining	the	inertial	behavior	of	bodies.	Even	so,	there	are	reasons	to	doubt	that	the	contrast	between	GR	and

pre-relativistic	theories	can	really	bear	the	weight	Brown	demands	of	it.	The	derivation	of	geodesic	motion	from	the

EFEs	basically	involves	two	steps.	First,	one	notes	that	the	EFEs	imply	the	vanishing	of	the	covariant	divergence	of

the	stress	energy	tensor:	∇ 	T 	=	0.	Second,	one	makes	various	assumptions	about	the	nature	of	the	stress-

energy	tensor	to	be	associated	with	a	force-free	particle	that,	together	with	the	vanishing	of	the	divergence	of

stress-energy,	can	be	shown	to	entail	that	the	particle's	trajectory	is	a	geodesic.	Now,	the	second	step	of	this

derivation	is	as	applicable	in	SR	as	in	GR. 	What	difference	there	is	between	the	theories	must	therefore	concern

the	status	of	the	conservation	principle,	∇ 	T 	=	0.	This	equation,	of	course,	also	holds	in	SR.	Further,	while	in	SR	it

cannot	be	derived	from	the	gravitational	field	equations	(there	are	none),	it	is	a	consequence	of	the	matter	field

equations	(as	it	is	in	GR	also).

In	sum,	geodesic	motion	is	arguably	as	much	a	theorem	in	SR	as	it	is	in	GR.	An	alternative	perspective	to	Brown's	is

that	the	“dynamical	coupling”	of	matter	fields	to	inertial	structure	is	in	essential	respects	the	same	in	GR	and	pre-

relativistic	theories.	It	is	true	that	the	geodesic	theorem	also	demonstrates	that	it	has	limited	validity	in	GR	but	not	in

SR	(recall	footnote	41).	But	the	reason	why,	for	example,	rotating	bodies	do	not	deviate	from	geodesics	in	SR	is	not

that	the	relationship	between	realistically	construed	inertial	structure	and	matter	is	radically	different	in	this	theory

to	that	in	GR.	The	reason	is	simply	that,	in	SR,	there	is	no	curvature	to	which	rotating	bodies	might	couple.

We	have	yet	to	meet	a	decisive	reason	to	look	for	an	alternative	to	substantivalism.	Huggett,	whose	“regularity

account”	of	relational	spacetime	I	consider	in	section	6.3,	states	that	his	reasons	for	advocating	relationalism	are

the	usual	ones:	“worries	about	‘Leibniz	shifts’	and	considerations	of	ontological	parsimony	that	militate	against	the

introduction	of	bizarre	non-material	substances”	(Huggett,	2006,	41).	The	kinematic	shift	has	already	been	dealt

with;	other	Leibniz	shifts	are	discussed	in	section	7.	It	is	not	clear	why	Huggett	regards	spacetime	as	“bizarre.”	In	a

pre-relativistic	context,	one	feature	of	spacetime	that	might	seem	odd	is	its	failure,	emphasized	by	Einstein,	to	obey

the	action–reaction	principle.	As	we	have	seen,	however,	if	this	is	a	failing,	it	is	not	one	shared	by	the	spacetime	of

GR.	That	leaves	considerations	of	ontological	parsimony:	other	things	being	equal,	a	relationalist	interpretation	of

physics	might	seem	preferable	to	substantivalism	because	it	makes	do	with	fewer	metaphysical	commitments.	The
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question	is:	Are	other	things	equal?	It	is	time	to	examine	some	concrete	relationalist	proposals.

6.	Three	Varieties	of	Relationalism

Call	the	objects	to	whose	existence	a	theory	is	committed	the	ontology	of	the	theory.	Call	the	range	of	(primitive)

distinctions	that	a	theory	is	able	to	express	via	its	(primitive)	predicates	and	terms—roughly,	the	set	of	(primitive)

properties	and	relations	to	which	the	theory	is	committed—the	theory's	(primitive)	ideology. 	In	these	terms,	the

problem	faced	by	the	Leibnizian	relationalist	is	that	classical	mechanics	employs	an	ideology	that	appears	to

presuppose	a	substantivalist	ontology.	Inertial	structure	is	naturally	understood	in	terms	of	relations	that	hold	of

spacetime	points;	it	cannot	be	understood	(straightforwardly)	in	terms	of	properties	and	relations	that	are

instantiated	only	by	material	objects.	On	the	other	hand,	bona	fide	relationalist	ideology	appears	to	be	too

impoverished	a	basis	for	an	empirically	successful	alternative	to	Newtonian	theory.

This	means	that	there	are	two	obvious	strategies	open	to	relationalists.	On	the	first,	they	can	attempt	to	expand

their	ideology	so	that	it	underwrites	the	same	physical	distinctions	as	substantivalist	inertial	structure	but	in	a	way

compatible	with	a	relationalist	ontology.	To	complete	this	program,	the	relationalist	then	needs	to	reconstrue

standard	Newtonian	theory	in	terms	of	these	new	relationalist	quantities. 	Variants	of	this	strategy	are	the	topic	of

section	6.1.	On	the	second	strategy,	the	relationalist	seeks	an	alternative	theory	to	Newtonian	mechanics	that

employs	only	traditional	relationalist	quantities	but	is,	although	empirically	distinct	from	Newtonian	theory,

nonetheless	empirically	adequate.	Since	the	inertial	frames	are	empirically	determinable	(in	our	neighborhood	of

this	universe),	such	a	theory	still	needs	to	account	for	them,	at	least	as	a	feature	of	solutions	that	could	serve	as

models	of	the	actual	world.	Unlike	theories	that	result	from	the	first	strategy,	however,	it	will	not	construe	them	as

encoding	primitive	spatiotemporal	properties	and	relations.	The	most	promising	version	of	this	approach	is

reviewed	in	section	6.2.

These	courses	of	action	correspond	closely	to	the	first	two	of	three	options	identified	by	Nick	Huggett	(1999).	He

sees	Newton's	globes	thought	experiment	as	illustrating	that	no	theory	has	the	following	three	characteristics.	(i)	Its

spatiotemporal	ideology	is	restricted	to	Leibnizian	relations;	(ii)	its	dynamically	allowed	histories	of	such	relations

are	exactly	those	predicted	by	Newtonian	theory	and;	(iii)	inertial	effects	supervene	on	the	specified

spatiotemporal	relations	between	bodies.	Strategies	(1)	and	(2)	correspond	to	relinquishing	(i)	and	(ii)	respectively.

But,	Huggett	observes,	the	relationalist	might	try	to	retain	(i)	and	(ii)	by	dropping	requirement	(iii)	(Huggett	1999,

22–23).	This	amounts	to	a	third,	non-obvious	strategy:	do	not	change	the	theory	and	do	not	add	to	the	ideology

and	yet	somehow	be	a	relationalist.	This	type	of	“have-it-all”	relationalism	is	the	topic	of	section	6.3.

6.1	Enriched	Relationalism

6.1.1	Classical	Mechanics

Part	of	the	substantivalist's	response	to	the	kinematic	shift	argument	involved	replacing	persisting	space	with

spacetime.	If	relationalists	likewise	adopt	a	four-dimensional	perspective,	a	number	of	options	richer	than

Leibnizian	relationalism	become	available.	The	most	straightforward	is	Newtonian	relationalism	(Maudlin,	1993,

187).	Whereas	the	Leibnizian	relationalist	posits	spatial	relations	that	hold	only	between	simultaneous	material

events,	the	Newtonian	relationalist	simply	posits	that	all	material	point	events	stand	in	spatial	distance	relations.

If	we	impose	the	natural	constraints,	the	embedding	of	a	Newtonian	relational	history	into	neo-Newtonian	spacetime

is	fixed	up	to	Galilean	transformations. 	Whether	this	by	itself	entitles	the	relationalist	to	exploit	the	full	resources

of	Newtonian	dynamics	(as	Maudlin	thinks;	1993,	192–193)	need	not	be	resolved,	for	the	Newtonian	relationalist

can	also	interpret	the	dynamical	laws	directly	in	terms	of	relationalist	quantities.	For	example,	the	absolute	velocity

of	particle	i	at	time	t	is	just	the	limit,	as	δt	goes	to	zero,	of	the	directed	distance	between	the	instantaneous	stage	of

i	at	t	and	its	instantaneous	stage	at	t	+	δt	divided	by	δt.	The	Newtonian	relationalist	therefore	has	available	a

relational	understanding	of	the	very	quantities	that	feature	in	the	standard	form	of	Newtonian	laws	expressed	with

respect	to	an	inertial	frame.

Unfortunately,	Newtonian	relationalism,	like	the	Newtonian	substantivalism	from	which	its	ideology	is	plundered,	is

vulnerable	to	the	kinematic	shift	argument. 	Since	absolute	velocities	are	unobservable,	the	Newtonian

relationalist	is	committed	to	physically	real	distinctions	that	are	in	principle	empirically	inaccessible.	The	Newtonian
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relationalist	must	accept	that,	while	only	one	inertial	frame	discloses	the	true	Newtonian	relational	distances,	that

frame	is	forever	beyond	our	grasp.

The	spacetime	substantivalist	solves	the	kinematic	shift	problem	by	replacing	Newtonian	with	neo-Newtonian

spacetime.	There	is	an	obvious	relational	analogue	of	this	move:	since	neo-Newtonian	spacetime's	inertial

structure	is	equivalent	to	a	relation	of	collinearity	between	triples	of	spacetime	points,	the	relationalist	can	add	to

their	ideology	a	three-place	relation	of	collinearity	between	material	events.	The	neo-Newtonian	relationalist

claims	that,	for	three	nonsimultaneous	events	e ,	e ,	e ,	the	relation	col(e ,	e ,	e )	holds	just	if,	from	the

substantivalist	perspective,	e ,	e 	and	e 	lie	on	a	single	inertial	trajectory.

The	move	solves	the	kinematic	shift	problem,	but	only	at	the	cost	of	leaving	the	relationalist's	ideology	too

impoverished	to	fix	the	embedding	of	a	relational	history	into	neo-Newtonian	spacetime.	An	example	of	Maudlin's

nicely	illustrates	the	point:

[C]onsider	two	particles	in	a	neo-Newtonian	spacetime	that	are	uniformly	rotating	about	their	common

center	of	mass.	Until	the	first	rotation	is	complete,	no	triple	of	occupied	event	locations	are	collinear.	Even

after	any	number	of	rotations,	the	collinearity	relations	among	occupied	points	will	be	consistent	with	any

periodic	rotation,	uniform	or	nonuniform.	(Maudlin	1993,	194)

One	cannot,	therefore,	interpret	the	spacetime	coordinates	in	which	the	dynamical	laws	take	their	standard	form	as

just	those	coordinates	adapted	to	the	neo-Newtonian	relationalist's	ideology;	if	the	relationalist	ontology	is

sufficiently	sparse,	this	ideology	underdetermines	the	inertial	frames.

This	kinematical	underdetermination	is	not	necessarily	fatal	to	neo-Newtonian	relationalism.	It	means	that	the	neo-

Newtonian	relationalist	cannot	simply	lay	claim	to	standard	Galilean-invariant	dynamics.	On	the	strategy	we	are

considering,	however,	the	relationalist	succeeds	so	long	as	they	can	identify,	in	a	relationally	respectable	manner,

a	set	of	relational	DPMs	that	correspond	to	the	full	set	of	Newtonian	DPMs.	Can	the	neo-Newtonian	relationalist	find

dynamical	laws	expressed	directly	in	terms	of	neo-Newtonian	relations	that	achieve	this?

As	far	as	I	know,	no	one	has	seriously	attempted	to	construct	such	laws.	Even	so,	one	knows	that	any	such	laws

will	exhibit	a	particularly	unattractive	feature:	they	will	not	be	expressible	as	differential	equations	that	admit	an

initial	value	formulation. 	In	standard	Newtonian	theory	the	specification	of	the	instantaneous	positions	and

velocities	of	the	particles	with	respect	to	some	inertial	frame	suffices,	via	the	laws,	to	determine	the	particles'

relative	positions	and	motions	at	all	times.	Strictly	speaking,	what	needs	to	be	specified	at	an	instant	transcends	the

specification	of	the	intrinsic	state	of	that	instant:	in	specifying	velocities	one	is	specifying	quantities	that	are

ultimately	grounded	in	the	pattern	of	the	instantiation	of	collinearity	relations	between	nonsimultaneous	spacetime

points.	But	the	relevant	points	lie	in	the	infinitesimal	neighborhood	of	each	instant	and	so	can	be	used,	via	the

usual	limiting	procedure,	to	define	derivative	quantities	that	are	possessed	at	that	instant.	What	Maudlin's	example

illustrates	is	that	there	can	be	finite	stretches	of	time	in	a	neo-Newtonian	relational	world	such	that	no

nonsimultaneous	triples	of	material	events	occurring	during	that	time	instantiate	the	collinearity	relation.	Indeed,

this	is	a	generic	feature	of	neo-Newtonian	relational	worlds	of	point	particles.	The	collinearity	relation,	therefore,

cannot	be	used	to	define	derivative	quantities	that	can	supplement	the	instantaneous	data	definable	in	terms	of

Leibnizian	relations.

The	problem	faced	by	Newtonian	relationalism	suggested	neo-Newtonian	relationalism;	the	trouble	faced	by	neo-

Newtonian	relationalism	suggests	another,	rather	desperate,	relationalist	maneuver.	If	the	problem	is	the	lack	of

appropriate	instantaneous	quantities,	why	not	simply	co-opt	as	primitive	certain	derivative	instantaneous	quantities

available	to	the	substantivalist?	This,	in	essence,	is	how	Sklar	proposes	the	relationalist	treat	absolute

accelerations;	as	intrinsic,	primitive,	time-varying	properties	possessed	by	particles	at	every	instant	of	their

trajectories	(Sklar	1974,	230).	Huggett	usefully	dubs	them	Sklarations	(Huggett,	1999,	27).

It	is	not	obvious	how	the	relationalist	is	supposed	to	use	this	additional	ideology.	Skow	notes	that	simply

supplementing	Leibnizian	relational	initial	data	with	Sklarations	fails	to	fix	a	Newtonian	history.	Consider,	for

example,	the	following	pair	of	two-particle	solutions	to	Newton's	theory	of	gravitation	(Skow	2007,	783–784).	In	one

solution	the	two	bodies	follow	circular	orbits	about	their	common	center	of	mass.	In	the	second	solution	the

particles	travel	in	on	parabolic	paths	from	spatial	infinity	to	slingshot	past	each	other	before	heading	back	out	to

infinity.	Suppose	that	the	distance	of	closest	approach	of	the	particles	in	the	second	solution	matches	the	constant
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separation	of	the	particles	in	the	first.	Then,	at	the	moment	of	closest	approach,	the	second	solution	matches	the

first	in	terms	of	its	Leibnizian	initial	data	and	absolute	accelerations:	the	separation	between	the	particles	is	the

same,	its	rate	of	change	is	zero	(it	is	the	moment	of	closest	approach)	and,	because	accelerations	due	to	gravity

depend	only	on	the	masses	of	particles	and	the	relative	separation	between	them,	the	Sklarations	are	the	same

too.

In	fact,	this	problem	is	generic.	Precisely	because,	according	to	any	Newtonian	theory	satisfying	Newton's	third	law

of	motion,	forces	and	hence	absolute	accelerations	are	functions	only	of	the	relative	distances,	they	are

effectively	already	included	in	the	Leibnizian	initial	data.	Thus	every	set	of	Leibnizian	initial	data	“supplemented”

with	Sklarations	will	radically	underdetermine	the	future	evolution	of	any	system	of	interacting	Newtonian	particles.

As	we	saw	in	section	5.1,	this	evolution	depends	on	the	overall	angular	momentum	and	the	Leibnizian	initial	data,

with	or	without	Sklarations,	does	not	tell	us	what	this	is.

Skow's	assumption	about	the	appropriate	initial	data	for	a	theory	employing	Sklarations	could	be	questioned.	Why

should	the	Sklar	relationalist	not	include,	say,	the	first	time	derivatives	of	Sklarations? 	What	the	relationist	really

needs	to	provide	are	some	relatively	natural	equations	involving	Sklarations	that	fix	their	theory's	DPMs,	for	these

will	determine	what	the	appropriate	initial	data	are.

Sklar	himself	did	not	flesh	out	his	proposal.	Both	Friedman	(1983,	234)	and	Huggett	(1999,	27)	suggest	that	the

Sklar	relationist	can	simply	utilize	Newton's	second	law	as	expressed	in	arbitrary	rigid	Euclidean	coordinate

systems,	that	is,	coordinate	systems	adapted	to	the	Leibnizian	relational	ideology.	However,	it	is	not	at	all

straightforward	how	Sklarations	are	supposed	to	feature	in	such	a	formulation	of	Newton's	second	law. 	More

significantly,	Friedman's	and	Huggett's	attempt	to	reinterpret	the	standard	equations	in	terms	of	Sklarations	does

not	even	get	off	the	ground	unless	Sklarations	are	additionally	constrained	to	be	embeddable	in	spacetime	as	four-

accelerations.	But	why	should	the	instantiation	of	an	allegedly	primitive	monadic	property	be	constrained	in	this

way	as	a	matter	of	metaphysical	necessity?	Regarded	as	a	kinematical	constraint,	the	requirement	is	very	fishy

from	a	relationalist	perspective.	The	alternative	is	to	view	the	constraint	only	as	a	restriction	on	the	physically

possible,	that	is,	as	an	additional	“law	of	motion”	governing	the	evolution	of	Sklarations	(and	constraining

admissible	initial	data). 	Either	way,	a	strong	suspicion	must	remain	that,	in	this	guise,	Sklarations	do	not	constitute

a	genuine	alternative	to	accelerations	and	the	attendant	substantivalist	commitments	they	require.

The	relationalist	needs	ideology	weaker	than	Newtonian	relations	but	richer	than	the	neo-Newtonian's	collinearity

relation.	In	particular,	ideology	that	is	sufficiently	richly	instantiated	in	the	neighborhood	of	any	instant	is	needed	in

order	to	avoid	the	initial	value	problem	faced	by	the	neo-Newtonian	relationalist.	Sklarations	might	have	been

expected	to	provide	what	was	needed	but,	because	the	quantities	are	treated	as	primitive,	their	necessary

connections	with	the	relational	states	of	the	world	at	earlier	and	later	times	is	severed.	Putting	these	connections

back	in	by	hand	looks	like	substantivalism	by	another	name.

This	suggests	that	to	avoid	the	pitfalls	of	Sklarations	the	relationalist	should	look	for	ideology	that	is	instantiated	by

some	n-tuples	of	nonsimultaneous	events.	And	to	avoid	the	pitfalls	of	neo-Newtonian	relationalism,	this	ideology

should	be	instantiated	by	n-tuples	of	nonsimultaneous	events	in	the	infinitesimal	neighborhood	of	any	instant.

Further,	any	kinematic	constraints	on	the	possible	instantiation	of	this	ideology	should	be	comprehensible

independently	of	its	interpretation,	once	appropriately	embedded,	in	neo-Newtonian	spacetime.

It	is	certainly	possible	to	specify	relational	ideology	that	meets	these	require-ments 	but	at	this	point	we	should

take	a	step	back	and	recall	the	structure	of	the	original	dilemma	posed	by	Galilean	invariance.	A	dynamical

symmetry	group	that	was	larger	than	the	spacetime	symmetry	group	leads	to	in-principle	unobservable	quantities;

a	spacetime	symmetry	group	larger	than	the	dynamical	symmetry	group	requires	a	nonstandard	story	about	the

privileged	status	of	some	dynamically	preferred	frames	of	reference	(for	they	form	a	proper	subset	of	those

maximally	adapted	to	the	spacetime	quantities).	I	have	given	the	impression	that,	in	the	context	of	classical

mechanics,	the	structures	of	neo-Newtonian	spacetime	get	things	just	right,	but	in	fact	this	is	not	the	case:	the

dynamical	symmetry	group	of	Newtonian	physics	is	in	fact	larger	than	the	Galilei	group.

In	inertial	frame	coordinates,	the	field-theoretic	form	of	Newton's	law	of	gravitation	is	expressed	by	the	following

equations:	(Grav	Force)
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(Poisson)

where	ϕ	is	the	gravitational	potential,	G	is	Newton's	constant	and	p	is	the	mass	density.	In	the	coordinate-free

notation	of	Section	4,	these	equations	become:

and	the	theory	has	models	of	the	form	M,t ,	h ,	∇ ,ρ,ϕ).	The	coordinate-dependent	equations	are	invariant	under

Galilean	transformations,	which	are	also	dynamical	symmetries	in	the	model-theoretic	sense,	but	these

transformations	do	not	exhaust	the	symmetries.	Consider	the	Maxwell	group 	of	coordinate	transformations:

(Max)

Like	those	of	the	Leibniz	group,	they	involve	an	arbitrary,	time-dependent	translation	term,	 .	Like	those	of	the

Newton	and	Galilei	groups,	the	rotation	matrix	R	is	not	time-dependent.	They	therefore	correspond	to	a	spacetime

structure	that	embodies	an	absolute	standard	of	rotation	but	no	general	standard	of	acceleration.

These	transformations	will	also	preserve	the	coordinate-dependent	form	of	the	equations	of	Newtonian	gravitation,

and	map	solutions	to	solutions,	so	long	as	the	gravitational	potential	field	is	also	transformed	appropriately:

where	f(t)	is	an	arbitrary	time-dependent	function	that	is	constant	on	surfaces	of	simultaneity.	It	follows	that,	if	d	is	a

diffeomorphism	corresponding	to	such	a	transformation	and	M,t ,	h ,∇ ,ρ,ϕ)	is	a	model	of	the	spacetime

formulation	of	Newtonian	gravity	we	are	considering,	then	so	is	(M,t ,h ,∇ ,	d ,	ρϕ′).	This	means	that	the	neo-

Newtonian	substantivalist	is	in	precisely	the	same	kind	of	predicament	as	the	substantivalist	who	advocated

absolute	space:	their	metaphysics	grounds	physical	quantities	(in	this	case	absolute	accelerations,	rather	than

absolute	velocities)	that	it	is	impossible	in	principle	to	detect.	Here	is	another	way	to	see	the	problem.	Since,	for	the

type	of	diffeomorphism	under	consideration,	d 	t 	=	t 	and	d 	h 	=	h ,	if	 	is	a

model	of	the	theory,	then	so	is	 ,	where	 .	That	is,	the	laws	and

a	given	matter	distribution	ρ	fix	the	temporal	and	spatial	metric	structures,	but	they	leave	it	underdetermined

whether	the	combination	of	inertial	structure	and	gravitational	force	is	that	given	by	(∇ ,ϕ)	or	by	 	or	by	

.	And	if	we	take	the	postulated	inertial	structures	ontologically	seriously,	these	differences	correspond	to

qualitative	differences.	For	example,	in	one	model	a	given	particle	might	be	force-free	and	moving	inertially;	in	the

other	it	might	be	accelerated	under	a	gravitational	force.

A	natural	thought	at	this	point	is	that	 	and	 	are	merely	mathematically	distinct	representations	of	the	same

physical	possibility	and	that	ϕ	and	∇ 	are	gauge-dependent	quantities.	But	one	cannot	simply	declare	this	so	by

fiat.	One	should	also	provide	a	characterization	of	a	gauge-invariant	reality	in	terms	of	which	the	gauge	dependent

quantities	can	be	understood.	It	turns	out	that	the	substantivalist	can,	indeed,	do	this.	The	solution	is	Newton–

Cartan	theory,	a	formulation	of	Newtonian	gravitation	first	developed	by	Cartan	and	Friedrichs. 	In	this	theory,	just

as	in	GR,	gravitational	phenomena	are	not	the	effects	of	forces.	The	flat	inertial	connection	∇ 	is	replaced	by

dynamical	inertial	structure	 	(in	part)	governed	by	the	following	generalization	of	the	coordinate-free	form	of

Poisson's	equation:	(PoissonNC)

which	relates	the	Ricci	tensor	 	defined	by	 	to	the	mass	density.	Our	two	models	of	Newtonian	gravity	set	in

neo-Newtonian	spacetime,	 	and	 ,	correspond	to	a	unique	model	of	Newton-Cartan	theory	(up	to

isomorphism).	Any	given	(∇ ,ϕ)	pair	that	solves	nongeometrized	Newtonian	gravity	determines	a	unique	dynamical

connection	but	the	converse	is	not	true:	a	given	Newton-Cartan	connection	can	always	be	decomposed	into	a	flat

connection	and	a	gravitational	potential,	but	this	decomposition	is	nonunique	in	a	way	that	corresponds	exactly	to

the	underdetermination	of	gravitational	theory	set	in	neo-Newtonian	spacetime.
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While	the	problem	of	the	symmetries	of	Newtonian	gravity	and	its	substantivalist	solution	are	relatively	well-known,

the	fact	that	an	enriched-ideology	relationalist	strategy	can	also	be	fruitfully	pursued	is	far	less	appreciated.	When

canvassing	enriched	relationalist	options	earlier	in	the	section,	the	operative	assumption	was	that	Newtonian

dynamics	was	Galilean	invariant.	Now	that	the	larger	Maxwell	group	has	been	recognized	as	a	symmetry	group,	a

reevaluation	is	needed.	The	equations	of	any	N-body	Newtonian	system	whose	force	laws	obey	Newton's	third	law

can	be	re-expressed	as:	(1)

where	 	is	the	directed	relative	distance	between	particles	i	and	j	and	 	is	the	force	exerted	by

particle	i	on	particle	j	(Hood,	1970;	see	Earman,	1989,	81,	for	discussion).	For	the	time	derivatives	of	 	to	be	well

defined,	the	full	inertial	structure	of	neo-Newtonian	spacetime	is	not	required.	All	that	is	needed	is	a	standard	of

rotation,	that	is,	exactly	the	spatiotemporal	structure	invariant	under	the	Maxwell	group.	Since	we	are	assuming

Newton's	third	law	is	also	satisfied,	the	only	spatial	dependence	of	 	will	be	on	 .	It	follows	that	Equation	(1)	is

invariant	under	the	Maxwell	group.	The	only	ideology,	in	addition	to	Leibnizian-relational	quantities,	needed	to

ground	a	standard	of	rotation	is	the	transtemporal	comparison	of	the	directions	of	the	directed	distances	between

material	bodies. 	For	example,	the	Maxwellian	relationalist	can	postulate	a	primitive	four-place	relation	A	on

material	events	such	that,	when	(e ,e )	and	(e ,	e )	are	pairs	of	simultaneous	events,	A(e ,	e ,	e ,	e )	takes	a

value	between	0	and	2π,	to	be	interpreted	as	the	angle	between	 	and	 .

What	this	shows	is	that	the	full	set	of	Newtonian	solutions	for	a	finite	system	of	interacting	particles	can	be	given	a

bona	fide	relationalist	interpretation	(with	or	without	Newtonian	gravitation).	With	Earman	(1989,	81),	we	should	now

ask	whether	the	basic	idea	can	generalize	to	field	theory.	Maxwellian	relationalism	for	field	configurations	can

easily	be	implemented	using	Barbour's	best-matching	machinery,	discussed	in	section	6.2,	so	field	theory	per	se	is

not	an	obstacle. 	Barbour's	machinery,	however,	is	only	applicable	to	spatially	finite	systems	(or	systems	with

appropriate	spatial	boundary	conditions).	In	such	“island	universe”	scenarios,	the	Maxwellian	invariance	of

dynamics	does	not	trouble	the	neo-Newtonian	sub-stantivalist,	for	a	preferred	inertial	connection	can	be	identified

via	the	condition	that	the	total	three-momentum	of	the	whole	system	is	constant.	Underdetermination	only

genuinely	arises	for	the	neo-Newtonian	substantivalist	in	Newtonian	cosmology	when	one	considers,	for	example,

infinite	homogeneous	matter	distributions.	As	far	as	I	know,	no	relationalist	theory	for	such	situations	has	been

devised.	The	Maxwellian	relationalist	seems	to	be	in	the	unfortunate	position	of	having	a	solution	applicable	to

those	cases	that	are	not	genuine	problems	and	no	solution	for	the	truly	troubling	cases.

In	the	context	of	field	theory,	there	is	one	relatively	easy	way	out	for	the	relationalist. 	Recall	that	the	troubles

faced	by	the	neo-Newtonian	relationalist	arose	because,	in	a	world	of	point	particles,	the	three-place	collinearity

relation	typically	will	not	be	instantiated	by	material	events	in	the	infinitesimal	neighborhood	of	a	given	material

point.	If	the	relationalist	embraces	a	plenum,	this	problem	goes	away.	In	the	context	of	Newtonian	gravity,	the

relationalist	can	combine	a	material	plenum	with	the	insight	of	Newton–Cartan	theory	and	postulate	a	primitive

three-place	collinearity	relation	on	material	events	that	holds	of	triples	of	material	events	in	a	physically	possible

world	just	if,	in	the	corresponding	substantivalist	model,	they	lie	on	a	geodesic	of	the	substantivalist's	dynamical

affine	connection.	Such	a	Newton–Cartan	relationalist	still	has	work	to	do.	The	characterization	of	the	position	just

given	made	crucial	reference	to	substantivalist	models.	Can	the	standard	mathematical	formalism	of	Newton–

Cartan	theory	be	independently	understood	in	terms	of	such	relational	ideology?	What	are	the	material	fields	and

why	must	they	constitute	a	plenum?	Similar	questions	recur	in	the	context	of	relativistic	physics,	where	fields	are

no	longer	optional	extras.	It	is	to	relativity	we	now	turn.

6.1.2	Relativity

In	the	context	of	classical	mechanics,	the	relationalist	who	pursues	the	enriched	ideology	strategy	is	forced	to	be

creative.	Simply	co-opting	substantivalist	ideology	(by	restricting	the	domain	of	possible	instantiation	to	the	material

events)	fails,	primarily	because	of	the	relative	sparseness	of	the	relationalist's	ontology	in	comparison	to	the

substantivalist's	plenum	of	spacetime	points.	In	the	context	of	SR,	however,	the	flat-footed	move	works.	Restricting

the	substantivalist's	ideology—Minkowski	spacetime	distances—to	material	events	fixes	the	embedding	of	a

relational	history	into	Minkowski	spacetime	(up	toisomorphism).	Further,	Minkowski	distances	conceived	of	as

relationalist	ideology	can	be	used	to	frame	dynamical	principles	directly	in	relationalist	terms.

r   :   =  ( − )⃗	ij x⃗	i x⃗	j F ⃗	ij
r⃗	ij

F ⃗	ij r⃗	ij
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Central	to	relativistic	mechanics	(even	if	not	to	relativistic	physics	in	general)	is	the	idea	that	unaccelerated	motion

is	default	behavior	and	that	accelerations	are	due	to	forces.	In	order	to	lay	claim	to	this	picture,	the	Minkowski

relationalist	needs	accounts	of	both	accelerations	and	forces.	In	classical	mechanics,	forces	were	unproblematic

for	the	relationalist	(because	they	are	functions	of	Leibnizian	relational	quantities);	it	was	acceleration	that	proved

troublesome.	In	relativity,	the	difficulties	are	reversed.

Consider	the	standard,	coordinate-dependent	forms	of	relativistic	laws.	The	privileged	class	of	coordinate	systems

relative	to	which	these	equations	hold	are	simply	those	adapted	to	the	Minkowski	distance	relations	between

material	events	(cf.	section	4.3).	Dynamically	significant	absolute	acceleration,	therefore,	is	simply	acceleration

relative	to	the	coordinate	systems	adapted	to	the	relationalist's	spatiotemporal	distances.	In	fact,	the	Minkowski

relationalist	can	do	better	and	give	an	intrinsic	characterization	of	acceleration.	Recall	that,	in	Minkowski

spacetime,	the	inertial	trajectories	are	not	structure	over	and	above	the	spatiotemporal	distances;	the	straight	line

in	spacetime	between	two	temporally	separated	events	is	the	path	of	maximal	temporal	distance.	This	means	that

a	particle	will	be	unaccelerated	just	if,	for	any	temporally	ordered	points	p,	q,	r	of	its	trajectory,	I(p,	r)	=	I(p,q)	+	I(q,

r)	and,	conversely,	if	I(p,	r)		I(p,	q)	+	I(q,	r),	we	know	that	the	particle	is	accelerated	between	the	points	p	and	r

(Earman	1989,	129).	The	four-acceleration	of	a	trajectory	at	a	point	just	is	the	intrinsic	curvature	of	the	trajectory

at	that	point	and	so,	as	for	curves	in	Euclidean	space,	one	can	define	the	acceleration	of	the	particle	(both	its

magnitude	and	its	direction)	in	terms	of	such	distances.

The	Minkowski	relationalist	treatment	of	forces	is	less	straightforward.	The	coordinate-free	statement	of	the	second

law,	F 	=	mξ ∇	 ξ ,	is	formally	the	same	in	classical	mechanics	and	SR	and,	in	both	cases,	the	four-force,	F ,	must

be	a	spacelike	vector.	This	formal	identity,	however,	hides	a	crucial	difference.	In	the	neo-Newtonian	case,

spacelike	vectors	lie	in	(that	is,	are	tangent	to)	surfaces	of	simultaneity.	As	a	result	neo-Newtonian	four-forces	can

be	defined	in	terms	of	Leibnizian	spatial	distances,	which	are	intrinsic	to	such	surfaces.	In	the	Minkowski	case,	if

one	considers	an	arbitrary	spacelike	hyperplane	and	the	accelerations	of	a	number	of	interacting	particles	at	the

points	where	their	trajectories	intersect	this	plane,	then,	in	general,	none	of	these	accelerations	will	be	tangent	to

the	hyperplane.	It	is	no	accident	that	in	relativistic	theories	F 	is	standardly	given	as	a	local	function	of	fields.

Some	think	that	the	need	to	invoke	fields	is	a	problem	for	the	relationalist.	On	one	(natural)	interpretation,	fields	are

simply	assignments	of	properties	or	states	to	the	points	of	spacetime	(Field,	1985,	40).	Such	a	view	does	indeed

presuppose	substantivalism,	but	there	is	an	alternative	available,	and	it	is	one	that	arguably	fits	more	naturally	the

language	employed	by	physicists.	On	this	other	view,	the	field	itself	is	reified	as	a	vast,	spatiotemporally	extended

object	in	its	own	right. 	Adopting	this	second	conception	of	fields	does	not,	by	itself,	amount	to	relationalism;

many	substantivalists	will	agree	that	at	least	some	fields	are	extended	objects	in	spacetime	(rather	than	properties

of	spacetime). 	Taking	a	“relational”	view	of	a	field	also	does	not	by	itself	commit	one	to	the	view	that	such	a	field

could	exist	in	the	absence	of	spacetime,	or,	without	spacetime,	have	the	very	properties	one's	theory

characterizes	it	as	having	(cf.	footnote	38).	The	devil	will	be	in	the	details.

Consider	the	simple	case	of	a	field,	ϕ,	with	just	one	degree	of	freedom	per	spacetime	point.	The	relationalist	wishes

to	view	ϕ	as	an	extended,	physical	entity	rather	than	as	an	assignment	of	properties	to	spacetime.	Since

spacetime	itself	is	supposed	not	to	exist,	this	extended	object	cannot	be	characterized	in	terms	of	the

spatiotemporal	locations	of	the	various	field	intensities. 	Instead,	the	relationalist	should	view	the	field	as

characterized	by	the	infinite	number	of	facts	about	the	Minkowski	distances	between	its	pointlike	parts;	together

these	fully	characterize	the	pattern	of	field	intensities.	These	distances	cannot	(in	practice)	be	specified	directly.

But	there	is	nothing	relationally	improper	about	describing	the	field	relative	to	a	Lorentzian	coordinate	system	so

long	as	such	a	chart	is	thought	of	as	a	map	directly	from	the	field	itself	into	ℝ 	that	encodes	the	Minkowski

distances.

Consider,	now,	the	substantivalist's	presentation	of	a	theory	of	such	a	field.	The	KPMs	will	be	of	the	form	M,η ,ϕ

and	the	DPMs	will	be	picked	out	via	an	equation	relating	ϕ	and	η .	Suppose	the	relationalist's	only	way	to	identify

dynamically	possible	field	configurations	was	to	use	this	machinery.	Would	they	then	be	in	the	embarrassing

position	of	relying	on	a	substantivalist	“fairy	tale”	without	a	proper	explanation	of	why	it	works	(Earman	1989,

172)?	It	does	not	seem	so.	That	ϕ	is	the	only	field	in	the	model	reified	by	the	relationalist	does	not	mean	that	η 	is

a	fiction.	The	substantivalist	suggests	that	one	understands	fields	as	assigning	various	properties	and	relations.	In

this	case,	the	relationalist	agrees.	They	just	disagree	about	the	subject	of	predication:	for	the	substantivalist	it	is

spacetime	itself,	for	the	relationalist	it	is	the	one	substantival	field	of	the	model,	ϕ.	Equations	relating	ϕ	to	the	other
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fields	then	have	a	straightforward	relationalist	reading	as	claims	about	the	allowed	(geometrical)	properties	of	ϕ

itself.

So	far	I	have	only	considered	scalar	fields.	More	complex	fields	can	pose	additional	problems	for	the	relationalist.

Standard	vector	and	tensor	fields,	for	example,	are	not	obviously	conceptually	independent	of	the	structure	of	the

manifold	on	which	they	are	defined.	Their	degrees	of	freedom	at	a	point	are	normally	understood	as	taking	values

in	the	tangent	space	at	that	point	(or	in	more	complex	spaces	constructed	in	terms	of	it),	which	might	appear	to

presuppose	the	differentiable	structure	of	the	manifold	on	which	the	fields	are	defined.	In	fact,	even	characterizing

scalar	fields	normally	involves	this	manifold	structure,	for	one	is	normally	interested	in	smooth	fields.	In	this	case,

however,	it	is	clear	how	one	can	do	away	with	reference	to	an	independent	manifold.	What	one	requires	(roughly

speaking)	is	that	the	field's	values	vary	smoothly	as	a	function	of	the	distances	between	its	parts:	fields	themselves

can	have	the	structure	of	a	differentiable	manifold	in	virtue	of	these	Minkowski	distances.	Vector	and	tensor	fields,

conceived	of	as	substantival	entities	in	their	own	right,	will	likewise	have	a	manifold	structure,	but	there	is

something	suspiciously	circular	about	taking	the	spaces	in	terms	of	which	a	field's	degrees	of	freedom	are	defined

to	be	themselves	defined	in	terms	of	that	field's	own	spatiotemporal	extension.	An	alternative	is	to	try	to	understand

the	degrees	of	freedom	of	some	material	fields	in	terms	of	their	interactions	with	other	fields	whose	relational

credentials	are	not	in	doubt.

The	upshot	is	that	the	combination	of	Minkowski	relationalism	and	a	relational	interpretation	of	fields	is	at	least	a

going	concern	as	an	interpretation	of	SR.	The	final	task	for	this	section	is	to	consider	whether	the	picture	can	be

adapted	to	GR.	The	strong	similarities	between	SR	and	GR	stressed	in	section	4.3	might	lead	the	relationalist	to	be

optimistic.	In	fact,	the	move	from	flat	to	curved	geometric	structure,	and	the	manner	in	which	it	features	in	GR,

presents	a	formidable	obstacle.	Recall	that	the	Minkowski	relationalist	does	not	reify	the	metric	field	η .	Instead	this

field	is	regarded	as	cataloging	primitive	spatiotemporal	distances	that	hold	between	the	parts	of	bona	fide	material

fields.	At	the	level	of	kinematics,	the	generalization	of	this	to	GR	is	straightforward.	Minkowski	distances	are	simply

replaced	by	those	of	a	curved	semi-Riemannian	geometry.	A	crucial	consequence	of	this	move	is	that	the

distances	instantiated	between	material	events	need	no	longer	fix	(independently	of	the	dynamical	laws)	all	the

facts	about	the	geometry	of	spacetime.	In	particular,	consider	an	“island	universe”	involving	a	matter	distribution	of

finite	spatial	extent.	The	spatiotemporal	distances	instantiated	in	the	history	of	the	material	world	will	not	fix	the

geometry	of	the	empty	spacetime	regions	beyond	it.

This	is	not	a	problem	of	principle.	After	all,	the	relationalist	will	claim	that	there	is	literally	nothing	beyond	the

boundary	of	the	material	universe	to	instantiate	one	geometry	rather	than	another.	There	is	also	no	difficulty,	in

principle,	with	this	type	of	relationalist	regarding	geometry	as	dynamical	and	as	influenced	by	matter.	For	example,

the	laws	of	a	relational	theory	could	lay	down	how	the	network	of	spatiotemporal	relations	instantiated	in	some

temporally	thick	slice	through	the	material	world	determine	(together	with	other	dynamically	relevant	properties	of

matter)	the	pattern	of	spatiotemporal	relations	instantiated	in	earlier	and	later	regions	of	the	material	universe.	The

particular	difficulty	GR	poses	for	the	envisaged	relationalist	involves	the	combination	of	these	two	factors.	In	GR	the

geometrical	properties	of	the	supposed	nonentity	beyond	the	material	universe	do	make	a	dynamical	difference.

For	example,	the	entire	history	of	spatiotemporal	distances	instantiated	in	our	island	universe	up	to	some	time	will

not	record	whether	a	“gravitational	wave”	(that	is,	a	propagating	ripple	in	the	fabric	of	spacetime	itself)	is

approaching	from	outside	the	system	and	will	thus	underdetermine	the	system's	future	evolution	(Earman,	1989,

130;	Maudlin,	1993,	199).

In	response,	the	relationalist	could	rule	out	by	fiat	models	with	empty	regions	of	spacetime.	To	do	so,	however,	is

not	only	to	give	up	on	the	goal	of	empirical	equivalence	with	standard	theory;	it	is	to	impose	a	restriction	that	is

arbitrary	by	the	lights	of	the	relationalist's	own	theoretical	apparatus.	The	relationalist	does	not	have	problems	with

empty	regions	per	se.	What	they	have	problems	with	is	those	regions	having	a	determinate	geometry	that	need	not

supervene	on	the	properties	of	and	relations	between	matter-filled	regions	and	with	the	geometry	of	empty	regions

playing	the	dynamical	role	that	GR	assigns	it.	The	better	“relationalist”	move	is	to	treat	the	metric	tensor	as	a

“material”	field	in	its	own	right,	but	then,	since	all	parties	affirm	the	existence	of	a	substantival	entity	whose

properties	are	characterized	by	g ,	it	is	not	clear	what	substantive	issue	remains.

6.2	Barbour's	Machian	Relationalism

There	are	two	straightforward	relationalist	responses	to	the	mismatch	between	relationalist	spacetime	symmetries
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and	the	dynamical	symmetries	of	Newtonian	mechanics.	The	previous	section	covered	one	of	these:	enrich

relationalist	ideology	in	order	to	bring	spacetime	symmetries	into	line.	This	section	investigates	the	other:	change

the	dynamics	in	order	to	bring	the	dynamical	symmetries	into	line.	The	most	thorough	and	successful	development

of	this	strategy	is	that	of	Julian	Barbour	and	collaborators.	The	label	Machian	relationalism	is	appropriate	for	three

reasons.	First,	it	accords	with	Barbour's	own	terminology.	He	sees	the	requirement	that	a	theory	be	maximally

predictive	with	respect	to	relational	initial	data	(in	the	sense	discussed	in	Section	5.1)	as	a	precise	version	of

Mach's	Principle	and	he	takes	his	approach	to	dynamics	to	reveal	that	GR	is	in	fact	a	Machian	theory.	Second,	in

the	context	of	pre-relativistic	particle	dynamics,	the	spacetime	quantities	Barbour	takes	as	fundamental	are	even

sparser	than	those	of	the	Leibnizian	relationalist:	the	Euclidean	nature	of	the	instantaneous	relative	distances

between	particles	is	accepted	as	primitive,	but	the	temporal	intervals	between	successive	instantaneous

configurations	are	not.	In	his	critique	of	Newton,	Mach	(1901,	222–	226)	claimed	that	the	question	of	whether	a

motion	is	in	itself	uniform	is	senseless,	on	the	grounds	that	a	motion	can	(allegedly)	only	be	judged	uniform	relative

to	some	other	motion	or	material	process. 	Finally,	Barbour's	particle	theories	provide	a	concrete	implementation

of	Mach's	idea	that	the	inertial	properties	of	a	body	might	be	understood	in	terms	of	that	body's	relations	to	the	rest

of	the	bodies	in	the	universe,	rather	than	with	respect	to	substantival	spacetime	structure	(Mach	1901,	231–235).

Up	to	this	point	I	have	presented	the	DPMs	of	a	theory	as	singled	out	in	terms	of	differential	equations	that	must	be

everywhere	satisfied	within	a	model	by	its	constituent	fields	and	particle	trajectories.	In	some	formulations	of

dynamics,	the	DPMs	are	singled	out	in	terms	of	their	relations	to	other	KPMs.	Machian	relational	theories	are	most

illuminatingly	developed	in	this	type	of	framework.	Consider,	in	particular,	the	Lagrangian	formulation	of	Newtonian

mechanics.	Central	to	this	framework	is	a	system's	configuration	space,	Q,	the	points	of	which	represent	possible

instantaneous	states	of	the	system.	According	to	the	substantivalist,	such	a	state	for	an	N-particle	system

corresponds	to	a	set	of	positions	for	each	particle	relative	to	some	inertial	frame.	Q	is	then	3N-dimensional.	As	the

system	evolves,	the	point	in	Q	representing	the	system's	instantaneous	state	traces	out	a	continuous	curve.	In

Lagrangian	mechanics,	KPMs	(that	is,	metaphysically	possible	histories)	are	(monotonically	rising)	curves	in	the

product	space	formed	from	Q	and	a	one-dimensional	space,	T,	representing	time.	The	DPMs	are	those	curves	that

extremize	a	particular	functional	of	such	histories	(the	action).

This	framework	can	be	adapted	to	Leibnizian	and	Machian	relationalism	in	a	straightforward	way.	First,	since	the

relationalist's	possible	instantaneous	states	correspond	to	sets	of	inter-particle	distances	(rather	than	positions

defined	with	respect	to	spacetime	structure),	the	relationalist	replaces	Q	with	the	relative	configuration	space

Q .	For	N	particles,	Q 	is	(3N	−	6)-dimensional.	In	fact,	the	relationalist	might	be	tempted	to	go	further.

Formulating	dynamics	in	terms	of	Q 	involves	treating	transtemporal	comparisons	of	length	as	primitive.	Distinct

curves	in	Q 	can	correspond	to	exactly	similar	sequences	of	Euclidean	configurations	if	some	of	the

corresponding	configurations	represented	in	the	two	curves	differ	in	overall	size.	This	is	not	true	in	shape	space

(Q ),	a	configuration	space	of	one	less	dimension	that	treats	only	the	ratios	of	distances	within	the	same

configuration	as	physically	meaningful.

Second,	standard	theory	distinguishes	histories	that	correspond	to	a	single	path	in	configuration	space	being

traced	out	at	different	rates	with	respect	to	the	primitive	temporal	metric.	The	Machian	relationalist,	in	contrast,	will

view	each	path	in	configuration	space	as	corresponding	to	exactly	one	possible	history.	They	therefore	dispense

with	T,	the	space	encoding	primitive	temporal	separations,	in	favor	of	a	“timeless”	formulation	of	dynamics	in	terms

of	configuration	space	alone.	One	way	to	do	this	is	to	equip	the	space	with	a	metric.	The	DPMs	are	then	picked	out

via	a	geodesic	principle:	physically	possible	histories	correspond	to	paths	in	configuration	space	of	extremal

length	relative	to	the	metric.

The	implementation	of	this	second	step	can	be	achieved	via	a	reinterpretation	of	Jacobi's	Principle,	part	of	the

standard	toolkit	of	Newtonian	dynamics. 	The	metric	structure	of	three-dimensional	physical	space	can	be	used	to

define	a	metric	on	Q	known	as	the	kinetic	metric:	 .	Its	geodesics	correspond	to	histories

of	particles	moving	inertially.	Dynamics	is	incorporated	by	multiplying	 	by	a	conformal	factor	

.	The	geodesic	principle	is	then:	(2)

(3)
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Its	solutions	correspond	to	Newtonian	histories	of	a	system	of	N	particles	with	a	total	energy	E	interacting

according	to	the	potential	V.	T 	looks	like	the	standard	Newtonian	kinetic	energy	but	note	that	λ	represents	an

arbitrary	parameterization	of	paths	in	Q:	the	path	length	I	is	invariant	under	reparameterizations:	λ	↦	λ′	=	f(λ),

where	df/dλ		0	but	f	is	otherwise	arbitrary.	The	equations	of	motion	corresponding	to	(2)	are:	(4)

These	simplify	dramatically,	reducing	to	the	standard	form	of	Newton's	second	law,	if	the	freedom	in	the	choice	of	λ

is	exploited	to	set	F 	=	T ,	that	is,	E	=	T 	+	V.	The	substantivalist	sees	imposing	this	requirement	as	a	way	to

determine	the	rate	at	which	the	system	traces	out	its	path	in	Q	relative	to	a	primitive	temporal	metric.	The	Machian

sees	the	equation	as	defining	an	emergent	temporal	metric	in	terms	of	the	temporal	parameter	that	simplifies	the

dynamics	of	the	system	as	a	whole	(Barbour	1994,	2008).

Jacobi's	principle	involves	a	metric	on	Q.	To	construct	a	relational	theory,	we	need	a	metric	on	Q .	One	can	be

obtained	by	replacing	T 	(a	function	of	velocities	defined	with	respect	to	inertial	structure)	with	a	function	of	the

relative	velocities	ṙ .	Theories	of	this	kind	were	independently	discovered	on	a	number	of	occasions	during	the

twentieth	century.	They	predict	mass	anisotropy	effects	(how	easy	it	is	to	accelerate	a	body	becomes	direction

dependent)	that	are	ruled	out	by	experiment. 	It	is	also	not	clear	how	they	might	generalize	to	field	theory,	where

analogues	of	the	transtemporal	particle	identities	used	in	the	definition	of	the	ṙ s	are	absent.	Barbour	and	Bertotti

(1982)	found	a	way	to	surmount	both	problems.

Figure	15.1 	Best	matching.	The	curves	C 	and	C 	in	Q	correspond	to	the	same	sequence	of	relative
configurations.	q 	is	the	point	on	the	orbit	containing	q 	that	minimizes	the	distance	along	the	curve	from
p .	r 	is	similarly	related	to	q .	C 	is	the	best-matched	curve;	the	length	along	it	gives	the	length	along	C,
the	corresponding	curve	in	Q .

The	(ambitious)	relationalist	thinks	of	instantaneous	configurations	as	completely	characterized	by	the	ratios	of

inter-particle	separations.	A	three-dimensional	coordinate	system	encodes	such	data	just	if	

	for	all	particles	i,j,	m,	n.	If	one	coordinate	system	satisfies	this	constraint,	so	will

any	other	related	to	it	by	a	rigid	rotation,	translation,	or	a	dilation	(an	overall	change	of	scale).	The	relationalist

therefore	regards	the	points	of	Q,	not	as	specifications	of	positions	in	some	inertial	frame,	but	as	natural

representations	of	relational	configurations.	The	representation	involves	some	redundancy:	points	of	Q	connected

by	an	element	of	the	similarity	group	(the	group	of	rigid	translations,	rotations,	and	dilations)	correspond	to	the

same	relative	configuration.	Q	is	partitioned	by	the	group	into	sets	of	such	points	(the	group	orbits).	Consider,	now,

two	paths	in	Q	that	correspond	to	the	same	sequence	of	relative	configurations.	A	metric	on	Q	will,	in	general,

assign	them	different	lengths.	However,	starting	from	any	given	point	p	in	Q,	one	can	use	the	action	of	the	similarity

group	on	Q	to	define	a	unique	length,	by	shifting	the	points	of	any	curve	through	p	along	the	corresponding	group

orbits	so	as	to	extremize	the	length	assigned	to	the	curve.	This	is	the	process	Barbour	and	Bertotti	called	best
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matching. 	It	is	depicted	in	Figure	15.1.

If	best	matching	is	to	define	a	metric	on	Q 	(the	quotient	of	Q	by	the	similarity	group),	the	metric	on	Q	must	have

the	right	properties.	In	particular,	suppose	p 	and	p 	are	points	on	the	same	group	orbit	that	are	widely	separated

in	Q.	Consider	two	paths	through	p 	and	p ,	respectively,	that	correspond	to	the	same	sequence	of	relative

configurations.	Suppose	one	now	best	matches	these	paths,	keeping	the	points	p 	and	p 	fixed.	Best	matching	only

leads	to	a	well-defined	metric	on	Q 	if	the	same	result	is	obtained	in	each	case.	The	metric	

satisfies	this	requirement	provided	F 	meets	certain	conditions.

If	one	first	considers	best	matching	just	with	respect	to	the	Euclidean	group	(translations	and	rotations),	V	must	be

a	function	only	of	the	relative	distances,	ṙ .	This	requirement	is	satisfied	by	familiar	Newtonian	potentials.	The

corresponding	best-matched	theories,	which	take	DPMs	to	be	geodesics	of	the	metric	induced	on	Q ,	have	as

solutions	sequences	of	relative	configurations	that	correspond	to	the	standard	Newtonian	solutions	with	zero

overall	angular	momentum	(relative	to	the	center-of-mass	frame).	The	fact	that	a	subset	of	standard	Newtonian

solutions	is	recoverable	by	this	method	highlights	the	fact	that	the	theories	provide	a	relational	interpretation	of

inertial	structure:	best	matching	establishes	a	nonprimitive	“equilocality	relation,”	corresponding	to	the	space	of

the	inertial	frame	in	which	the	system's	total	linear	and	angular	momenta	vanish.	Note,	also,	that	the	recovery	of

only	a	proper	subset	of	the	solutions	of	standard	dynamics	is	arguably	a	strength	of	the	best-matching	theory

(assuming	solutions	capable	of	modeling	the	actual	world	fall	within	this	set).	This	is	because	the	theory	predicts

and	explains	a	feature	of	the	world	(the	vanishing	of	its	overall	angular	momentum)	that	is	a	contingent	fact	on	the

orthodox	Newtonian	view	(Pooley	and	Brown,	2002;	Pooley,	2004).

Best	matching	with	respect	to	dilations	imposes	a	more	severe	requirement:	F 	must	be	a	homogeneous	function	of

the	 	of	degree	−2,	in	order	to	compensate	for	the	scaling	behavior	of	 .	Standard	Newtonian	potentials	do

not	have	this	property,	but	they	can	nevertheless	be	incorporated	as	effective	potentials	in	scale-invariant	theories

if	a	weak,	epoch-dependent	universal	force	is	also	included	(Barbour,	2003,	1556–7).

Barbour's	framework	for	nonrelativistic	particle	dynamics,	therefore,	constitutes	a	genuinely	relationalist	(and

potentially	fruitful)	alternative	to	Newtonian	physics	as	standardly	conceived.	What	one	is	really	interested	in,

though,	is	how	the	program	transfers	to	relativistic	physics.	The	best	matching	idea	can	be	applied	in	the	context

of	SR	(Barbour	and	Bertotti	1982,	302–303),	but	I	move	straight	to	a	consideration	of	GR,	where	the	results	are	truly

surprising.	The	first	step	is	to	consider	how	one	might	generalize	the	framework	to	configurations	manifesting	a

variably	curved	Riemannian	geometry.	One	confronts	the	issue,	raised	in	section	6.1.2,	of	how	to	deal	with	the

possibility	that	the	geometry	of	empty	space	might	be	both	nontrivial	and	nonreducible	to	relations	between

material	bodies.	Barbour	bites	the	bullet.	In	the	context	of	GR,	the	Machian	“relationalist”	takes	the	geometry	of

substantival	(instantaneous)	space	as	primitive.

Assume	that	instantaneous	space	has	the	determinate	topology	of	some	closed	3-manifold	without	boundary,	Σ.

The	obvious	analogue	of	Q	is	then	Riem(Σ),	the	space	of	Riemannian	3-metrics	on	Σ.	An	analogue	of	Q 	is

superspace:	the	space	of	3-geometries.	Two	points	(Σ,h )	and	 	of	Riem(Σ)	correspond	to	the	same	3-

geometry	just	if	they	are	isometric,	that	is,	just	if,	for	some	diffeomorphism	d	of	 .	Superspace	is

therefore	Riem(σ)/Diff(σ),	the	quotient	of	Riem(σ)	by	the	group	of	diffeomorphisms	of	σ.

Proceeding	as	before,	one	seeks	an	action	principle	on	superspace	defined,	via	best	matching,	in	terms	of	a	metric

on	Riem(σ).	In	this	case,	best	matching	is	implemented	by	diffeomorphisms	of	σ.	Seeking	as	direct	a	parallel	as

possible	with	Jacobi's	Principle	(2)	leads	to	a	Riem(σ)	geodesic	principle	of	the	form:	(5)

The	first	integral	inside	the	square	root	is	the	analogue	of	the	conformal	factor	F 	in	(2); 	the	second	is	the

analogue	of	the	(parameterized)	kinetic	energy.	In	this	case,	 ,	where	 	are	the

metric	velocities	(with	respect	to	the	arbitrary	path	parameter	λ)	and	the	general	form	of	the	supermetric	 	is

h h 	+	Ah h ,	where	A	is	an	arbitrary	constant.	Best	matching	with	respect	to	3-diffeomorphisms	is	achieved	by

replacing	T	with	 	and	extremizing	with	respect	to	variations	in	

79

SS

1 2

1 2

1 2

SS d   =   ds2 FE s2
kin

E

ij

RCS

80

E

sx⃗	i ds2
kin

RCS

ab (∑,   )h′ab
∑,     =  d *h′ab hab

E
81

T =    Gabcd
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.

Theories	of	this	kind	make	good	sense	but	they	do	not	provide	direct	analogues	of	GR. 	For	these,	one	needs	to

consider	a	Riem(σ)	action	principle	that	involves	a	subtle	but	radical	difference.	It	has	the	form:	(6)

with	W	and	T	defined	as	before.	The	difference	between	Principles	(5)	and	(6)	is	that,	in	the	former,	integration	over

3-space	occurs	within	a	global	square	root,	but	in	the	latter	the	square	root	is	taken	at	each	point	of	space	and

occurs	within	the	spatial	integration. 	Whereas	the	reparameterization	invariance	of	(5)	gives	rise	to	a	single

constraint,	the	position	of	the	square	root	in	(6)	leads	to	an	infinity	of	constraints,	one	associated	with	each	point	of

space.	These	must	be	propagated	by	the	equations	of	motion	if	the	theory	is	to	be	consistent.	This	happens	only	if

A	=	−	1	in	 	and	W	=	Λ	+	αR,	where	R	is	the	scalar	curvature	tensor	of	h ,	and	α	is	0	or	±	1.	The	choice	of	α

=	1	and	the	imposition	of	best	matching	with	respect	to	3-diffeomorphisms	transforms	(6)	into	the	action	principle

for	GR	found	by	Baier-lein,	Sharp,	and	Wheeler	(1962).	(Or,	strictly	speaking,	a	time-reparameterization	analogue

of	the	BSW	action,	because	the	BSW	action	involves	Lie	derivatives	defined	with	respect	to	the	shift-vector	field,

rather	than	with	respect	to	the	velocity	of	3-vector	field.	Thanks	to	Edward	Anderson	here.)	This	is	dynamically

equivalent	to	the	standard	spacetime	action	restricted	to	globally	hyperbolic	spacetimes.	In	other	words,	without

any	spacetime	presuppositions	and	starting	with	a	family	of	“timeless”	action	principles	for	the	evolution	of	3-

geometries	of	the	general	form	(6),	the	requirement	of	mathematical	consistency	alone	(almost)	uniquely	singles

out	an	action	principle	corresponding	to	GR.

The	BSW	action	principle	for	GR,	which	formally	singles	out	curves	in	Riem(σ),	is	degenerate:	a	point	and	a

direction	in	Riem(σ)	fail	to	pick	out	a	unique	solution.	By	itself,	this	is	not	a	problem	for	the	Machian	relationalist.	An

analogous	property	holds	of	the	best-matched	action	principles	for	particle	dynamics:	given	a	point	and	direction

in	Q,	a	continuous	infinity	of	curves	solve	the	equations.	The	reason	this	is	not	a	drawback	in	the	particle	case	is

that	each	of	these	curves	corresponds	to	the	same	sequence	of	relative	configurations:	they	project	down	to	a

single	curve	in	the	quotient	of	Q	by	the	relevant	group.	The	same	is	not	true	for	the	BSW	action.	After	projecting

down	from	Riem(σ),	one	still	has	a	continuum	of	curves	for	each	point	and	direction	in	superspace.	Since	these

curves	correspond	to	non-isometric	sequences	of	3-geometries,	and	since	such	3-geometries	are	the	Machian's

fundamental	ontology,	the	Machian	is	compelled	to	regard	these	curves	as	corresponding	to	physically	distinct

histories.	The	theory	is	therefore	radically	indeterministic.	The	indeterminism	is	only	removed	if	one	can	find	a	way

to	regard	all	curves	with	the	same	initial	data	as	representations	of	a	single	physical	history.	As	we	shall	see	in

section	7,	the	spacetime	substantivalist,	who	regards	spatio	temporal	geometry	as	primitive,	can	do	this,	because

the	different	sequences	of	3-geometries	correspond	to	different	foliations	of	a	single	4-dimensional	spacetime.	The

Machian,	however,	who	regards	spacetime	geometry	as	secondary	to,	and	defined	in	terms	of,	the	dynamical

evolution	of	spatial	geometry,	has	no	such	option	(Pooley,	2001,	16–18).

Fortunately	for	the	Machian,	this	otherwise	devastating	underdetermination	can	be	resolved	in	strictly	3-

dimensional	terms.	In	the	particle	case,	the	ambitious	relationalist	eschewed	transtemporal	scale	comparisons	and

regarded	only	the	shapes	of	configurations	as	fundamental.	Analogous	moves	are	possible	in	the	context	of	GR.	In

particular,	in	a	conformal	3-geometry	only	angles	and	the	ratios	of	(infinitesimal)	distances	are	regarded	as

physically	fundamental.	In	terms	of	Riem(σ),	one	regards	any	two	3-metrics	related	by	a	(spatially	varying)	scale

transformation	as	physically	equivalent:	h 	∼	ϕh ,	ϕ		0.	Conformal	superspace	is	the	quotient	of	Riem(σ)	by

such	scale	transformations	(in	addition	to	3-diffeomorphisms).	It	can	be	viewed	as	analogous	to	Q .

Solutions	to	the	BSW	action	that	share	initial	data	in	superspace	(that	is,	sequences	of	3-geometries	corresponding

to	different	foliations	of	the	same	space-time)	do	not	project	down	to	a	unique	curve	in	conformal	superspace.

However,	the	equations	of	GR	can	be	recast	so	as	to	determine	a	unique	such	curve	(Barbour	and	Ó	Murchadha,

2010).	Its	points	correspond	to	the	foliation	of	the	corresponding	spacetime	by	spacelike	hypersurfaces	of

constant	mean	extrinsic	curvature.	The	fact	that	these	geometrically	privileged	hypersurfaces	simplify	and	make

tractable	the	initial	value	problem	in	GR	has	been	known	since	the	work	of	James	York	in	the	1970s.	What	the

Machian	perspective	provides	is	an	(alternative)	understanding	of	the	relevant	equations	in	terms	of	a

generalization	of	best	matching	to	(volume	preserving)	conformal	transformations	(Anderson	et	al.,	2003,	2005).

The	Machian	perspective	on	GR	is	not	relationalist	in	the	sense	of	this	chapter,	but	it	does	offer	a	mathematically
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and	conceptually	elegant	(and	radical)	alternative	to	the	standard	spacetime	perspective.	The	key	issue	is	not	an

ontological	one	about	the	reality	of	instantaneous	spatial	(that	is,	spacetime)	points	(the	theory	is	naturally

understood	as	committed	to	them);	it	concerns	the	relative	priority	of	spatial	versus	spatiotemporal	ideology.

Despite	Barbour's	claims,	the	local	conformal	degrees	of	freedom	of	CMC	spacelike	hypersurfaces	are	not

obviously	philosophically	superior	to	the	standard	spacetime	quantities:	they	are	not	(more)	directly	observable

(recall	footnote	36),	nor	are	primitive	temporal	intervals,	or	primitive	comparisons	of	distant	lengths,	somehow

inherently	suspect.	(In	fact,	an	argument	could	even	be	made	that	observability	considerations	favor	spacetime

over	instantaneous	quantities.)	Even	the	parsimony	argument	in	favor	of	the	Machian	theory	is	less	clear-cut	in	GR

than	in	Newtonian	mechanics.	In	GR	it	is	no	longer	the	case	that	the	kinematic	structures	of	the	Machian	theory	are

simply	a	proper	subset	of	those	accepted	in	the	spacetime	theory. 	The	true	test	of	the	Machian	program	will	be

its	physical	fruitfulness,	in	particular	whether,	as	its	advocates	hope,	it	leads	to	progress	in	the	search	for	a	theory

that	successfully	reconciles	quantum	mechanics	and	general	relativity.

6.3	Have-it-all	Relationalism

The	relationalist	strategies	examined	in	sections	6.1	and	6.2	involve	a	certain	honesty.	They	accept	that	restricted

dynamical	symmetries	betoken	spacetime	structure	with	symmetries	that	are	at	least	as	restricted	and	seek	to

square	this	with	relation-alism,	either	by	showing	how	such	structure	can	be	both	primitive	and	anchored	in	a

relationalist	ontology	or	by	seeking	new	dynamics	with	expanded	symmetries.	The	approach	reviewed	in	this

section	is	a	case	of	trying	to	have	one's	cake	and	eat	it.	It	seeks	a	way	to	reconcile	restricted	dynamical

symmetries	with	more	permissive	spacetime	symmetries.	On	this	approach,	therefore,	some	of	the	spacetime

structure	implicit	in	the	dynamics	is	judged	to	have	only	an	effective	status,	ultimately	grounded	in	a	less

structured	relationalist	ontology.	Huggett's	“regularity	approach”	is	an	explicit	proposal	about	how	to	do	this	for

Newtonian	mechanics.	The	dynamical	approach	to	special	relativity,	defended	by	Brown	(2005)	and	Brown	and

Pooley	(2006),	can	be	understood	along	similar	lines.

6.3.1	The	Regularity	Approach	to	Relational	Spacetime

Huggett	draws	inspiration	from	some	remarks	of	van	Fraassen's	on	the	meaning	of	Newton's	laws.	Having	posed

the	problem	of	how	the	relationalist	can	account	for	the	privileged	status	of	the	inertial	frames,	van	Fraassen	seeks

to	dissolve	it	by	asserting	that	inertial	frames	do	not	have	a	privileged	status	at	all	(van	Fraassen	1970,	116).	In

claiming	this,	he	is	not	asserting	that	Newton's	laws	fail	to	differentiate	between	frames	of	reference.	He

acknowledges,	of	course,	that	they	do.	His	claim,	rather,	is	that	there	need	be	nothing	more	to	the	inertial	frames'

being	privileged	than	their	being	exactly	those	frames	with	respect	to	which	certain	statements	about	mass,	motion

and	force	hold	true.

The	difference	between	this	point	of	view	and	the	standard	substantivalist	position	might	seem	elusive,	but	it

concerns	which	facts	are	to	be	taken	as	basic.	For	the	substantivalist,	the	basic	facts	include	facts	about	such

things	as	the	relative	temporal	distances	between	pairs	of	events,	about	what	counts	as	a	straight	space-time

trajectory,	and	so	on.	While	the	dynamical	laws	are	to	be	understood	in	terms	of	such	facts,	and	while	the	success

of	those	laws	is	acknowledged	as	our	only	evidence	for	there	being	such	facts,	the	facts	are	not	to	be	conceived

of	as	in	any	way	dependent	on	the	dynamical	laws.	According	to	the	relationalist	view	now	under	consideration,

they	are	so	dependent.	Beyond	the	facts	that	the	Leibnizian	relationalist	acknowledges	as	primitive,	the	most	basic

spatiotemporal	fact	for	van	Fraassen	is	the	existence	of	privileged	coordinate	systems	with	respect	to	which	the

dynamics	of	matter	takes	on	a	particularly	simple	form.	Nonrelational	quantities	of	motion	are	to	be	thought	of	as

defined	in	terms	of	the	very	laws	in	which	they	feature.

Dynamical	laws,	and	the	equations	that	express	them,	figure	prominently	in	the	characterization	of	this	position.

Exactly	what	it	amounts	to,	therefore,	will	depend	on	how	laws	themselves	are	to	be	conceived.	Suppose,	for

example,	that	laws	of	nature	are	held	to	involve	some	kind	of	primitive	natural	necessity.	The	position	then

becomes	the	claim	that	the	relative	distances	between	all	particles	in	the	universe	are	constrained	as	a	matter	of

nomological	necessity	to	evolve	over	time	so	that	they	satisfy	certain	simple	equations	with	respect	to	a	privileged

class	of	coordinate	systems.	Such	a	view,	while	consistent,	has	little	to	recommend	it	over	the	substantivalist's

acceptance	at	face	value	of	the	quantities	featuring	in	the	dynamical	laws.	The	relationalist	is	effectively	claiming

that	relative	distances	between	bodies	are	constrained	to	evolve	as	if	each	body	had	an	independent	quantity	of

motion	that	was	governed	by	certain	simple	laws.	This	looks	like	a	case	where	Earman's	charge	that	the
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relationalist	position	is	“hardly	distinguishable	from	instrumentalism”	is	justified	(Earman	1989,	128).	Whether	or	not

that	spells	trouble	for	the	relationalist,	their	debate	with	the	substantivalist	has	been	replaced	by	a	more	generic

dispute	and	has	lost	its	distinctive	character.

Things	look	more	interesting	if	one	adopts	a	Humean	approach	to	laws.	The	most	promising	Humean	view	is	the

Mill–Ramsey–Lewis	“Best	Systems”	account,	according	to	which	the	laws	of	nature	are	statements	that	appear	as

theorems	of	those	axiom	systems	true	of	the	totality	of	Humean	facts	that	best	combine	the	competing	virtues	of

simplicity	and	strength	(see,	e.g.,	Lewis	1973,	72–73;	Earman	1986,	ch.	5).	Without	some	constraints	on	admissible

vocabulary,	the	simplicity	requirement	is	not	straightforward,	because	a	theory's	simplicity	appears	to	be

language-dependent.	Lewis's	later	preferred	constraint	invokes	a	primitive	distinction	among	properties:	the

formulations	of	candidate	laws	with	respect	to	which	simplicity	is	to	be	judged	are	in	languages	whose	predicates

denote	perfectly	natural	properties	and	relations	(Lewis,	1983).	Huggett's	idea,	effectively,	is	that	this	requirement

can	be	liberalized	without	becoming	vacuous.	In	particular,	it	is	very	plausible	that,	(i)	if	one	assumes	the	ontology

and	ideology	of	Leibnizian	relationalism	and	(ii)	if	one	allows,	as	candidate	Humean	laws,	systems	formulated	in

terms	of	supervenient	properties,	as	well	as	perfectly	natural	properties,	Newton's	laws	will	constitute	by	far	and

away	the	simplest	and	strongest	systematization	of	a	typical	Leibnizian	relational	history	compatible	with	those

laws	(Huggett	2006,	48–50).

Unbeknown	to	Huggett,	a	parallel	liberalization	of	Lewis's	Best	Systems	prescription	had	already	been	outlined	by

Sider,	as	a	possible	response	to	Kripke's	“rotating	disks”	argument	against	perdurance	(Sider	2001,	230–234).

Sider's	goal	was	to	ground	a	distinction	between	rotating	and	nonrotating	homogeneous	matter	in	the	primitive

ontology	and	ideology	of	the	perdurantist	(that	is,	someone	who	analyzes	material	persistence	in	terms	of

numerically	distinct	temporal	parts	of	the	persisting	object	located	at	the	different	times	at	which	the	object	exists).

The	trick	is	to	suppose	that	Best	Systems	laws	might	be	formulated	in	terms	of	“physical	continuants,”	that	is,

aggregates	of	genidentity-interrelated	material	events	where,	crucially,	the	non-Humean	genidentity	relation	is	not

a	primitive	relation	but	supervenes	on	the	total	history	of	Humean	properties	together	with	the	laws	in	which	it

features:

Consider	various	ways	of	grouping	stages	together	into	physical	continuants.	Relative	to	any	such	way,

there	are	candidate	laws	of	dynamics.	The	correct	grouping	into	physical	continuants	is	that	grouping	that

results	in	the	best	candidate	set	of	laws	of	dynamics;	the	correct	laws	are	the	members	of	this	candidate

set.	(Sider	2001,	230)

The	comparison	of	Huggett's	and	Sider's	proposals	prompts	the	following	worry.	If	Huggett's	reduction	of	inertial

structure	relies	on	primitive	transtempo-ral	particle	identity	and	Sider's	reduction	of	material	genidentity	relies	on

primitive	inertial	structure,	one	or	the	other	of	the	reductions	must	be	untenable.	In	response,	the	liberal	Humean

might	embrace	both	moves	at	once:	if	one	strips	facts	about	transtemporal	particle	identity	from	a	typical

Leibnizian	relational	history	compatible	with	Newton's	laws,	it	remains	very	plausible	that	those	laws	will	form	part	of

any	Best	System	theory	of	such	a	world,	if	one	is	permitted	to	express	the	theory	in	terms	of	supervenient

genidentities	with	respect	to	supervenient	privileged	coordinate	systems.	But	combing	both	proposals	into	a	single

package	highlights	a	related	difficulty.	Once	the	strict	requirement	that	primitive	vocabulary	should	express

primitive,	perfectly	natural	properties	and	relations	is	relaxed,	what	governs	which	quantities	are	part	of	the

supervenience	base	and	which	quantities	are	supervenient?	Why	stop	at	a	reduction	of	genidentity	and	inertial

structure?	Why	not	seek	to	offer	a	reductive	account	of	mass	and	charge	too?	Why	not	even	seek	a	reductive

account	of	the	temporal	metric	and	instantaneous	spatial	distances?	Once	the	reduction	via	the	dynamical	laws	of

some	apparently	natural	properties	to	the	others	is	on	the	table,	we	need	some	principles	to	determine	which

properties	are	ripe	for	reduction	and	which	are	to	be	part	of	the	basic	ideology.

Huggett	himself	recognizes	the	issue.	He	notes	that	he	has	included	masses	and	charges	but	not	forces	in	his

supervenience	base	because	“a	quantity	can	only	be	said	to	be	a	force	if	it	plays	the	right	kind	of	role	in	the	laws

and	so	cannot	be	metaphysically	prior	to	the	laws”	(Huggett,	2006,	47).	This	is	a	surprising	thing	for	a	Humean	to

say.	As	Huggett	concedes,	one	might	(as	many	non-Humeans	do)	say	the	same	about	mass	and	charge.	Later,

when	worrying	that	his	supervenient	quantities	proposal	is	“too	easy,”	he	cites	“serious	objections,	with	a	long

history,	against	the	supposition	of	a	non-material,	physical	substance”	(ibid.,	70)	as	reason	to	pursue	a	reduction

that	at	least	allows	one	to	do	without	spacetime.	But,	as	we	have	seen,	(i)	what	prima	facie	strong	objections	there

are	to	substantivalism	can	be	met	and	(ii),	in	the	context	of	Newtonian	theory,	there	are	relationalist	alternatives	to
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Huggett's	program	that	do	not	suffer	from	this	particular	problem	for	regularity	relationalism.	Huggett	does	offer	a

criterion	for	determining	a	point	beyond	which	reduction	should	not	be	pursued:	the	laws	should	be	such	that	they

determine	the	supervenient	quantities	in	all	nomically	possible	worlds	(ibid.,	§4).	However,	this	does	not	address

the	possibility	that,	with	respect	to	the	same	set	of	laws,	two	distinct	sets	of	putative	subvening	properties	might

share	this	property.	In	such	a	case,	how	does	one	discover	which	set	contains	the	“real”	fundamental	properties?

In	his	2006	paper,	Huggett	only	considers	Newtonian	worlds.	We	should	consider	how	the	program	looks	from	the

perspective	of	relativistic	physics.	Special	relativity	does	not	provide	a	very	hospitable	arena	for	the	view.	The

relative	attractiveness	of	regularity	relationalism	in	the	context	of	Newtonian	physics	is	due	to	a	couple	of	factors.

First,	the	fact	that	the	ideology	of	the	Leibnizian	relationalist	forms	a	natural	subset	of	Newtonian	ideology	means

that	it	is	relatively	natural	to	seek	a	reductive	account	of	the	additional	(inertial)	structure	in	terms	of	Leibnizian

relations.	Second,	as	reviewed	in	section	6.1.1,	the	full	neo-Newtonian	ideology,	when	restricted	to	a	(point

particle)	relationalist	ontology,	is	not	sufficient	for	a	relationalist	account	of	standard	physics,	which	undermines

one	obvious	relationalist	alternative.	Neither	factor	remains	true	in	the	context	of	SR.	In	particular,	Leibnizian

relations	are	quite	unmotivated	as	a	supervenience	base;	it	is	far	more	natural	to	take	the	spacetime	interval	as

basic	and	to	understand	the	spatial	distance	relations	associated	with	any	particular	family	of	simultaneity	surfaces

in	terms	of	it.	Moreover,	if	the	relationalist	is	happy	to	countenance	spa-tiotemporal	relations	between	material

events	as	primitive,	there	is	no	longer	a	need	for	a	reduction	of	some	spatiotemporal	quantities	in	terms	of	others

for,	as	reviewed	in	section	6.1.2,	the	Minkowski	interval	restricted	to	material	events	looks	like	a	viable	basis	for	a

relational	interpretation	of	standard	specially	relativistic	physics.

Things	are	more	interesting	when	one	moves	to	GR.	One	aspect	of	Huggett's	proposal	that	I	have	not	so	far

highlighted	is	that	Huggett	sees	it	as	a	way	to	allow	the	geometry	of	empty	space	to	supervene	on	the	geometrical

relations	instantiated	by	material	bodies. 	Consider,	for	example,	a	history	of	instantaneous	spatial	relations

between	bodies	that	are	initially	Euclidean	but	that	depart	from	Euclidicity	after	some	moment,	perhaps	then	to

return	to	Euclidicity	after	some	finite	further	time.	Suppose	that	this	history	is	a	solution	of	a	(generalized)

Newtonian	theory	set	in	a	three-dimensional	space,	G,	of	a	fixed	geometry	that	is	everywhere	Euclidean	except	for

some	finite,	geometrically	simple,	non-Euclidean	region.	The	particles	start	out	in	the	Euclidean	region	and	eventual

stray	into	the	non-Euclidean	region.	Huggett's	idea	is	that	the	relationalist	can	view	both	the	geometry	of	the	total

space,	and	the	particles'	particular	embedding	in	it,	as	supervenient	on	the	history	of	relations	via	(his	liberalized

version	of)	the	Best	Systems	approach	to	laws.	The	idea	is	that	the	following	hypotheses	jointly	constitute	the

simplest	and	strongest	systematization	of	the	relational	history:	(i)	the	history	of	instantaneous	relations	is

constrained	to	be	embeddable	at	all	times	into	G	and	(ii)	the	relational	history	follows,	at	any	moment,	from	the

instantaneous	relations	and	the	embedding	into	G	at	that	moment,	together	with	a	certain	set	of	Newtonian	laws.	In

particular,	the	simplicity	requirement	fixes	G	over	other	more	complicated	geometries	into	which	the	particular

relational	history	can	also	be	embedded,	e.g.,	geometries	with	additional	non-Euclidean	regions	unsurveyed	by	the

material	particles.

Now	recall	the	problem	that	the	variable	geometry	of	empty	regions	of	spacetime	can	cause	for	a	relationist	who

would	simply	restrict	spatiotemporal	distance	relations	to	material	events:	a	particular	partial	history	of	pseudo-

Riemannian	relations	instantiated	within	an	island	configuration	of	material	events,	together	with	the	laws	of	GR,

might	not	fix	the	future	history	because	of	the	possible	influences	of	the	geometry	of	empty	spacetime	beyond	the

material	configuration	(section	6.1.2).	In	the	natural	extension	of	Huggett's	scheme,	one	takes	the	entire	history	of

instantiated	spatiotemporal	relations	between	material	events	as	the	supervenience	base.	One	and	only	one	future

evolution	of	the	material	world	compatible	with	the	considered	initial	segment	and	laws	of	GR	is,	of	course,	included

in	this.	The	interesting	question	for	the	liberalizing	Humean	is	whether,	if	facts	about	the	geometry	of	empty

spacetime	are	allowed	to	supervene,	together	with	the	laws,	on	the	material	relational	history,	the	laws	of	GR

constitute	the	Best	System	laws	of	such	a	world.

6.3.2	The	Dynamical	Approach	to	Relativity

I	finish	this	section	by	highlighting	some	of	the	similarities	between	the	dynamical	approach	to	special	relativity,

defended	by	Brown	(2005)	and	by	Brown	and	Pooley	(2006),	and	Huggett's	proposal	for	Newtonian	physics.	The

dynamical	approach	seeks	to	offer	a	reductive	account	of	the	Minkowski	spacetime	interval	in	terms	of	the

dynamical	symmetries	of	the	laws	governing	matter.	It	therefore	qualifies	as	a	type	of	relationalism,	although	this	is

not	something	that	Brown	himself	emphasizes.

89

90

PDF Compressor Free Version 



Substantivalist and Relationalist Approaches to Spacetime

Page 27 of 48

One	of	the	guiding	intuitions	behind	the	dynamical	approach	concerns	explanatory	priority.	Consider,	for	example,

the	relativistic	phenomenon	of	length	contraction.	Do	rods	behave	as	they	do	in	virtue	of	the	spatiotemporal

environment	in	which	they	are	immersed,	or	are	facts	about	the	geometrical	structure	of	spacetime	reducible	to

(inter	alia)	the	behavior	of	rods?	And	if	one	opts	for	the	latter	point	of	view,	what	explanation	is	to	be	given	of	why

measuring	rods	in	motion	are	contracted	relative	to	similarly	constituted	rods	at	rest?

Brown	reads	Bell	(1976)	as	seeking	to	demonstrate	that	“a	moving	rod	contracts,	and	a	moving	clock	dilates,

because	of	how	it	is	made	up	and	not	because	of	the	nature	of	its	spatio-temporal	environment”	(Brown	2005,	8,

emphasis	in	the	original).	And,	Brown	thinks,	Bell	was	surely	right.	This,	though,	is	to	present	a	false	dichotomy.	The

substantivalist	should	claim	that	a	moving	rod's	contraction	reflects	both	how	it	is	made	up	and	the	nature	of	its

spatiotemporal	environment. 	Recall	the	discussion	of	the	explanatory	role	of	substantival	geometry	in	section

4.3.	The	substantivalist	should	agree	that	a	complex	material	rod	does	not	conform	to	the	axioms	of	some

geometry	simply	because	that	is	the	substantival	geometry	in	which	it	is	immersed;	the	rod	would	not	do	what	it

does	were	the	laws	governing	its	microphysical	parts	different	in	key	respects.	But	equally,	according	to	the

substantivalist,	the	coordinate-dependent	equations	that	are	appealed	to	in,	for	example,	Bell's	toy-model

derivation	of	length	contraction	make	implicit	reference,	via	the	choice	of	coordinate	system,	to	primitive

spatiotemporal	geometry.

What	features	of	the	laws	governing	the	constituents	of	a	rod	are	responsible	for	the	rod's	characteristic	relativistic

behavior	such	as	its	length	contraction?	In	an	important	sense,	the	details	of	the	dynamics	are	irrelevant.	If	subject

to	appropriately	nondestructive	accelerations,	rods	made	of	steel,	wood,	and	glass	will	contract	by	the	same

amount,	and	for	the	same	reason,	namely,	the	Lorentz	covariance	of	the	laws	governing	their	constituents. 	In

recent	discussion	of	the	dynamical	approach	(e.g.,	Janssen	2009,	Frisch	2011),	this	point	is	widely	agreed	upon.

As	Frisch	emphasizes,	what	genuine	disagreement	there	is	centers	on	the	status	of	the	dynamical	symmetries	to

which	such	explanations	appeal.

For	Balashov	and	Janssen,	these	are	ultimately	to	be	explained	in	terms	of	the	geometry	of	spacetime.	To	the

question:“Does	the	Minkowskian	nature	of	spacetime	explain	why	the	forces	holding	a	rod	together	are	Lorentz

invariant	or	the	other	way	around?”	they	reply:	“Our	intuition	is	that	the	geometrical	structure	of	space	(-time)	is

the	explanans	here	and	the	invariance	of	the	forces	the	explanandum”	(Balashov	and	Janssen,	2003,	340)	and

Janssen	likes	to	talk	of	the	symmetries	of	Minkowski	geometry	as	the	common	origin	of	the	symmetries	of	the

various	laws	governing	matter.	For	geometry	to	play	this	role,	its	instantiation	in	the	physical	world	had	better	not

depend	on	facts	about	the	dynamical	laws.	This	is	true	on	the	substantivalist	view	reviewed	in	section	4.3	but,

note,	that	it	is	also	true	on	the	Minkowski	relationalist	view	discussed	in	section	6.1.2,	which	likewise	takes	both	the

ideology	of	the	spacetime	interval	and	its	satisfying	the	constraints	of	Minkowski	geometry	as	primitive.

How	does	this	alleged	explanation	of	dynamical	symmetries	in	terms	of	spacetime	symmetries	go?	Clearly	it	will	not

be	any	kind	of	causal	explanation.	Moreover,	as	the	examples	of	Galilean	(or	Maxwellian)	invariant	Newtonian

physics	set	in	Newtonian	(or	Galilean)	spacetime	illustrate, 	the	explanation	must	be	compatible	with	the	logical

possibility	of	theories	in	which	there	is	a	mismatch	between	dynamical	symmetries	and	the	symmetries	of

independently	postulated	spacetime	structure	(Brown	and	Pooley	2006,	83–84).

In	these	cases,	the	mismatches	are	all	in	one	direction;	the	spacetime	symmetries	are	a	proper	subset	of	the

dynamical	symmetries.	It	might	be	thought	that	the	substantivalist	can	readily	explain	this. 	On	their	view,

dynamical	laws	ultimately	involve	coordinate-independent	claims	describing	how	dynamically	varying	matter	is

constrained	by	and	adapted	to	spacetime	structure.	If	the	properties	of	spacetime	structure	are	described

explicitly,	these	laws	should	be	expressible	by	equations	that	hold	good	in	any	coordinate	system.	But	if	the

spacetime	structure	has	symmetries	that	allow	for	a	privileged	set	of	adapted	coordinate	systems,	one	expects

these	equations	will	(apparently)	simplify,	as	some	aspects	of	the	spacetime	structure	will	now	be	encoded	in	the

coordinate	system.	Recall	that,	in	coordinate	terms,	dynamical	symmetries	are	transformations	between	coordinate

systems	in	which	the	equations	expressing	the	laws	take	the	same	form.	If	the	equations	in	question	are	the

special,	simplified	equations,	then,	on	the	substantivalist's	understanding	of	these	equations,	(i)	they	should	hold	in

all	coordinate	systems	appropriately	adapted	to	spacetime	structure,	and	(ii)	they	need	not	hold	in	others.	But,	in

terms	of	coordinates,	spacetime	symmetries	just	are	the	transformations	between	adapted	coordinate	systems.

Hence,	the	dynamical	symmetries	should	include	the	spacetime	symmetries.	And,	very	crudely,	the	possibility	that

dynamical	symmetries	outstrip	spacetime	symmetries	arises	because	the	dynamical	laws	governing	matter	might
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exploit	only	some	of	the	spacetime	structure,	so	that	the	coordinate	systems	in	which	dynamics	simplifies	need	be

adapted	to	only	some	of	the	structure	postulated.

Given	the	substantivalist's	understanding	of	the	coordinate-dependent	forms	of	dynamical	equations,	therefore,	it

follows	that	the	symmetries	of	these	equations	cannot	be	more	restricted	than	the	symmetries	of	the	full	set	of

postulated	spacetime	structures.	In	at	least	this	sense,	the	substantivalist	can	explain	dynamical	symmetries	in

terms	of	spacetime	symmetries.	According	to	the	dynamical	approach,	however,	this	gets	things	exactly	the	wrong

way	round.	Facts	about	dynamical	symmetries	come	first	and	are	the	ground	of	true	claims	about	the	geometry	of

spacetime:	“the	Minkowskian	metric	is	no	more	than	a	codification	of	the	behavior	of	rods	and	clocks,	or

equivalently,	it	is	no	more	than	the	Kleinian	geometry	associated	with	the	symmetry	group	of	the	quantum	physics

of	the	non-gravitational	interactions	in	the	theory	of	matter”	(Brown	2005,	9).

If	spacetime	geometry	is	to	be	grounded	in	the	symmetries	of	the	dynamical	laws	governing	matter,	it	had	better	be

the	case	that	the	very	idea	of	such	a	law	and	its	symmetries	does	not	presuppose	spacetime	geometry.	That	it

need	not	do	so	is	particularly	clear	if	a	Humean	conception	of	laws	is	adopted.	This	will	also	bring	out	the	parallels

with	Huggett's	proposal.	Recall	that	Huggett's	regularity	relationalist	postulates	primitive	Leibnizian	relations	but	no

ideology	corresponding	to	inertial	structure.	The	latter	is	grounded	in	the	existence	of	a	proper	subset	of	the

coordinate	systems	adapted	to	the	Leibnizian	relations	with	respect	to	which	the	description	of	the	entire	relational

history	is	the	solution	of	particularly	simple	equations	(Newton's	laws	expressed	with	respect	to	inertial	frame

coordinates).	The	dynamical	approach	involves	a	similar	but	much	more	radical	move:	the	metrical	relations

themselves	are	to	be	grounded	in	exactly	the	same	way.

The	idea	is	best	illustrated	with	a	simple	example.	The	advocate	of	the	dynamical	approach	need	not	be

understood	as	eschewing	all	primitive	spatiotemporal	notions	(pace	Norton	2008).	In	particular,	one	might	take	as

basic	the	“topological”	extendedness	of	the	material	world	in	four	dimensions.	Imagine	such	a	world	whose	only

material	dynamical	entity	has	pointlike	parts	whose	degrees	of	freedom	can	be	modeled	by	the	real	numbers.	One

obtains	a	coordinate	description	of	such	an	entity	by	associating,	in	a	way	that	respects	its	local	topology,	each	of

its	pointlike	parts	with	distinct	elements	of	ℝ ,	and	associating	with	each	of	these	a	real	number	representing	the

dynamical	state	of	the	corresponding	part.	In	other	words,	we	directly	map	the	parts	of	the	material	field	postulated

to	be	the	sole	entity	in	the	world	into	ℝ 	and	choose	a	way	to	represent	its	dynamical	state	so	as	to	obtain	a	scalar

field	on	ℝ .	Different	choices	of	coordinate	system	will	yield	different	mathematical	descriptions.	Suppose,	now,

that	for	some	special	choice	of	coordinate	system	the	description	one	obtains	is	the	solution	of	a	very	simple

equation.	Moreover,	suppose	that	(i)	the	descriptions	one	obtains	relative	to	coordinate	systems	related	to	this	first

coordinate	system	by	Lorentz	transformations	yield	(distinct)	descriptions	that	are	solutions	of	the	very	same

equation	but	that	(ii)	descriptions	with	respect	to	other	coordinate	systems,	if	they	can	be	represented	as	solutions

of	equations	at	all,	are	solutions	of	more	complicated	equations.

If	all	this	were	the	case,	the	simplest	equation	might	be	considered	one	of	the	Humean	laws	of	this	world. 	The

Lorentz	group's	being	their	dynamical	symmetry	group	is	constituted	by	its	being	the	group	that	maps	between	the

coordinate	systems	with	respect	to	which	descriptions	of	the	material	world	satisfy	the	simple	equation.	And	finally,

the	spatiotemporal	geometry	of	the	world	is	defined	in	terms	of	the	invariants	of	the	symmetry	group	so	identified.	In

particular,	for	the	spatiotemporal	interval	between	two	parts	of	the	material	world	p,	q	to	be	I	just	is	for	

	with	respect	to	the	privileged	coordinate	systems.	Spacetime	geometry	is

reduced	to	a	notion	of	dynamical	symmetry	that	does	not	presuppose	it.	The	example	considered	is,	of	course,

very	simple,	and	a	number	of	issues	will	arise	when	fleshing	out	an	analogous	story	for	more	realistic	physics.

Some	of	the	choices	to	be	made	are	highlighted	by	Norton	(2008),	who	denies	the	feasibility	of	exactly	this	kind	of

project.	Two	charges	he	makes	are	worth	dwelling	on.

First,	he	considers	the	case	where	the	world	contains	several	matter	fields,	each	described	by	a	distinct	theory.	He

grants	that	each	of	these	might	be	Lorentz	invariant.	His	challenge	to	the	advocate	of	the	dynamical	approach

(dubbed	the	“constructivist”)	is	to	justify	the	assumption	that	the	sets	of	coordinate	systems	with	respect	to	which

these	cases	of	Lorentz	invariance	are	manifest	coincide.	The	simple	answer	is	that	the	spatiotemporally

coincident	parts	of	distinct	matter	fields	should	be	assigned	the	same	element	of	ℝ .	The	issue	is	how	this

relation	of	coincidence	between	matter	fields	is	to	be	understood.	For	the	substantivalist	it	involves	colocation	at

the	same	spacetime	point.	The	Minkowski	relationalist,	who	takes	interval	facts	as	primitive,	can	analyze	it	in	terms

of	these	(though	not,	of	course,	straightforwardly	in	terms	of	the	vanishing	of	the	interval,	for	this	will	not	exclude
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noncoincident,	lightlike	related	events).	What	options	are	open	to	the	constructivist?	The	most	natural	is	to	take

spatiotemporal	coincidence	as	primitive	(as	many	relationalists	have	done;	e.g.,	Rovelli	(1997,	194)).	After	all,	the

project	was	to	reduce	chronogeometric	facts	to	symmetries,	not	to	recover	the	entire	spatiotemporal	nature	of	the

world	from	no	spatiotemporal	assumptions	whatsoever.	The	constructivist's	project	might	need	a	primitive	notion	of

“being	contiguous,”	but	Norton	is	wrong	to	think	that	it	follows	from	this	that	constructivists	are	illicitly	committed	to

the	independent	existence	of	spacetime.

The	other	of	Norton's	objections	that	I	wish	to	highlight	involves	what	the	constructivist	must	say	about	the

geometry	of	empty	regions	of	spacetime	and	of	regions	containing	homogeneous	matter.	Suppose	some	way	K	of

coordinatizing	the	material	world	satisfies	the	type	of	condition	described	above.	Now	suppose	that	the	world

contains	an	empty	region	of	spacetime.	Translated	into	our	terms,	Norton's	point	is	that	any	K′	that	agrees	with	K	on

its	assignment	of	coordinates	to	material	events	will	yield	the	same	description.	K′	can	differ	from	K	in	any	way	one

likes	over	the	coordinates	it	assigns	to	the	empty	region.	Does	this	leave	the	geometry	of	the	empty	region

indeterminate?	Put	this	way,	that	there	really	is	no	problem	here	should	be	obvious:	for	the	constructivist	there	is

literally	nothing	in	an	empty	region	and	so	nothing	whose	geometrical	properties	might	be	indeterminate.	The

constructivist	does	not	believe	in	the	existence	of	an	independently	existing	spacetime!

The	case	of	homogeneous	matter	is	more	problematic.	Now	one	is	supposing	there	are	entities—the	material

pointlike	parts	of	the	homogeneous	region—whose	spatiotemporal	relatedness	one	would	like	to	be	able	to	enquire

after.	Suppose	that	the	constructivist	has	attributed	some	primitive	topogical	properties	to	matter.	Even	so,	we	can

respect	these	properties	and	smoothly	alter	K	to	K′	within	the	region	to	obtain	exactly	the	same	description.	The

constructivist	is	forced	to	conclude	that	for	any	two	material	events	in	the	region	there	is	no	fact	of	the	matter

concerning	the	interval	between	them.	How	bad	is	this?	Note	that	a	number	of	other	geometrical	properties	will	be

determinate	(because	invariant	under	all	coordinate	transformations	that	leave	the	description	of	matter	unaltered).

For	example,	the	spacetime	volume	of	the	homogeneous	region	might	be	determinate	even	though	the	spa-

tiotemporal	relatedness	of	the	points	within	it	is	not. 	This	is	surely	a	peculiarity	of	the	constructivist's	position.	But,

like	Huggett's	regularity	relationalist	in	the	face	of	analogous	problems	(Huggett,	2006,	55–56),	they	might	argue

that	it	is	not	such	a	painful	bullet	to	have	to	bite.

7.	Substantivalism	in	Light	of	the	Hole	Argument

For	much	of	the	last	25	years,	arguments	about	spacetime	substantivalism	have	been	dominated	by	discussion	of

the	Hole	Argument.	This	is	not	the	place	for	a	thorough	review	of	the	sizeable	literature	that	the	argument	has

spawned. 	Here	I	wish	only	to	highlight	one	form	of	substantivalism	that	evades	the	Hole	Argument	and	to

emphasize	an	important	disanalogy	between	the	Hole	Argument	and	the	arguments	against	Newtonian	and	Galilean

substantivalism	that	were	considered	in	earlier	sections.

Originally	due	to	Einstein,	who	used	it	prior	to	1915	to	explain	away	his	inability	(at	that	point	in	time)	to	find

satisfactory	generally	covariant	field	equations,	the	Hole	Argument	was	rehabilitated	by	John	Stachel	(1989)	before

being	put	to	work	against	spacetime	substantivalism	by	Earman	and	Norton	(1987).	Let	 	be	a

model	of	a	generally	relativistic	theory. 	It	follows	from	the	diffeomorphism	invariance	of	GR	that,	for	an	arbitrary

diffeomorphism	d,	 	will	also	satisfy	the	theory's	equations.	The	natural	(though	not

ineluctable)	conclusion	is	that	 	and	 	jointly	represent	spacetimes	(call	them	W 	and	W )	that	are	physically

possible	according	to	the	theory.

In	 ,	each	p	∈	M	is	assigned	certain	properties	encoded	by	g (p),	T (p));	in	 ,	p	is	assigned	the	(in

general)	distinct	properties	encoded	by	d*	g (p),	d*	T 	(p).	But,	according	to	the	substantivalist,	M	represent

physical	spacetime.	This	means	that	(on	one	natural	understanding	of	how	the	points	of	M	represent	physical

spacetime	points)	 	and	 	represent	one	and	the	same	spacetime	point	as	having	different	properties.	This

gives	us	the	next	ingredient	in	the	argument:	the	claim	that	the	substantivalist	is	committed	to	regarding	W 	and	W

as	distinct	possible	worlds.

The	problem	is	that,	if	this	interpretation	of	spacetime	models	is	permitted,	GR	is	radically	indeterministic.	Let	d	be	a

hole	diffeomorphism,	a	map	that	it	is	only	nontrivial	within	a	restricted	region	of	M	(the	so-called	hole).	Suppose

that,	relative	to	the	metric	of	M ,	d	is	nontrivial	only	to	the	future	of	some	spacelike	surface,	σ.	 	and	 	will

then	be	identical	structures	up	to	and	including	this	surface	but	differ	to	its	future.	On	the	proposed	interpretation	of
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	and	 ,	they	represent	spacetimes	that	are	identical	up	to	the	spacelike	surface	represented	by	σ	but	that

differ	to	its	future.	It	follows	that	the	equations	of	GR,	together	with	a	complete	specification	of	the	history	of	the

world	up	to	some	spacelike	surface,	fail	to	fix	the	future.	Earman	and	Norton	do	not	see	this	as	a	problem	for

substantivalism	because	they	think	indeterminism	is	objectionable	per	se.	Their	claim,	rather,	is	that	determinism

should	fail	only	for	reasons	of	physics	and	not	as	the	result	of	a	metaphysical	commitment	and	in	a	theory-

independent	way	(Earman	and	Norton,	1987,	524).

Note	that	 	and	 	are	isomorphic	structures.	The	possibilities	they	represent,	therefore,	involve	exactly	the

same	patterns	of	qualitative	features.	If	W 	and	W 	are	distinct	possibilities,	they	differ	only	over	which	spacetime

points	instantiate	which	of	the	particular	features	common	to	both	worlds.	In	the	terminology	of	modal	metaphysics,

the	difference	between	the	possibilities	is	merely	haecceitistic	(Kaplan,	1975).	Many	of	the	pro-substantivalist

responses	to	the	argument	make	crucial	use	of	this	aspect	of	the	setup.

For	example,	a	substantivalist	might	agree	that	accepting	GR	involves	a	commitment	to	such	haecceitistic

distinctions	and	accept	that	the	theory	is	indeterministic.	However,	they	might	deny	that	this	indeterminism	is	in	any

sense	troublesome	precisely	because	it	is	an	indeterminism	only	about	which	objects	instantiate	which	properties

and	not	about	which	patterns	of	properties	are	instantiated.	A	closely	related	response	accepts	that	GR	is

committed	to	haecceitistic	distinctions	but	denies	that	it	follows	that	GR	is	indeterministic	because	the	correct

definition	of	determinism,	it	is	claimed,	is	only	sensitive	to	qualitative	differences.

The	most	popular	response,	however,	has	been	to	advocate	some	variety	of	sophisticated	substantivalism,	that

is,	a	version	of	substantivalism	that	denies	the	existence	of	physically	possible	spacetimes	that	differ	merely

haecceitistically.	The	simplest	way	to	secure	this	is	to	endorse	antihaecceitism,	that	is,	the	general	denial	of

merely	haecceitistic	distinctions	between	possible	worlds.

Two	arguments	discussed	earlier	in	the	chapter	also	involved	the	claim	that,	because	of	the	dynamical	symmetries

of	the	relevant	physical	theory,	the	(relevant	stripe	of)	substantivalist	was	committed	to	distinct	physically	possible

worlds,	the	nonidentity	of	which	was	alleged	to	be	problematic.	The	important	difference	between	these	cases	and

those	of	the	Hole	Argument	is	that	the	former	involve	qualitative	differences	between	the	relevant	worlds.	In	the

case	of	the	kinematic	shift,	the	worlds	differ	over	the	absolute	velocities	assigned	to	bodies.	In	the	case	of

Maxwellian	invariant	dynamics	set	in	Galilean	spacetime,	they	differ	over	the	absolute	accelerations	assigned	to

bodies. 	The	fact	that	these	differences	are	qualitative	has	two	important	consequences.

First,	that	the	possibilities	differ	qualitatively	creates	an	epistemological	problem	(given	that	one	cannot

observationally	distinguish	between	the	relevant	quantities)	that	is	not	present	in	the	case	of	merely	haecceitistic

differences. 	Even	if	diffeomorphic	models	of	GR	are	to	be	interpreted	as	representing	distinct	possibilities,	there

is	no	substantive	fact,	about	which	I	could	be	ignorant	despite	knowing	all	the	observable	facts,	concerning	which

model	really	represents	the	actual	world.	Each	model	is	equally	apt,	and	which	model	represents	the	actual	world

will	be	a	matter	of	(arbitrary)	representational	convention.	In	contrast,	models	of	Galilean	invariant	physics	set	in

Newtonian	spacetime	that	differ	by	boosts	of	their	material	content	are	not	equally	suited	to	represent	any	given

possibility.	Even	once	representational	conventions	are	fixed,	the	Newtonian	substantivalist	does	not	know	whether

the	model	that	attributes	a	velocity	of	10ms 	to	the	Eiffel	Tower,	the	one	that	attributes	20ms ,	or	yet	some	other

model,	corresponds	to	the	actual	world.

Second,	the	antihaecceitist	way	out	of	the	Hole	dilemma	is	of	no	use	in	the	context	of	the	kinematic	shift	argument.

The	argument	is	evaded	if	any	two	models	related	by	Galilean	boosts	can	be	shown	to	be	different	representations

of	the	same	state	of	affairs.	Since	the	models	represent	qualitatively	distinct	possibilities	according	to	the

Newtonian	substantivalist,	merely	embracing	antihaecceitism	does	not	collapse	the	distinction	between	them.	A

substantivalist	position	that	can	view	Galilean	boosted	models	as	distinct	representations	of	one	and	the	same

state	of	affairs	requires	substantive	work,	viz.,	the	replacement	of	Newton's	substantival	space	with	neo-Newtonian

spacetime.	(A	similar	observation	holds	concerning	the	passage	from	neo-Newtonian	to	Newton-Cartan	spacetime.)

This	is	in	contrast	to	the	so-called	static	shift	argument	against	Newton's	absolute	space,	which	exploits	the

Euclidean	symmetries	of	Newtonian	mechanics	and	compares	only	models	related	by	time-independent	rotations

or	translations. 	In	this	case	antihaecceitism	does	collapse	the	number	of	relevant	physical	possibilities	to	one.

It	is	enough	to	note	that	antihaecceitism	is	a	live	view	within	metaphysics	in	order	to	see	that	substantivalism	need

not	fall	to	the	Hole	Argument.	More	controversial	is	how	well-motivated	the	position	is	from	the	perspective	of	the
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interpretation	of	physics.	Here	a	couple	of	remarks	are	in	order.

First,	as	Belot	and	Earman	(1999,	2001)	have	stressed,	several	physicists	grappling	with	the	conceptual	and

technical	problems	of	unifying	quantum	mechanics	and	general	relativity	do	claim	to	draw	substantive	morals	from

the	Hole	Argument.	What	is	not	clear,	however,	is	whether	the	genuinely	substantive	interpretational	questions	that

have	come	to	the	fore	as	a	result	of	work	on	the	quantization	of	GR	have	anything	to	do	with	the	kind	of

diffeomorphism	invariance	that	lies	at	the	heart	of	the	Hole	Argument.	One	key	issue	concerns	the	nature	of	the

“observables”	(that	is,	the	genuine	physical	magnitudes)	of	diffeomorphism-invariant	theories.	Another	concerns

differences	between	GR	and	pre-generally	relativistic	theories.	In	particular,	are	the	true	physical	magnitudes	of	GR

essentially	different	in	kind	to	those	of	pre-GR	theories	(when	the	latter	are	properly	understood)?	While	Earman

(2006a,b)	believes	that	the	right	answers	to	these	questions	will	be	inconsistent	with	anything	like	a	substantivalist

interpretation	of	GR,	even	of	the	sophisticated	variety,	it	is	not	obvious	that	some	of	the	views	about	the	nature	of

“observables”	advocated	by	the	physicists	Earman	cites,	such	as	those	of	Rovelli	(2002),	are	incompatible	with

sophisticated	substantivalism.

Second,	some	of	the	work	on	“structural	realist”	interpretations	of	spacetime,	at	least	where	these	do	not	involve

an	eliminativism	about	spacetime	points,	can	be	understood	as	varieties	of	antihaecceitist	substantivalism. 	It	is

possible	that	the	development	of	one	of	these	will	provide	an	additional	motivation	for	sophisticated

substantivalism.

The	upshot	of	this	section	is	that	the	substantivalist	understanding	of	spacetime	physics,	as	set	out	in	section	4,	is

not	undermined	by	the	Hole	Argument.	What,	then,	should	one	conclude	about	the	relative	merits	of

substantivalism	versus	relationalism?	In	section	5	I	considered	and	rejected	two	other	strands	of	antisubstantivalist

argument	that	have	motivated	recent	relationalists.	That	leaves	substantivalism	as	a	going	concern.	What	about

relationalism?	Of	the	three	general	strategies	outlined,	the	most	promising	is	the	Machian,	3-space	approach	of

Barbour	and	collaborators.	But,	recall,	this	turned	out	not	to	be	a	form	of	relationalism	in	the	traditional,	ontological

sense.	It	does	represent	an	approach	that	is	metaphysically	very	different	from	spacetime	orthodoxy,	but	the

dividing	issue	is	not	the	existence	of	spacetime	points	but	the	relative	priority	of	3-dimensional	versus	4-

dimensional	concepts.

The	other	two	relationalist	approaches	fare	less	well.	Recognizing	that	the	Maxwell	group	is	a	symmetry	group	of

Newtonian	physics	allows	for	an	intriguing	and	relatively	overlooked	form	of	enriched	relationalism,	but	it	does	not

generalize	to	relativistic	physics.	In	the	context	of	SR,	the	restriction	of	Minkowski	distances	to	a	material	ontology

already	provides	for	a	viable,	if	unexciting,	form	of	relationalism.	In	the	context	of	GR,	however,	the	same	move

does	not	work:	in	general,	the	dynamically	significant	chronometric	facts	outstrip	the	chronometric	facts	about

matter,	as	is	most	vividly	illustrated	by	the	abundance	of	interesting	vacuum	solutions.

The	relationalist	approach	reviewed	in	section	6.3	has	not	been	pursued	in	the	context	of	GR.	Instead,	a	popular

move	for	relationalists	is	to	treat	the	metric	field	as	just	another	material	field	(see,	e.g.,	Rovelli,	1997,	193–195).

This,	it	turns	out,	is	also	the	view	endorsed	by	Brown	(2005,	ch.	9).	So,	while	the	“dynamical	approach”	to	relativity

provides	a	reductive	account	of	the	metric—that	is,	a	form	of	have-it-all	relationalism—in	the	context	of	SR	(section

6.3.2)	the	same	is	not	true,	for	Brown	at	least,	in	GR.	Brown	stresses	that	the	metric	field	only	gains	its	usual

“chronometrical	significance”	(that	is,	only	corresponds	to	the	practical	geometry	manifest	by	the	behavior	of

material	rods	and	clocks)	in	virtue	of	the	particular	way	it	dynamically	couples	to	matter,	but,	as	I	hope	to	have

made	clear,	no	sensible	substantivalist	should	demur.

What,	then,	is	at	stake	between	the	metric-reifying	relationalist	and	the	traditional	substantivalist?	Both	parties

accept	the	existence	of	a	substantival	entity,	whose	structural	properties	are	characterized	mathematically	by	a

pseudo-Riemannian	metric	field	and	whose	connection	to	the	behavior	of	material	rods	and	clocks	depends	on,

inter	alia,	the	truth	of	the	strong	equivalence	principle.	It	is	hard	to	resist	the	suspicion	that	this	corner	of	the

debate	is	becoming	merely	terminological.	At	least	this	much	that	can	be	said	for	the	choice	of	substantivalist

language:	it	underlines	an	important	continuity	between	the	“absolute”	spacetime	structures	that	feature	in	pre-

generally	relativistic	physics	and	the	entity	that	all	sides	of	the	current	dispute	admit	is	a	fundamental	element	of

reality.	To	the	extent	that	one	should	seek	to	understand	the	content	and	success	of	previous	theories	in	terms	of

our	current	best	theory,	this	arguably	vindicates	the	substantivalist	interpretation	of	Newtonian	and	specially

relativistic	physics.
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Notes:

(1)	Strictly	speaking,	the	controversy	has	concerned	two	candidate	entities.	Prior	to	Minkowski's	reformulation	of

Einstein's	special	theory	of	relativity	in	four-dimensional	form,	the	debate	was	about	the	existence	of	space.	Since

then,	the	debate	has	been	about	the	existence	of	spacetime.	For	the	sake	of	brevity,	I	will	often	only	mention

spacetime,	leaving	the	“and/or	space”	implicit.

(2)	For	a	varied	sample	of	competing	interpretations,	see	Laymon	(1978),	Rynasiewicz	(1995,	2004),	and	DiSalle

(2002,	2006),	who	goes	so	far	as	to	claim	that	Newton	was	not	a	substantivalist.

(3)	In	1633,	on	hearing	of	the	Church's	condemnation	of	Galileo	for	claiming	that	the	Earth	moved,	Descartes

suppressed	an	early	statement	of	his	physics,	which	did	not	contain	his	later	relational	claims	about	the	nature	of

motion.	It	is	frequently	(and	plausibly)	conjectured	that	Descartes's	official	views	on	motion	were	devised	to	avoid

Church	censure.	However,	the	precise	manner	in	which	Descartes's	definitions	secure	the	Earth's	lack	of	true

motion	suggest	that	he	was	genuinely	committed	to	a	relational	conception	of	motion.	What	does	the	work	in

securing	the	Earth's	rest	is	not	that,	in	Descartes's	cosmology,	there	is	no	relative	motion	with	respect	to

immediately	contiguous	bodies	(Descartes	explicitly	says	there	is	such	motion;	ibid.,	III:	28);	it	is	that	Cartesian	true

motion	is	motion	with	respect	to	those	contiguous	bodies	that	are	regarded	as	at	rest.

(4)	The	paragraph	describing	the	bucket	experiment	completes	Newton's	arguments	for	his	account	of	true	motion

in	terms	of	absolute	space	but	it	is	not	the	end	the	Scholium.	After	a	brief	paragraph	that	explicitly	concludes:

“Hence	relative	quantities	are	not	the	quantities	themselves,	whose	names	they	bear,	but	are	only	sensible

measures	of	them,”	there	follows	a	long,	final	paragraph	describing	a	thought	experiment	involving	two	globes

attached	by	a	cord	in	a	universe	in	which	no	other	observable	objects	exist.	The	purpose	of	this	thought

experiment	is	not	to	further	argue	for	absolute	space	by,	e.g.,	describing	a	situation	in	which	there	is	absolute

motion	(revealed	by	a	tension	in	the	cord)	and	yet	no	relative	motion	whatsoever.	Instead,	Newton's	purpose	is	to

demonstrate	how	true	motion	can	(partially)	be	empirically	determined,	despite	the	imperceptibility	of	the	space

with	respect	to	which	it	is	defined:	the	tension	in	the	cord	is	a	measure	of	the	rate	of	rotation	and,	by	measuring

how	this	tension	changes	as	different	forces	are	applied	to	opposite	faces	of	the	globes,	one	can	also	determine

the	axis	and	sense	of	the	rotation.

(5)	As	has	been	emphasized	by	Stein	(1967,	269–271);	the	argument	is	also	singled	out	by	Barbour	(1989,	616–

617).

(6)	Since	Newton	held	that	everything	that	exists	exists	somewhere,	the	existence	of	any	other	being	entails	the

existence	of	space	(see	Stein	2002,	300,	n.	32,	for	further	discussion).
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(7)	Recall,	also,	that	for	the	Newtonian	substantivalist	the	basic	entity	is	still	space.	Until	spacetime	substantivalism

is	explicitly	introduced	in	section	4,	reference	to	spacetime	points	should	be	understood	as	reference	to	ordered

pairs	of	pointlike	substantival	places	with	instants	of	time,	and	reference	to	point-like	material	events	as	reference

to	instantaneous	states	of	persisting	point	particles.

(8)	This	terminology	is	established	(see.	e.g.,	Maudlin,	1993,	187).	No	suggestion	that	the	historical	Leibniz	was	a

Leibnizian	relationalist	is	intended.

(9)	There	is	no	established	label	for	these	transformations.	I	follow	Bain	(2004,	350,	fn6);	see	also	Earman	(1989,

30–31).	Ehlers	(1973a,	74)	calls	this	group	of	transformations	the	kinematical	group.

(10)	Subject	to	the	qualifications	in	footnote	7.

(11)	Cf	Earman	(1989,	34).	Ehlers	(1973a,	74)	follows	Weyl	in	referring	to	this	group	of	transformations	as	the

elementary	group.

(12)	In	spacetime	terms,	the	notion	of	a	frame	of	reference	implicit	in	this	stipulation	corresponds	to	the	following:	a

fibration	of	spacetime	that	specifies	a	standard	of	rest;	a	foliation	of	spacetime	that	specifies	a	standard	of	distant

simultaneity;	a	temporal	metric	on	the	quotient	of	spacetime	by	the	foliation;	and	a	spatial	metric	on	the	quotient

of	spacetime	by	the	fibration.

(13)	Supposing,	for	the	sake	of	argument,	that	the	actual	universe	is	Newtonian.

(14)	In	his	correspondence	with	Clarke	(Alexander	1956),	Leibniz	is	sometimes	read	as	offering	kinematic-shift

arguments	somewhat	different	to	the	one	just	sketched.	The	idea	is	that	kinematically	shifted	possible	worlds	would

violate	the	Principle	of	Sufficient	Reason	(PSR)	and	the	Principle	of	the	Identity	of	Indiscernibles	(PII).	Since	these

principles	are	a	priori	true,	according	to	Leibniz,	there	can	be	no	such	plurality	of	possibilities.	A	“Leibnizian”

argument	from	the	PSR	would	ask	us	to	consider	what	reasons	God	could	have	had	for	creating	the	actual	universe

rather	than	one	of	its	kinematically	shifted	cousins.	An	argument	from	the	PII	would	claim	that,	since	kinematically

shifted	worlds	are	observationally	indistinguishable,	they	directly	violate	the	PII.	Neither	argument	is	convincing

(nor	is	either	faithful	to	Leibniz;	see	Pooley,	unpublished).	The	sense	of	indiscernibility	relevant	to	kinematic	shifts	is

not	that	which	has	been	the	focus	of	contemporary	discussion	of	the	PII.	This	takes	two	entities	to	be	indiscernible

just	if	they	share	all	their	(qualitative)	properties.	In	general,	two	kinematically	shifted	worlds	do	differ	qualitatively;

given	how	the	qualitative/nonqualitative	distinction	is	standardly	understood,	a	body's	absolute	speed	is	a

qualitative	property,	and	differences	in	absolute	velocity	are	(typically)	qualitative	differences.	Such	qualitative

differences	are	empirically	inaccessible	but,	theoretically,	they	could	ground	a	reason	for	an	all-seeing	God's

preference	for	one	possibility	over	another.	A	PSR	dilemma	for	God	is	created	if	we	consider	kinematically	shifted

worlds	that	differ,	not	in	terms	of	the	magnitude	of	their	objects'	absolute	velocities,	but	only	over	their	directions.

These	are	worlds	that	are	qualitatively	indistinguishable.	Discussion	of	how	the	substantivalist	should	treat	these	is

postponed	until	section	7.

(15)	In	fact,	it	is	too	strong;	see	section	6.1	below.

(16)	These	notions	are	standard,	although	terminology	varies;	see,	e.g.,	Anderson	(1967,	74)	and	Friedman	(1983,

48).

(17)	A	locus	classicus	in	the	philosophical	literature	for	a	discussion	of	Newtonian	theory	formulated	in	this	style	is

Friedman	(1983,	ch.	III).	I	adopt	the	following	widespread	notational	conventions:	Roman	indices	from	the	start	of

the	alphabet	do	not	denote	components—they	are	“abstract	indices”	merely	indicating	the	type	of	geometric-

object	field;	Greek	indices	denote	that	the	components	of	the	objects	relative	to	some	spacetime	coordinate

system	are	being	considered;	repeated	indices	indicate	a	sum	over	those	indices	(the	Einstein	summation

convention).

(18)	That	is,	the	trajectory	is	parametrized	so	that	t 	ξ 	=	1,	where	t 	is	a	one-form	related	to	the	temporal	metric

via	t 	=	t 	t .

(19)	In	general,	an	action	of	group	G	on	a	space	 	is	a	function	 	such	that,

for	all	g,h	∈	G	and	 	and	e	·	k	=	k,	where	e	is	the	identity	element	of	G.	To	avoid

a
a

a

ab a b

K ϕ : (g,  k)  ∈   G  ×  K   ↦  g  ⋅  k  ∈  K
k  ∈  K ,  g  ⋅  (h  ⋅  k)  =  (gh)  ⋅  k
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triviality,	we	should	also	require	that	the	action	is	faithful,	that	is,	that	for	any	g,	if	g	·	k	=	k	for	all	k,	g	=	e·	G	is	a

symmetry	group	if	and	only	if	g	·	s	∈	S	for	all	g	∈	G	and	s	∈	S.	The	symmetry	group	of	a	theory	characterized	in

this	way	is	referred	to	as	the	theory's	covariance	group	by	Anderson	(1967,	75).

(20)	See	Gordon	Belot's	chapter	in	this	volume	for	further	discussion.

(21)	The	diffeomorphism	group	Diff(M)	is	the	group	of	all	differentiable	one-one	mappings	from	M	onto	itself.	The

definition	of	the	map	d ,	which	acts	on	geometrical	objects	on	M	and	is	induced	by	the	manifold	mapping	d:	p	∈	M

M	↦	d 	∈	M,	will	depend	on	the	type	of	field.	For	a	scalar	field,	ϕ,	d 	ϕ(dp)	:=	ϕ(p).	The	action	of	d 	on	scalar	fields

can	then	be	used	to	define	its	action	on	tensor	fields.	For	example,	for	the	vector	field	V,	we	require	that	d 	V(d

ϕ)| 	=	V(ϕ)|	p	for	all	points	p	and	scalar	fields	ϕ.

(22)	More	carefully,	the	requirement	that	d 	A 	=	A 	for	each	A 	picks	out	a	specific	subgroup	of	Diff(M)	relative	to	a

particular	choice	of	A .	Suppose	that	(M,A ,P )	and	 	are	both	models	of	our	theory	and	that	there	is	a

diffeomorphism	ϕ:	M	−	M	such	that	 	for	each	 	(all	models	of	a	theory	set	in	Galilean	spacetime

will	have	this	property).	Although	it	will	not	be	true,	in	general,	that	

,	the	groups	will	be	isomorphic	to	the	same

(abstract)	group;	cf.	Earman	(1989,	45).

(23)	As	noted	in	footnote	22,	different	choices	of	A 	will,	strictly	speaking,	yield	distinct	subgroups	of	Diff	(M)	but

(for	well-behaved	theories)	these	will	simply	correspond	to	different	representations	of	the	same	abstract	group.

(24)	The	dynamical	symmetry	group	of	Newtonian	theory	set	in	neo-Newtonian	spacetime	in	fact	turns	out	to	be	a

larger	group	if	the	theory	incorporates	gravitation	in	a	field-theoretic	way.	See	section	6.1.1	below.

(25)	This	might	seem	like	a	banal	observation	but	I	take	it	to	be	significant	because	it	conflicts	with	prevalent	claims

about	the	meaning	of	preferred	coordinates	in	non-generally	covariant	theories	made	by,	e.g.,	Rovelli	(2004,	87–

88)	and	Westman	and	Sonego	(2009,	1952–1953).	Their	conception	of	the	significance	of	such	coordinates	implies

that	there	is	a	difference	in	kind	between	the	observables	of	noncovariant	and	generally	covariant	theories.	On	the

view	outlined	above,	there	is	no	such	difference.

(26)	Nerlich	(1979,	2010)	is	staunch	advocate	of	the	explanatory	role	of	the	geometry	of	spacetime,	realistically

construed.	He	classifies	the	role	of	physical	geometry	in	such	explanations	as	noncausal,	but,	on	certain	plausible

understandings	of	causation	(e.g.,	Lewis,	2000),	it	does	count	as	causal	(see	also	Mellor,	1980).

(27)	The	genesis	of	Einstein's	general	theory	has	been	subject	to	extensive	historical	and	philosophical	scrutiny.

For	an	excellent	introduction	to	the	topic,	see	Janssen	(2008).

(28)	 ,	where	R 	(the	Ricci	tensor)	and	R	(the	Riemann	curvature	scalar)	are	both

measures	of	curvature.	g 	is	the	metric	tensor	and	encodes	all	facts	about	the	spatiotemporal	distances	between

spacetime	points.	R 	and	R	are	officially	defined	in	terms	of	the	Riemann	tensor,	itself	defined	in	terms	of	the

connection	∇ .	However,	since	we	are	considering	the	unique	torsion-free,	metric-compatible	connection,	we	can

view	these	quantities	as	defined	in	terms	of	the	metric	and,	indeed,	they	can	be	given	natural	geometric

interpretations	directly	in	terms	of	spacetime	distances.	T 	encodes	the	net	energy,	stress,	and	momentum

densities	associated	with	the	material	fields	in	spacetime.

(29)	For	a	critical	discussion	of	Einstein's	various	formulations	of	the	principle,	see	Norton	(1985).

(30)	I	should	note	that	some	still	hold	out	against	this	orthodoxy	(e.g.,	Dieks,	2006).

(31)	In	this	case,	the	four-force	on	a	particle	with	charge	q	and	four-velocity	ξ 	is	given	by	 	and	the	equation

is	simply	the	coordinate-free	version	of	the	Lorentz	force	law.

(32)	For	example,	the	components	of	F 	relative	to	an	inertial	coordinate	system	are	F 	=	−E ,	F 	=	ϵ 	B ,	where

E 	and	B 	are	the	components	of	the	electric	and	magnetic	three-vector	fields	in	that	frame.

(33)	Ehlers	(1973b,	18);	see	Brown	(2005,	169–172)	for	a	recent	discussion.

(34)	Some	authors	favor	talk	of	“tidal	forces”	or	state	that	there	is	a	real	“gravitational	field”	just	where	the
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Riemann	tensor	is	nonzero	(e.g.,	Synge,	1960,	ix).	As	far	as	I	can	see,	this	is	simply	a	misleading	way	of	talking

about	spacetime	curvature	and	(typically)	nothing	of	conceptual	substance	is	intended	by	it.	For	a	discussion	of

some	of	the	pros	and	cons	of	identifying	various	geometrical	structures	with	the	“gravitational	field,”	see	Lehmkuhl

(2008,	91–98).	Lehmkuhl	regards	the	metric	g 	as	the	best	candidate.	My	own	view	is	that	consideration	of	the

Newtonian	limit	(e.g.,	Misner	et	al.,	1973,	445–446)	favors	a	candidate	not	on	his	list,	viz.,	deviation	of	the	metric

from	flatness:	h ,	where	g 	=	η 	+	h .	That	this	split	is	not	precisely	defined	and	does	not	correspond	to

anything	fundamental	in	classical	GR	underscores	the	point	that,	in	GR,	talk	of	the	“gravitational	field”	is	at	best

unhelpful	and	at	worst	confused.	The	distinction	between	background	geometry	and	the	graviton	modes	of	the

quantum	field	propagating	against	that	geometry	is	fundamental	to	perturbative	string	theory,	but	this	is	a	feature

that	one	might	hope	will	not	survive	in	a	more	fundamental	“background-independent”	formulation.

(35)	Instantaneous	relative	distances	and	their	first	derivatives	are	the	natural	Leibnizian	relational	data.	As

reviewed	in	section	6.2,	Barbour's	preferred	framework	for	understanding	classical	mechanics	also	dispenses	with

a	primitive	temporal	metric	and	an	absolute	length	scale.	With	respect	to	these	more	frugal	initial	data,	five,	not

three,	additional	numbers	are	needed.	See	Barbour	(2011,	§2.2).

(36)	Nor	are	distance	ratios,	Barbour's	preferred	relational	quantities.	For	an	illuminating	discussion	of	how

instantaneous	quantities	are	detected	only	indirectly,	in	measurements	that	necessarily	take	finite	time,	see	Stein

(1991,	157).

(37)	De	Sitter	first	pointed	out	to	Einstein	that,	in	addition	to	specification	of	T ,	one	needs	to	specify	boundary

conditions	at	infinity	in	order	to	determine	g .	This	prompted	Einstein	to	search	for	spatially	compact	solutions	to

the	EFEs	and	to	introduce	the	cosmological	constant	to	allow	for	a	static,	spatially	closed	universe.	This	in	turn	led

de	Sitter	to	the	discovery	of	the	de	Sitter	universe:	a	spatially	compact	vacuum	solution	to	the	modified	EFEs.	See

Janssen	(2008,	§5)	for	a	summary	of	this	episode	and	for	further	references.

(38)	It	is	also	worth	stressing	that	the	stress-energy	properties	of	matter,	as	encoded	in	T ,	cannot	even	be

defined	independently	of	g ;	see	Lehmkuhl	(2011).

(39)	The	idea	that	something	should	be	capable	of	acting	if	and	only	if	it	can	also	be	affected	by	those	things	that	it

can	influence	is	known	as	the	action–reaction	principle	(see	Anandan	and	Brown,	1995,	for	a	discussion).

(40)	That	is,	there	are	coordinate	systems	with	respect	to	which	the	particles'	spatial	coordinates	are	linear

functions	of	their	time	coordinates.	In	Brown's	view,“anyone	who	is	not	amazed	by	this	conspiracy	has	not

understood	it”	(Brown,	2005,	15).

(41)	The	idea	that	spacetime	geodesics	are	defined	as	the	trajectories	of	force-free	bodies	is	defended	by	DiSalle

(1995,	327),	whom	Brown	quotes	approvingly.	Elsewhere	Brown,	ostensibly	to	make	a	point	against	the

substantivalist	explanation	of	inertia,	stresses	that	the	principle	that	the	trajectories	of	force-free	bodies	are

geodesics	in	fact	has	limited	validity	in	GR	(Brown	2005,	141,	see	also	161–168).	What	this	observation	in	fact

undermines	is	a	relationalist	approach	to	spacetime	geometry	that	tries	to	define	geodesics	in	terms	of	“basic

physical	laws”	(DiSalle	1995,	325).	More	recently,	DiSalle	makes	clear	that	he	differs	from	the	logical	positivists	in

not	regarding	the	coordination	of	geodesics	with	free-fall	trajectories	as	a	matter	of	arbitrary	stipulation.	Instead	it	is

said	to	be	“a	kind	of	discovery,	at	once	physical	and	mathematical,	that	…	the	only	objectively	distinguishable

state	of	motion	corresponds	to	the	only	geometrically	distinctive	path	in	a	generally	covariant	geometry”	(DiSalle,

2006,	131–132).	Nothing	in	the	substantivalist's	metaphysics	is	inconsistent	with	this	position;	it	is	less	clear	what

other	metaphysical	views	are	compatible	with	it.	DiSalle	does	not	share	the	substantivalist's	and	relationalist's

preoccupation	with	ontological	questions	but	nor	does	he	offer	reasons	to	see	such	questions	as	illegitimate.

(42)	Note	that	Einstein	had	in	mind	descriptions	of	interacting	systems	in	different	states	of	acceleration,	and	not

simple	inertial	motion,	when	he	claimed	that	“something	real	has	to	be	conceived	as	the	cause	for	the	preference

of	an	inertial	system	over	a	noninertial	system”	(Einstein,	1924,	16).

(43)	See	Malament	(2010)	for	a	critical	discussion	of	this	result.

(44)	A	closely	parallel	derivation	is	also	possible	in	the	geometrized	form	of	Newtonian	gravity;	see	Weatherall

(2011a,b).	This	might	be	taken	to	further	undermine	the	claim	that	only	in	GR	is	inertia	explained.
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(45)	See,	e.g.,	Trautman	(1962,	180–181).

(46)	Brown's	thesis	that	inertia	receives	a	dynamical	explanation	only	in	GR	has	recently	been	defended	by	Sus

(2011).	Sus	emphasizes	that	in	GR	the	metric	is	a	genuinely	dynamical	entity	and	that	one	can	derive	∇ 	T 	=	0

from	the	very	equations	that	govern	the	metric's	behavior.	In	contrast,	SR,	as	standardly	conceived,	involves	fixed

inertial	structure	whose	properties	are	postulated	by	fiat.	However,	this	difference	between	the	theoriesis

compatible	with	the	theories	agreeing	on	the	fundamental	reasons	why	force-free	bodies	are	related	to	inertial

structure	in	just	the	way	they	are.

(47)	The	terminology	is	Quine's,	who	characterizes	a	theory's	ontology	as	“the	objects	over	which	the	bound

variables	of	the	theory	should	be	construed	as	ranging	in	order	that	the	statements	affirmed	in	the	theory	be	true”

(Quine	1951,	11).

(48)	The	need	for	this	second	step	is	emphasized	by	Earman	(1989,	128),	though	not	in	precisely	these	terms.

(49)	Related	versions	of	relationalism,	according	to	which	absolute	velocity	(or	even	absolute	position)	is	inter

preted	as	a	primitive,	monadic	property	of	particles,	have	been	discussed	by	Horwich	(1978,	403)	and	Friedman

(1983,	235)	(see	also	Teller,	1987).	In	addition	to	being	less	natural	than	the	form	of	Newtonian	relationalism

identified	by	Maudlin,	they	are	vulnerable	(like	Newtonian	relationalism)	to	the	kinematic	shift	argument.	The

absolute	position	version	is	also	vulnerable	to	the	static	shift	argument	mentioned	in	section	7.

(50)	The	obvious	constraints	are	that	the	embedding	respects	the	temporal	separation	between	material	events

and	that	there	is	a	single	congruence	of	inertial	geodesics	such	that,	for	any	two	material	events	e ,	e 	located	on

geodesics	from	the	congruence	v ,v ,	the	Newtonian	relational	distance	between	e1	and	e2	equals	the	(constant)

spatial	distance	between	simultaneous	points	of	v 	and	v .

(51)	This	is	the	principal	inadequacy	of	Newtonian	relationalism	that	Maudlin	identifies	(1993,	193).	Friedman	(1983,

235)	makes	the	same	criticism	of	the	postulation	of	a	primitive	property	of	“absolute	velocity”

(52)	Maudlin	restricts	the	extension	of	col	to	nonsimultaneous	events,	but	there	is	no	reason	why	mutually

simultaneous	events	should	not	be	included,	with	col(e ,	e ,	e )	holding	just	if	the	sum	of	the	distances	between

two	of	the	pairs	of	events	equals	the	distance	between	the	third	pair.

(53)	A	similar	example	involving	Minkowski	spacetime	is	discussed	by	Mundy	(1986),	Catton	and	Solomon	(1988),

and	Earman	(1989,	168–169).	The	relations	of	spacelike	separation,	lightlike	separation	and	timelike	separation

determine	the	structure	of	Minkowski	spacetime	up	to	an	overall	scale	factor.	However,	these	relations	instantiated

between	material	events	need	not	fix	their	embedding	into	Minkowski	spacetime	up	to	Poincaré	transformations.

The	examples	discussed	by	Mundy	et	al.	involve	a	small	finite	number	of	events,	but	the	problem	generalizes	to

certain	configurations	of	continuum	many	For	example,	consider	two	particles	which	move	so	that	any	two	events

from	distinct	trajectories	are	always	spacelike	(the	events	on	each	trajectory	are	all	mutually	timelike).	We	know

that,	as	t	−	±oo,	the	particles	must	be	accelerating	in	opposite	directions,	but	not	much	more.

(54)	This	objection	to	neo-Newtonian	relationalism,	reported	by	Huggett	(1999,	26),	is	again	due	to	Maudlin.

(55)	Since	these	are	functions	of	the	r s,	just	as	Sklarations	are	functions	of	the	r s,	they	would	not	actually	be	of

any	help	either.	The	situation	changes	if	higher	derivatives	are	allowed.

(56)	Friedman's	expression	of	the	law	is	 	(Friedman,	1983,	226,	eqn	8;	I	have

slightly	altered	the	notation).	F 	is	the	ith	component	of	Newtonian	(three-)force	on	the	particle	we	are	considering

and	x 	(t)	is	the	ith	component	of	its	position	vector	with	respect	to	some	rigid	Euclidean	coordinate	system.	a 	is

the	ith	component	of	the	absolute	acceleration	of	the	origin	of	the	coordinate	system	(that	is,	the	Sklaration	that	a

hypothetical	particle	would	have	were	it	comoving	with	the	coordinate	origin).	a 	is	the	rotation	of	the	coordinate

system	about	its	origin	with	respect	to	an	inertial	frame.	Thus	only	the	first	of	the	three	additional	terms	on	the	right-

hand	side	of	the	equation	is	directly	interpretable	in	terms	of	a	Sklaration,	and	then	only	if	we	pick	a	coordinate

system	that	happens	to	have	a	particle	comoving	with	its	origin.	Crucially,	we	need	to	be	told	how	to	interpret	the

rotation	pseudo-vector	a 	in	terms	of	Sklarations.

(57)	Mundy	(1983,	224)	even	interprets	the	Euclidean	constraints	on	instantaneous	distances	similarly,	so	that	his
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j äkix
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relationalist	does	not	need	a	primitive	notion	of	geometric	possibility	over	and	above	that	of	physical	possibility.

(58)	I	explore	some	of	the	options	in	Pooley	(in	preparation).	As	with	Sklarations,	the	required	“kinematical”

constraints	on	the	instantiation	of	such	relations	suggest	that	the	proposals	are	really	substantivalism	in	disguise.

(59)	My	terminology	again	follows	Earman	(1989,	31)	and	Bain	(2004,	351).	Ehlers	(1973a,	78–79)	discusses	the

group	but	leaves	it	unnamed.

(60)	There	is	no	canonical	differential-geometric	way	of	capturing	this	structure.	Earman	(1989,	32)	resorts	to	an

equivalence	class	of	connections	whose	congruences	of	geodesics	are	nonrotating	with	respect	to	one	another.

Saunders	(Forthcoming,	§7)	offers	an	elegant	characterization	of	a	similar	but	strictly	weaker	structure.

(61)	This	problem	for	Newtonian	gravitation	set	in	neo-Newtonian	spacetime	is	well-known.	For	a	related	discussion

in	the	philosophical	literature,	see,	e.g.,	Friedman	(1983,	95–97).

(62)	This	theory	is	presented	as	the	solution	to	the	problem	faced	by	the	Galilean	substantivalist	by	Friedman

(1983,	97–104;	120–124).	See	also	Malament	(1995),	who	presents	it	as	a	solution	to	a	closely	related	problem

raised	by	Norton	(1993).

(63)	Malament	(2012,	ch.	4)	reviews	these	results	and	Newton–Cartan	theory	more	generally;	see	also	Bain	(2004).

(64)	As	far	as	I	am	aware,	Simon	Saunders	was	the	first	to	stress	that	transtemporal	comparison	of	directions	are

obviously	compatible	with	relationalist	ontology.	Saunders	(Forthcoming)	is	a	recent	discussion	of	related	topics.	I

am	grateful	to	him	for	discussion.	Earman	(1989,	78–81)	comes	close	to	attributing	the	basic	idea	to	James	Clerk

Maxwell,	who,	when	discussing	absolute	rotation	in	Maxwell	(1877,	§104),	wrote:	“in	comparing	one	configuration

of	the	system	with	another,	we	are	able	to	draw	a	line	in	the	final	configuration	parallel	to	a	line	in	the	original

configuration.”	Earman's	assessment	is	that	“Maxwell's	set	of	parallel	directions	is,	of	course,	inertial	structure,	and

in	modern	terms	what	he	seems	to	be	proposing	is	that	neo-Newtonian	spacetime	is	the	appropriate	arena	for	the

scientific	description	of	motion”	(Earman,	1989,	80).	However,	it	is	clear	that	Maxwell	here	only	assumes	a

standard	of	parallelism	for	spacelike	lines	which,	as	we	have	seen,	does	not	require	the	full	structure	of	neo-

Newtonian	spacetime.	Perhaps	Earman	did	not	realize	how	apt	his	label	Maxwellian	spacetime	is.

(65)	One	“best	matches”	instantaneous	configurations	only	with	respect	to	rigid	translations	and	not,	as	Barbour

does,	by	translations,	rotations,	and	dilations.	Barbour-type	particle	theories	that	do	not	implement	rotations	as

gauge	symmetries	have	been	discussed	recently	by	Anderson	(2012,	section	2.4).

(66)	I	am	grateful	to	David	Wallace	for	highlighting	this	possibility.

(67)	The	main	discussions	of	a	position	of	this	sort	are	Earman	(1989,	128–130)	and	Maudlin	(1993,	196–199).

(68)	A	treatment	of	acceleration	along	these	lines	can	be	found	in	Minkowski's	original	presentation	(Minkowski,

1909,	85–86).

(69)	Relativistic	theories	in	which	the	four-force	on	a	particle	at	a	point	is	determined	directly	by	the	properties	of

other	particles	at	other	spacetime	locations	are	not	impossible;	Feynman	and	Wheeler's	version	of

electromagnetism	is	such	a	“pure	particle	theory”	(Wheeler	and	Feynman,	1949).	These	theories,	however,	have

various	unwelcome	features,	and	their	empirical	adequacy	remains	an	open	question;	see	Earman	(1989,	155–158)

for	discussion.

(70)	See	Malament	(1982,	532,	fn	11),	who	is	responding	to	Field's	argument.	Other	clear	expressions	of	this	view

can	be	found	in	Belot	(1999,	45)	and	Rovelli	(2001,	104).

(71)	As	the	rest	of	this	section	illustrates,	still	less	does	the	move	trivialize	the	substantivalist–relationalist	debate

(pace	Field	1985,	41),	although	it	does	excuse	the	relationalist	from	replacing	field	theories	with	action-at-a-

distance	theories.

(72)	Note	that	this	constitutes	an	answer	to	Earman's	challenge	that	the	relationalist	must	provide	a	“direct

characterization”	of	the	reality	underlying	the	substantivalist's	description	of	fields	(Earman,	1989,	171).
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(73)	See,	for	example,	Malament	(2004,	§3),	where	the	tensorial	properties	of	the	electromagnetic	field	F 	are

derived	from	assumptions	about	its	action	on	charges.

(74)	The	relationalist	can	also	question	whether	one	should	regard	regions	of	zero	field	strength	as	regions	where

the	material	field	literally	does	not	exist.	This	might	be	the	natural	interpretation	of	fields	that	represent	“dust”	in

models	of	GR,	but	it	is	at	least	controversial	for,	e.g.,	the	electromagnetic	field.	The	stipulation	is	yet	more

problematic	when	one	moves	to	quantum	field	theory.	I	am	grateful	to	David	Wallace	for	pressing	this	point.

(75)	For	related	reasons,	Earman	defines	Machian	spacetime	to	be	spacetime	with	simultaneity	structure	and

Euclidean	metrical	structure	on	its	simultaneity	surfaces	but	with	no	temporal	metric	(Earman	1989,	27–30).

(76)	It	should	be	stressed	that	Barbour	initially	postulated	a	Jacobi-like	action	on	purely	Machian	grounds	and	only

learned	of	the	connections	with	standard	dynamics	several	years	afterward.

(77)	Note	that	choosing	a	simplifying	parameter	for	Equation	(4)	is	quite	unlike	choosing	a	time	coordinate	that	is

adapted	to	the	spacetime	substantivalist's	temporal	metric.	The	latter	also	simplifies	the	(generally	covariant)

equations,	but	these	equations	explicitly	refer	to	an	independent	standard	of	duration.	According	to	the	Machian

interpretation	of	Jacobi's	Principle,	fundamental	dynamics	is	formulated	without	reference	to	such	an	external	time.

See	Pooley	(2004,	78–79).

(78)	Noteworthy	examples	are	Hofmann	(1904),	Reissner	(1914),	Schrödinger	(1925),	Barbour	(1974a),	Barbour

and	Bertotti	(1977),	and	Assis	(1989).	For	further	discussion,	see	Earman	(1989,	92–96)	and	Barbour	and	Pfister

(1995,	107–178).	It	turns	out	that	Barbour's	later	particle	theories	(discussed	immediately	below)	can	themselves

be	formulated	in	a	natural	way	directly	in	terms	of	the	right	choice	of	relative	coordinates.	For	details,	see

Anderson	(2012,	Chapters	2	and	3),	where	a	wider	class	of	such	theories	is	considered.

(79)	For	an	informal	discussion	of	the	central	idea,	see	Barbour	(1999,	ch.	7).	For	the	extension	to	dilations,	see

Barbour	(2003).	For	more	formal	and	general	treatments,	see	Anderson	(2006)	and	Gryb	(2009).

(80)	Similarly,	one	can	argue	that	the	Machian	relationalist	is	able	to	explain	formal	features	of	the	potential,	such

as	its	dependence	only	on	the	ṙ s,	that	are	again	nonessential	aspects	of	standard	Newtonian	theory	(Barbour

2011).

(81)	W	can	depend	on	h 	and	its	spatial	derivatives	up	to	some	finite	order;	the	presence	of	 	is

simply	to	ensure	that	the	integration	is	invariantly	defined.

(82)	If	ξ 	is	an	infinitesimal	3-vector	field,	 	is	the	result	of	acting	on	h 	by	an	infinitesimal

diffeomorphism	generated	by	 ,	the	Lie	derivative	of	h 	with	respect	to	ξ ,	is	given	by	

,	where	Δ 	is	the	derivative	operator	associated	with	the	unique	torsion-free	connection

compatible	with	h .	For	the	reason	why	T 	is	defined	in	terms	of	the	Lie	derivatives	with	respect	the	velocity	of	a

3-vector	field,	see	Barbour	et	al.	(2002,	3219)	and	Barbour	(2003,	§4).

(83)	Gryb	(2010,	16–18)	contains	a	brief	discussion	of	these	theories.

(84)	The	importance	of	the	distinction	between	(5)	and	(6),	and	the	fact	that	GR	could	be	cast	in	the	form	of	(6),

was	first	pointed	out	to	Barbour	by	Karel	Kuchař	(Barbour	and	Bertotti	1982,	305).

(85)	This	is	one	of	the	main	results	of	Barbour	et	al.	(2002),	who	also	claim	to	recover	the	equivalence	principle

and	Maxwellian	electromagnetism	from	the	constraints	that	consistency	alone	places	on	how	matter	fields	can	be

added	to	the	theory.	The	results	are	extended	to	Yang	Mills	theory	in	Anderson	and	Barbour	(2002).	It	should	be

stressed	that	these	results	do	not	amount	to	a	derivation	of	GR	and	the	equivalence	principle	from	Machian	first

principles	alone.	In	addition	to	the	choice	of	(6)	over	(5),	the	form	of	(6)	embodies	a	number	of	simplicity

assumptions,	the	relaxing	of	which	permits	a	range	of	other	Machian	theories;	see	Anderson	(2007).

(86)	There	may	be	good	reason	to	see	conformal	geometrodynamics	as	superior	to	alternative	3	+1	approaches	to

GR:	its	basic	quantities	are	dimensionless	and	the	true	degrees	of	freedom	are	transparent	(Barbour	2011,	24,	39).

This,	though,	does	not	speak	directly	to	the	preferability	of	a	3	+	1	over	a	spacetime	perspective.

(87)	One	might	also	worry	that	if	the	laws	are	about	coordinate	systems	it	will	be	hard	for	the	relationalist	to	avoid
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what	Field	(1985)	calls	heavy	duty	platonism.	(Thanks	to	Jeremy	Goodman	for	highlighting	this.)	I	take	the	role	of

coordinate	systems	in	the	specification	of	the	Humean	alternative	discussed	next	to	be	less	problematic.

(88)	If	one	pursues	the	program	too	far,	the	supervenience	base	will	eventually	become	too	impoverished	to

subvene	Newtonian	laws.	Suppose,	for	example,	that	the	only	spatiotemporal	information	one	retains	is	that	which

is	common	to	all	coordinatizations	of	the	particle	trajectories	obtainable	from	an	initial	inertial	coordinate	system	by

smooth	but	otherwise	arbitrary	coordinate	transformations	that	preserve	the	timelike	directedness	of	the

trajectories	(that	is,	that	they	are	nowhere	tangent	to	surfaces	of	constant	time	coordinate).	Such	topological	data

includes	information	about	whether	any	two	trajectories	ever	intersect,	and	information	about	how	the	trajectories

are	“knotted”,	but	little	else.	Many	Newtonian	worlds	involving	complex	histories	of	relative	distances	and

interactions	will	be	topologically	equivalent	to	histories	where	all	particles	maintain	constant	distance	from	one

another.	If	one	includes	only	such	topological	information	in	the	supervenience	base,	worlds	like	this	will	not	be

worlds	where	Newton's	laws	are	laws	of	nature.	One	might	also	wonder	whether	any	degree	of	topological

complexity	(that	is,	any	degree	of	complex	entwining	of	the	trajectories)	will	promote	Newton's	laws	to	Best	System

status.	Might	not	simpler,	equally	strong	alternatives	always	be	available?

(89)	This	aspect	of	the	proposal	is	scrutinized	by	Belot	(2011,	ch.	3).

(90)	Simplicity	will	not	determine	a	unique	geometry	for	G	in	all	cases,	but	Huggett	makes	a	persuasive	case	that

the	underdetermination	is	benign	and	that	the	regularity	relationalist	should	be	content	to	live	with	the	possibility

that	there	may	be	no	determinate	fact	of	the	matter	about	the	geometry	of	physical	space	(Huggett	2006,	55–56).

(91)	This	is	not	to	say	that	every	explanatory	question	one	might	ask	about	the	phenomenon	of	length	contraction

requires	an	appeal	to	dynamical	laws;	in	some	contexts	it	is	enough	to	cite	the	relevant	geometrical	facts	in	order

to	provide	an	explanation.	This	is	a	point	explicitly	emphasized	in	Brown	and	Pooley	(2006,	78–79,	82),	where

paradigm	explanatory	uses	of	Minkowski	diagrams	(e.g.,	to	highlight	that	observers	in	relative	motion	consider

different	cross-sections	of	a	rod's	world	tube	when	judging	its	length)	are	said	to	constitute	“perfectly	acceptable

explanations	(perhaps	the	only	acceptable	explanations)	of	the	explananda	in	question.”	Our	emphasis	of	this	fact

seems	to	have	been	overlooked	by	some	authors	(Skow	2006,	Frisch	2011).

(92)	As	it	was	put	in	Brown	and	Pooley	(2006,	82):	“it	is	sufficient	for	these	bodies	to	undergo	Lorentz	contraction

that	the	laws	(whatever	they	are)	that	govern	the	behavior	of	their	microphysical	constituents	are	Lorentz

covariant.	It	is	the	fact	that	the	laws	are	Lorentz	covariant	…that	explains	why	the	bodies	Lorentz	contract.	To

appeal	to	any	further	details	of	the	laws	that	govern	the	cohesion	of	these	bodies	would	be	a	mistake.”	Janssen's

(2009)	carefully	argued	case	that	phenomena	recognized	to	be	kinematical	(in	his	sense)	should	not	be	explained

in	terms	of	the	details	of	their	dynamics	is	therefore	one	that	we	had	antecedently	conceded.	The	explanation	of

the	phenomena	in	terms	of	symmetries	nonetheless	deserves	the	label	“dynamical”	(though	not,	as	acknowledged

in	Brown	and	Pooley	(2006,	83),	“constructive”)	because	the	explanantia	are	(in	the	first	instance)	the	dynamical

symmetries	of	the	laws	governing	the	material	systems	manifesting	the	phenomena.

(93)	Other	examples	are	provided	by	Lorentz	invariant	dynamics	set	in	Newtonian	spacetime;	see,	e.g.,	Earman

(1989,	50–55).

(94)	I	am	grateful	to	Hilary	Greaves	for	discussion	of	this	point.	The	story	given	here	can	also	be	told,	mutatis

mutandis,	by	a	relationalist	who	posits	primitive	spatiotemporal	relations	held	to	satisfy	primitive	geometrical

constraints.

(95)	See	Earman	(1989,	45–47)	for	a	related	discussion	of	the	connection	between	spacetime	symmetries	and

dynamical	symmetries.

(96)	This	law	could	be	expressed	in	a	coordinate-independent	manner	if	one	introduces	an	auxiliary	device,	the

Minkowski	metric,	which	would	then	be	“no	more	than	a	codification	of	the	Kleinian	geometry	associated	with	the

symmetry	group”	of	the	laws.

(97)	More	radical	options	could	also	be	pursued.	Starting	with	the	idea	that	there	are	no	primitive	facts	about	the

contiguity	or	otherwise	of	distinct	material	events,	one	might	nonetheless	map	them	into	a	single	copy	of	ℝ .	The

coincidence	of	events	(which	events	are	to	be	mapped	to	the	same	element	in	ℝ )	is	then	to	be	thought	of	as

determined	in	the	same	manner	as	the	spacetime	interval,	that	is,	determined	by	those	coordinatizations	that	yield

n
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total	descriptions	of	all	events	that	satisfy	some	simple	set	of	equations.	Perhaps	one	could	even	view	the	value	of

n	(that	is,	the	dimensionality	of	spacetime	itself)	as	determined	in	this	way	too.	As	with	generalizations	of	Huggett's

proposal	(see	footnote	88),	the	more	one	views	as	grounded	via	some	kind	of	Best	System	prescription,	the	more

unconstrained	the	problem	becomes;	it	ceases	to	be	plausible	that	the	complexity	of	the	postulated	supervenience

base	will	be	sufficient	to	underwrite	the	target	quantities	and	the	laws	they	obey.

(98)	Compare	how,	on	some	treatments	of	vagueness,	disjunctions	can	be	determinately	true	(Fred	is	either	bald	or

not	bald)	even	though	neither	disjunct	is	determinately	true.

(99)	A	good	introduction	is	provided	by	Norton	(2011).

(100)	Recall	(section	4)	that	the	pseudo-Riemannian	metric	tensor	g 	encodes	all	of	the	geometrical	properties	of

spacetime,	itself	represented	by	the	four-dimensional	manifold	M.	Strictly	speaking,	the	stress–energy	tensor	T

does	not	directly	represent	the	fundamental	matter	content	of	the	model.	This	will	be	represented	by	other	fields,	in

terms	of	which	T 	is	defined.

(101)	This	amounts	to	a	denial	of	Leibniz	Equivalence.	Earman	and	Norton	take	such	a	denial	to	be	the	acid	test	of

substantivalism	(Earman	and	Norton,	1987,	521).

(102)	For	further	discussion	of	the	definition	of	determinism	appropriate	to	GR,	and	of	the	merits	of	these	options,

see	Butterfield	(1989b),	Rynasiewicz	(1994),	Belot	(1995),	Leeds	(1995),	Brighouse	(1997),	and	Melia	(1999).

(103)	This	is	my	preferred	option	(see	Pooley	2006,	99–103).	Despite	the	important	differences	between	them,	I

take	Maudlin	(1989),	Butterfield	(1989a),	Maidens	(1992),	Stachel	(1993,	2002),	Brighouse	(1994),	Rynasiewicz

(1994),	Hoefer	(1996),	and	Saunders	(2003a)	all	to	deny	that	the	relevant	haecceitistic	differences	correspond	to

distinct	physical	possibilities.	For	several	of	these	authors	(though	notably	not	for	Maudlin),	the	commitment	follows

from	a	commitment	to	some	kind	of	antihaecceitism,	at	least	concerning	spacetime	points,	whether	on	general

philosophical	grounds	(as	in	Hoefer's	case),	or	as	a	perceived	lesson	of	the	diffeomorphism	invariance	of	the

physics	(as	in	Stachel's	case).

(104)	Note	one	parallel	between	the	Hole	Argument	and	the	argument	against	Galilean	spacetime	that	exploits	the

Maxwell	group.	The	fact	that	the	Maxwell	group	involves	a	parameter	that	is	an	arbitrary	function	of	time	means

that	the	Galilean	substantivalist	interpretation	of	the	models	of	a	Maxwellian	invariant	theory	involves	regarding	the

theory	as	indeterministic	(cf	Stein	1977,	Saunders,	2003a).	The	fact	that	the	indeterminism	involves	qualitative

differences	(according	to	the	Galilean	substantivalist)	arguably	makes	the	argument	more	effective	against

Galilean	substantivalism	than	the	Hole	Argument	is	against	GR.

(105)	This	point	is	discussed	by	Horwich	(1978),	Field	(1985),	and	Maudlin	(1993).

(106)	An	argument	like	this	was	made	by	Leibniz	in	his	correspondence	with	Clarke	(Alexander,	1956).	That	Leibniz

makes	a	precisely	parallel	argument,	exploiting	permutation	invariance,	against	the	existence	of	atoms,	should

give	those	sympathetic	to	the	static	shift	argument	pause	for	thought.	Consistency	should	lead	one	either	to

embrace	or	reject	both	conclusions.

(107)	Self-declared	structuralist	approaches	to	spacetime	that	are	best	described	as	varieties	of	substantivalism	(in

the	sense	that	they	include	spacetime	points	among	the	ground-floor	ontology)	include	those	of	Stachel	(2002,

2006),	Saunders	(2003a),	Esfeld	and	Lam	(2008),	and	Muller	(2011).	For	an	overview	of	a	wider	range	of

structuralist	approaches,	see	Greaves	(2011),	who	gives	reasons	to	be	skeptical	that	a	coherent	position	that	does

not	collapse	into	sophisticated	substantivalism	(or	relationalism)	has	yet	to	be	clearly	identified.	Bain	(2006)	and

Rickles	(2008)	are	two	more	advocates	of	spacetime	structuralism,	not	cited	by	Greaves.

(108)	I	am	attracted	to	the	view	that	sees	individualistic	facts	as	grounded	in	general	facts	(Pooley,	unpublished).

However,	as	Dasgupta	(whose	terminology	I	adopt)	has	recently	stressed	(Dasgupta,	2011,	131–134),	this	requires

that	one's	understanding	of	general	facts	does	not	presuppose	individualistic	facts.	Since	the	stan	dard

understanding	of	general	facts	arguably	does	take	individualistic	facts	for	granted,	the	spacetime

structuralist/sophisticated	substantivalist	must	show	that	they	are	not	illicitly	making	the	same	presupposi	tion.

(Dasgupta's	own	view	is	that	something	quite	radical	is	needed	(2011,	147–152).)	The	recent	literature	on	“weak

discernibility”	(see,	e.g.,	Saunders,	2003b)	has	made	much	of	the	fact	that	numerical	diversity	facts	can
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supervene	on	facts	statable	without	the	identity	predicate	even	when	traditional	forms	of	the	Principle	of	the	Identity

of	Indiscernibles	are	violated.	Note,	however,	that	merely	showing	that	one	set	of	facts	supervene	on	another	set

of	facts	is	not	sufficient	to	show	that	the	former	are	grounded	in	the	latter	(or	even	that	it	is	possible	to	think	of	them

as	so	grounded).

(109)	The	skepticism	concerning	the	substantiveness	of	the	debate	expressed	in	this	paragraph	is	therefore	not

that	of	Rynasiewicz	(1996).	For	a	convincing	response	to	many	Rynasiewicz's	claims,	see	Hoefer	(1998).

Oliver	Pooley
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Abstract	and	Keywords

This	chapter,	which	examines	global	spacetime	structure	and	the	qualitative,	primarily	topological	and	causal,

aspects	of	general	relativity,	proposes	an	abstract	classification	of	local	and	global	spacetime	properties	and

identifies	a	set	of	causal	conditions	that	form	a	strict	hierarchy	of	possible	casual	properties	of	spacetime.	It	also

addresses	the	philosophical	questions	concerning	the	physical	reasonableness	of	these	various	spacetime

properties	and	considers	the	notion	of	geodesic	incompleteness.

Keywords:	spacetime	structure,	general	relativity,	causal	condition,	philosophical	questions,	physical	reasonableness,	geodesic	incompleteness

1.	Introduction

The	study	of	global	spacetime	structureis	a	study	of	the	more	foundational	aspects	of	general	relativity.	One	steps

away	from	the	details	of	the	theory	and	instead	examines	the	qualitative	features	of	spacetime	(e.g.,	its	topology

and	causal	structure).

We	divide	the	following	into	three	main	sections.	In	the	first,	we	outline	the	basic	structure	of	relativistic	spacetime

and	record	a	number	of	facts.	In	the	second,	we	consider	a	distinction	between	local	and	global	spacetime

properties	and	provide	important	examples	of	each.	In	the	third,	we	examine	two	clusters	of	global	properties	and

question	which	of	them	should	be	regarded	as	physically	reasonable.	The	properties	concern	“singularities”	and

“time	travel”	and	are	therefore	of	some	philosophical	interest.

2.	Relativistic	Spacetime

We	take	a	(relativistic)	spacetime	to	be	a	pair	(M,	g ).	Here	M	is	a	smooth,	connected,	n-dimensional	(n	≥	2)

manifold	without	boundary.	The	metric	g 	is	a	smooth,	nondegenerate,	pseudo-Riemannian	metric	of	Lorentz

signature	(+,−,…,−)	on	M.

2.1	Manifold	and	Metric

Let	(M,g )	be	a	spacetime.	The	manifold	M	captures	the	topology	of	the	universe.	Each	point	in	the	n-dimensional

manifold	M	represents	a	possible	event	in	space-time.	Our	experience	tells	us	that	any	event	can	be	characterized

by	n	numbers	(one	temporal	and	n	−	1	spatial	coordinates).	Naturally,	then,	the	local	structure	of	M	is	identical	to

ℝ .	But	globally,	M	need	not	have	the	same	structure.	Indeed,	M	can	have	a	variety	of	possible	topologies.

In	addition	to	ℝ ,	the	sphere	S 	is	certainly	familiar	to	us.	We	can	construct	a	number	of	other	manifolds	by	taking

Cartesian	products	of	ℝ 	and	S .	For	example,	the	2-cylinder	is	just	ℝ 	×	S 	while	the	2-torus	is	S 	×	S 	(see	figure

16.1).	Any	manifold	with	a	closed	proper	subset	of	points	removed	also	counts	as	a	manifold.	For	example,	S 	−
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{p}	is	a	manifold	where	p	is	any	point	in	S .

We	say	a	manifold	M	is	Hausdorff	if,	given	any	distinct	points	p,pʹ	∈	M,	one	can	find	open	sets	O	and	Oʹ	such	that

p	∈	O,	pʹ	∈	Oʹ,	and	O	∩	Oʹ	=	∅.	Physically,	Hausdorff	manifolds	ensure	that	spacetime	events	are	distinct.	In	what

follows,	we	assume	that	manifolds	are	Hausdorff.

We	say	a	manifold	is	compact	if	every	sequence	of	its	points	has	an	accumulation	point.	So,	for	example,	S 	and

S 	×	S 	are	compact	while	ℝ 	and	ℝ 	×	S 	are	not.	It	can	be	shown	that	every	noncompact	manifold	admits	a

Lorentzian	metric.	But	there	are	some	compact	manifolds	that	do	not.	One	example	is	the	manifold	S .	Thus,

assuming	spacetime	is	four	dimensional,	we	may	deduce	that	the	shape	of	our	universe	is	not	a	sphere.	One	can

also	show	that,	in	four	dimensions,	if	a	compact	manifold	does	admit	a	Lorentzian	metric	(e.g.,	S 	×	S ),	it	is	not

simply	connected.	(A	manifold	is	simply	connected	if	any	closed	curve	through	any	point	can	be	continuously

deformed	into	any	other	closed	curve	at	the	same	point.)

We	say	two	manifolds	M	and	Mʹ	are	diffeomorphic	if	there	is	a	bijection	φ:	M	→	Mʹ	such	that	φ	and	φ	are	smooth.

Diffeomorphic	manifolds	have	identical	manifold	structure	and	can	differ	only	in	their	underlying	elements.

Figure	16.1 	The	cylinder	ℝ 	×	S 	and	torus	S 	×	S .

Figure	16.2 	Timelike,	null,	and	spacelike	vectors	fall	(respectively)	inside,	on,	and	outside	the	double	cone

structure.

The	Lorentzian	metric	g 	captures	the	geometry	of	the	universe.	Each	point	p	∈	M	has	an	associated	tangent

space	M .	The	metric	g 	assigns	a	length	to	each	vector	in	M .	We	say	a	vector	ξ 	is	timelike	if	g ξ ξ 	〉	0,	null	if

g ξ ξ 	=	0,	and	spacelike	if	g ξ ξ 	〈	0.	Clearly,	the	null	vectors	create	a	double	cone	structure;	timelike	vectors

are	inside	the	cone	while	spacelike	vectors	are	outside	(see	figure	16.1).	In	general,	the	metric	structure	can	vary

over	M	as	long	as	it	does	so	smoothly.	But	it	certainly	need	not	vary	and	indeed	most	of	the	examples	considered

below	will	have	a	metric	structure	that	remains	constant	(i.e.,	a	flat	metric).

For	some	interval	I	⊆	ℝ,a	smooth	curve	γ:	I	→	M	is	timelike	if	its	tangent	vector	ξ 	at	each	point	in	γ[I]	is	timelike.

Similarly,	a	curve	is	null	(respectively,	spacelike)	if	its	tangent	vector	at	each	point	is	null	(respectively,	spacelike).

A	curve	is	causal	if	its	tangent	vector	at	each	point	is	either	null	or	timelike.	Physically,	the	worldlines	of	massive

particles	are	images	of	timelike	curves	while	the	worldlines	of	photons	are	images	of	null	curves.	We	say	a	curve

γ:	I	→	M	is	not	maximal	if	there	is	another	curve	γʹ:	Iʹ	→	M	such	that	I	is	a	proper	subset	of	Iʹ	and	γ(s)	=	γʹ(s)	for	all

s	∈	I.

We	say	a	spacetime	(M,	g )	is	temporally	orientable	if	there	exists	a	continuous	timelike	vector	field	on	M.	In	a

temporally	orientable	spacetime,	a	future	direction	can	be	chosen	for	each	double	cone	structure	in	way	that

involves	no	discontinuities.	A	spacetime	that	is	not	temporally	orientable	can	be	easily	constructed	by	taking	the

underlying	manifold	to	be	the	Möbius	strip.	In	what	follows,	we	will	assume	that	spacetimes	are	temporally

orientable	and	that	a	future	direction	has	been	chosen.
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Naturally,	a	timelike	curve	is	future-directed	(respectively,	past-directed)	if	all	its	tangent	vectors	point	in	the

future	(respectively,	past)	direction.	A	causal	curve	is	future-directed	(respectively,	past-directed)	if	all	its	tangent

vectors	either	point	in	the	future	(respectively,	past)	direction	or	vanish.

Two	spacetimes	(M,g )	and	(Mʹ,	gʹ )	are	isometric	if	there	is	a	diffeomorphism	φ:M	→	Mʹ	such	that	φ 	(g )	=	gʹ .

Here,	φ 	is	a	map	that	uses	φ	to	“move”	arbitrary	tensors	from	M	to	Mʹ.	Physically,	isometric	spacetimes	have

identical	properties.	We	say	a	spacetime	(Mʹ,gʹ )	is	a	(proper)	extension	of	(M,g )	if	there	is	a	proper	subset	N	of

Mʹ	such	that	(M,g )	and	(N,gʹ )	are	isometric.	We	say	a	spacetime	is	maximal	if	it	has	no	proper	extension.	One

can	show	that	every	spacetime	that	is	not	maximal	has	a	maximal	extension.

Finally,	two	spacetimes	(M,g )	and	(Mʹ,gʹ )	are	locally	isometric	if,	for	each	point	p	∈	M,	there	is	an	open

neighborhood	O	of	p	and	an	open	subset	Oʹ	of	Mʹ	such	that	(O,g )	and	(Oʹ,gʹ ,)	are	isometric,	and,

correspondingly,	with	the	roles	of	(M,g )	and	(Mʹ,gʹ )	interchanged.	Although	locally	isometric	spacetimes	can

have	different	global	properties,	their	local	properties	are	identical.	Consider,	for	example,	the	spacetimes	(M,g )

and	(Mʹ,gʹ )	where	M	=	S 	×	S ,	p	∈	M,	Mʹ	=	M	−	{p},	and	g 	and	gʹ 	are	flat.	The	two	are	not	isometric	but	are

locally	isometric.	Therefore,	they	share	the	same	local	properties	but	have	differing	global	structures	(e.g.,	the	first

is	compact	while	the	second	is	not).	One	can	show	that	for	every	spacetime	(M,g ),	there	is	a	spacetime	(Mʹ,gʹ )

such	that	the	two	are	not	isometric	but	are	locally	isometric.

2.2	Influence	and	Dependence

Here,	we	lay	the	foundation	for	the	more	detailed	discussion	of	causal	structure	in	later	sections.	Consider	the

spacetime	(M,g ).	We	define	the	two-place	relations	≪	and	〈	on	the	points	in	M	as	follows:	we	write	p	≪	q

(respectively,	p	〈	q)	if	there	exists	a	future-directed	timelike	(respectively,	causal)	curve	from	p	to	q.	For	any	point

p	∈	M,	we	define	the	timelike	future	(domain	of	influence)	of	p,	as	the	set	I (p)	≡	{q:	p	≪	q}.	Similarly,	the	causal

future	(domain	of	influence)	of	p	is	the	set	J (p)	≡	{q:	p	≪	q}.

The	causal	(respectively,	timelike)	future	of	p	represents	the	region	of	spacetime	that	can	be	possibly	influenced

by	particles	(respectively,	massive	particles)	at	p.	The	timelike	and	causal	pasts	of	p,	denoted	I−(p)	and	J−(p),	are

defined	analogously.	Finally,	given	any	set	S	⊂	M,	we	define	I [S]	to	be	the	set	∪{I (p):	p	∈	S}.	The	sets	I−[S]	and

J [S],	and	J	 [S]	are	defined	analogously.	We	shall	now	list	a	number	of	properties	of	timelike	and	causal	pasts	and

futures.

For	all	p	∈	M,	the	sets	I (p)	and	I−(p)	are	open.	Therefore,	so	are	I [S]	and	I−[S]	for	all	S	⊆	M.	However,	the	sets

J (p),	J−(p),	J [S]	and	J [S]	are	not,	in	general,	either	open	or	closed.	Consider	Minkowski	spacetime 	and	remove

one	point	from	the	manifold.	Clearly,	some	causal	pasts	and	futures	will	be	neither	open	nor	closed.

Figure	16.3 	Cylindrical	Minkowski	spacetime	containing	a	closed	causal	curve	(e.g.,	the	dotted	line)	but	no

closed	timelike	curves.

By	definition,	I 	(p)	⊆J (p)	and	I (p)	⊆	J 	(p).	And	it	is	clear	that	if	p	∈	I (q),	then	q	∈	I−(p)	and	also	that	if	p	∈

I (q),	then	q	∈	I 	(p).	Analogous	results	hold	for	causal	pasts	and	futures.	We	can	also	show	that	if	either	(i)	p	∈	I

(q)	and	q	∈	J (r)	or	(ii)	p	∈	J (q)	and	q	∈	I (r),	then	p	∈	I (r).	Analogous	results	hold	for	the	timelike	and	causal

pasts.	From	this	it	follows	that	 ,	and	 .
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Because	future-directed	casual	curves	can	have	vanishing	tangent	vectors,	it	follows	that	for	all	p,	we	have	p	∈

J (p)	and	p	∈	J (p).	Of	course,	a	similar	result	does	not	hold	generally	for	timelike	futures	and	pasts.	But	there	do

exist	some	spacetimes	such	that,	for	some	p	∈	M,	p	∈	I (p)	(and	therefore	p	∈	I (p)).	Gödel	spacetime	is	one

famous	example	(Gödel	1949).

We	say	the	chronology	violating	region	of	a	spacetime	(M,g )	is	the	(necessarily	open)	set	{p	∈	M:	p	∈	I 	(p)}.

We	say	a	timelike	curve	γ:	I	→	M	is	closed	if	there	are	distinct	points	s,sʹ	∈	I	such	that	γ(s)	=	γ(sʹ).	Clearly,	a

spacetime	contains	a	closed	timelike	curve	if	and	only	if	it	has	a	nonempty	chronology	violating	region.	One	can

show	that,	for	all	spacetimes	(M,g ),	if	M	is	compact,	the	chronology	violating	region	is	not	empty	(Geroch	1967).

The	converse	is	false.	Take	any	compact	spacetime	and	remove	one	point	from	the	underlying	manifold.	The

resulting	spacetime	will	contain	closed	timelike	curves	and	also	fail	to	be	compact.

We	define	a	causal	curve	γ:	I	→	M	to	be	closed	if	there	are	distinct	points	s,sʹ	∈	I	such	that	γ(s)	=	γ(sʹ)	and	γ	has

no	vanishing	tangent	vectors.	It	is	immediate	that	closed	timelike	curves	are	necessarily	closed	causal	curves.	But

one	can	find	spacetimes	that	contain	the	latter	but	not	the	former.	Consider,	for	example,	Minkowski	spacetime

(M,g ),	which	has	been	“rolled	up”	along	one	axis	in	such	a	way	that	some	null	curves	but	no	timelike	curves	are

permitted	to	loop	around	M	(see	figure	16.3).	Other	conditions	relating	to	“almost”	closed	causal	curves	will	be

considered	in	the	next	section.

Finally,	we	say	the	spacetimes	(M,g )	and	(M,gʹ )	are	conformally	related	if	there	is	a	smooth,	strictly	positive

function	Ω:	M	→	ℝ	such	that	gʹ 	=	Ω ,g 	(the	function	Ω	is	called	a	conformal	factor).	Clearly,	if	(M,g )	and

(M,gʹ )	are	conformally	related,	then	for	all	points	p,q	∈	M,	p	∈	I (q)	in	(M,g )	if	and	only	if	p	∈	I (q)	in	(M,gʹ ).

Analogous	results	hold	for	timelike	pasts	and	causal	futures	and	pasts.	Thus,	the	causal	structures	of	conformally

related	spacetimes	are	identical.

A	point	p	∈	M	is	a	future	endpoint	of	a	future-directed	causal	curve	γ	:I	→	M	if,	for	every	neighborhood	O	of	p,

there	exists	a	point	sʹ	∈	I	such	that	γ(s)	∈	O	for	all	s	〉	sʹ.	A	past	endpoint	is	defined	analogously.	For	any	set	S	⊆

M,	we	define	the	future	domain	of	dependence	of	S,	denoted	D (s),	to	be	the	set	of	points	p	∈	M	such	that	every

causal	curve	with	future	endpoint	p	and	no	past	endpoint	intersects	S.	The	past	domain	of	dependence	of	S,

denoted	D (s),	is	defined	analogously.	The	entire	domain	of	dependence	of	S,	denoted	D(s),	is	just	the	set	D (s)	∪

D (s).	If	“nothing	can	travel	faster	than	light,”	there	is	a	sense	in	which	the	physical	situation	at	every	point	in	D(s)

depends	entirely	upon	the	physical	situation	on	S.

Clearly,	we	have	S	⊆	D (s)	⊆	J [S]	and	S	⊆	D (s)	⊆	J [S].	Given	any	point	p	∈	D (S),	and	any	point	q	∈	I [S]	∩

I (p),	we	know	that	q	∈	D 	(S).	An	analogous	result	holds	for	D (s).	One	can	verify	that,	in	general,	D(s)	is	neither

open	nor	closed.	Consider	Minkowski	spacetime	(M,g ).	If	S	=	{p}	for	any	point	p	∈	M,	we	have	D(s)	=	S,	which	is

not	open.	If	S	=	I (p)	∩	I−(q)	for	any	points	p	&	M	and	q	∈	I (p),	we	have	D(s)	=	S,	which	is	not	closed.

A	set	S	⊂	M	is	a	spacelike	surface	if	S	is	a	submanifold	of	dimension	n	−	1	such	that	every	curve	in	S	is	spacelike.

We	say	a	set	S	⊂	M	is	achronal	if	I [S]	∩	S	=	∅.	One	can	show	that	for	an	arbitrary	set	S,	I 	[S]	is	achronal.	In	what

follows,	let	S	be	a	closed,	achronal	set.	We	have	D (s)	∩	I [S]	=	D (S)	∩	I [S]	=	∅.	We	also	have	int(D (S))	=

I [D (S)]	∩	I [S]	and	the	analogous	result	for	D (s).	Finally,	we	have	int(D(s))	=	I [D (S)]	∩	I [D (S)]	=	I [D (S)]

∩	I [D (S)].

We	say	a	closed,	achronal	set	S	is	a	Cauchy	surface	if	D(s)	=	M.	Physically,	conditions	on	a	Cauchy	surface	S

(necessarily	a	submanifold	of	M	of	dimension	n	−	1)	determine	conditions	throughout	spacetime	(Choquet-Bruhat

and	Geroch	1969).	Clearly,	if	S	is	a	Cauchy	surface,	any	causal	curve	without	past	or	future	end-point	must

intersect	S,	I [S],	and	I [S].	One	can	verify	that	Minkowski	spacetime	admits	a	Cauchy	surface.

We	define	the	future	Cauchy	horizon	of	S,	denoted	H (s),	as	the	set	 .	The	past	Cauchy

horizon	of	S	is	defined	analogously.	One	can	verify	that	H 	(s)	and	H 	(s)	are	closed	and	achronal.	The	Cauchy

horizon	of	S,	denoted	H(s),	is	the	set	H (S)	∪	H (s).	We	have	H(s)	=	D(s)	and	therefore	H(s)	is	closed.	Also,	a

nonempty,	closed,	achronal	set	S	is	a	Cauchy	surface	if	and	only	if	H(S)	=	∅.
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Figure	16.4 	Minkowski	spacetime	with	one	point	removed	contains	a	slice	S	but	no	Cauchy	surface.	The

region	above	the	dotted	line	is	not	part	of	D(s).

The	edge	of	a	closed,	achronal	set	S	⊂	M	is	the	set	of	points	p	&	S	such	that	every	open	neighborhood	O	of	p

contains	a	point	q	∈	I (p),	a	point	r	∈	I (p),	and	a	timelike	curve	from	r	to	q	which	does	not	intersect	S.	A	closed,

achronal	set	S	⊂	M	is	a	slice	if	it	is	without	edge.	It	follows	that	every	Cauchy	surface	is	a	slice.	The	converse	is

false.	Consider	Minkowski	spacetime	with	one	point	removed	from	the	manifold.	It	certainly	admits	a	slice	but	no

Cauchy	surface	(see	figure	16.4).	Of	course,	not	every	spacetime	admits	a	slice.	For	a	counterexample,	consider

any	spacetime	that	has	a	chronology	violating	region	identical	to	its	manifold.

3.	Spacetime	Properties

We	say	a	property	P	on	a	spacetime	is	local	if,	given	any	two	locally	isometric	spacetimes	(M,g )	and	(Mʹ,gʹ ),

(M,g )	has	P	if	and	only	if	(Mʹ,gʹ )	has	P.	A	property	is	global	if	it	is	not	local.	Below,	we	will	introduce	and	classify

a	number	of	spacetime	properties	of	interest.

3.1	Local	Properties

The	most	important	local	spacetime	property	is	that	of	being	a	“solution”	to	Einstein's	equation.	There	are	a	number

of	ways	one	can	understand	this	property	and	we	shall	investigate	each	of	them	in	what	follows.

Figure	16.5 	The	vector	η 	is	parallelly	transported	along	a	closed	curve	γ.	Note	that	the	vector	returns	to

the	point	p	orientated	differently.

Let	(M,	g )	be	a	spacetime.	Associated	with	the	metric	g 	is	a	unique	(torsion-free)	derivative	operator	∇ 	such

that	∇ 	=	0.	Given	a	smooth	curve	y:	I	→	M	with	tangent	field	ξ ,	we	say	a	vector)] ,	defined	at	every	point	in

the	range	of	γ,	is	parallelly	transported	along	γ	if	ξ 	∇ η 	=	0	(see	figure	16.1).	We	say	a	smooth	curve	γ:	I	→	ℝ	is

a	geodesic	(i.e.,	nonaccelerating)	if	its	tangent	field	ξ 	is	such	that	ξ 	∇ ξ 	=	0.	Given	any	point	p	∈	M,	there	is

some	neighborhood	O	of	p	such	that	any	two	points	q,r	∈	O	can	be	connected	by	a	unique	geodesic	contained

entirely	in	O.	Such	a	neighborhood	is	said	to	be	convex	normal.

The	derivative	operator	∇ 	can	be	used	to	define	the	Riemann	curvature	tensor.	It	is	the	unique	tensor	 	such

that	for	all	 . 	A	metric	g 	on	M	is	flat	if	and	only	if	its	associated	Riemann	curvature
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tensor	 	vanishes	everywhere	on	M.	The	tensors	 	and	R 	have	a	number	of	useful	symmetries:

,	and	R 	=	R .

We	define	the	Ricci	tensor	R 	to	be	 	and	the	scalar	curvature	R	to	be	 .	The	Einstein	tensor	G 	is	then

defined	as	 .	It	plays	a	central	role	in	what	follows.	One	can	verify	that	∇ 	G 	=	0.

We	suppose	that	the	entire	matter	content	of	the	universe	can	be	characterized	by	smooth	tensor	fields	on	M.	For

example,	a	source-free	electromagnetic	field	is	characterized	by	an	anti-symmetric	tensor	F 	on	M,	which	satisfies

Maxwell's	equations:	∇ F ]	=	0,∇ 	F 	=	0.	Other	forms	of	matter,	such	as	perfect	fluids	and	Klein-Gordon	fields,

are	characterized	by	other	smooth	tensor	fields	on	M.

Associated	with	each	matter	field	is	a	smooth,	symmetric	energy-momentum	tensor	T 	on	M.	For	example,	the

energy-momentum	tensor	T 	associated	with	an	electromagnetic	field	F 	is	 .	Note	that

T 	is	a	function	not	only	of	the	matter	field	itself	but	also	of	the	metric.	Other	matter	fields,	such	as	those

mentioned	above,	will	have	their	own	energy-momentum	tensors	T b.

Fix	a	point	p	∈	M.	The	quantity	T ξ ξ 	at	p	represents	the	energy	density	of	matter	as	given	by	an	observer	with

tangent	ξ 	at	p.	The	quantity	 	at	p	represents	the	spatial	momentum	density	as	given	by	the

same	observer	at	p.	We	require	that	any	energy-momentum	tensor	satisfy	the	conservation	condition:	∇ 	T 	=	0.

Physically,	this	ensures	that	energy-momentum	is	locally	conserved.

Finally,	we	come	to	Einstein's	equation:	G 	=	8π	T . 	It	relates	the	curvature	of	spacetime	with	the	matter

content	of	the	universe.	In	four	dimensions,	Einstein's	equation	can	be	expressed	as	

where	 .

Of	course,	any	spacetime	(M,g )	can	be	thought	of	as	a	trivial	solution	to	Einstein's	equation	if	T 	is	simply

defined	to	be	 .	Note	that	T 	automatically	satisfies	the	conservation	condition,	since	∇ 	G 	=	0.	But,	in

general,	the	energy-momentum	tensor	defined	in	this	way	will	not	be	associated	with	any	known	matter	field.

However,	if	the	T 	so	defined	is	also	the	energy-momentum	tensor	associated	with	a	known	matter	field	(or	the

sum	of	two	or	more	energy	momentum	tensors	associated	with	known	matter	fields)	the	spacetime	is	an	exact

solution.	We	say	an	exact	solution	is	also	a	vacuum	solution	if	T 	=	0.	And,	in	four	dimensions,	one	can	use	the

alternate	version	of	Einstein's	equation	to	show	that	T 	=	0	if	and	only	if	R 	=	0.

Between	trivial	and	exact	solutions,	there	are	the	constraint	solutions.	These	are	spacetimes	whose	associated

energy-momentum	tensors	(defined	via	Einstein's	equation)	satisfy	one	or	more	conditions	of	interest.	Here,	we

outline	three.	We	say	T 	satisfies	the	weak	energy	condition	if,	for	any	future-directed	unit	timelike	vector	ξ 	at

any	point	in	M,	the	energy	density	T 	ξ 	ξ 	is	not	negative.

We	say	T 	satisfies	the	strong	energy	condition	if,	for	any	future-directed	unit	timelike	vector	ξ 	at	any	point	in	M,

the	quantity	 	is	not	negative.	The	strong	energy	condition	can	be	interpreted	as	the

requirement	that	a	certain	effective	energy	density	is	not	negative.	Note	that,	in	four	dimensions,	the	strong	energy

condition	is	satisfied	if	and	only	if	the	(timelike)	convergence	condition,	R 	ξ 	ξ 	≥	0,	is	also	satisfied.	This	latter

condition	can	be	understood	to	assert	that	gravitation	is	attractive	in	nature.

Finally,	we	say	T 	satisfies	the	dominant	energy	condition	if,	for	any	future-directed	unit	timelike	vector	ξ 	at	any

point	in	M,	the	vector	 	is	causal	and	future-directed.	This	last	condition	can	be	interpreted	as	the	requirement

that	matter	cannot	travel	faster	than	light.	Indeed,	if	T 	vanishes	on	some	closed,	achronal	set	S	⊂	M	and	satisfies

the	dominant	energy	and	conservation	conditions,	then	T 	vanishes	on	all	of	D(s)	(Hawking	and	Ellis	1973).

Clearly,	the	dominant	energy	condition	implies	(but	is	not	implied	by)	the	weak	energy	condition.

One	can	show	that	being	a	trivial,	exact,	or	vacuum	solution	of	Einstein's	equation	is	a	local	spacetime	property.	In

addition,	being	a	constraint	solution	is	also	a	local	spacetime	property	if	the	constraint	under	consideration	is	one

of	the	three	energy	conditions	considered	here.

3.2	Global	Properties

A	large	number	of	important	global	properties	concern	either	“causal	structure”	or	“singularities.”	Here	we
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investigate	them.

There	is	a	hierarchy	of	conditions	relating	to	the	causal	structure	of	space-time. 	Each	condition	corresponds	to	a

global	spacetime	property	(the	property	of	satisfying	the	condition).	We	say	a	spacetime	satisfies	the	chronology

condition	if	it	contains	no	closed	timelike	curves	(equivalently,	p	∉	I (p)	for	all	p	∈	M).	A	spacetime	satisfies	the

causality	condition	if	there	are	no	closed	causal	curves	(equivalently,	J 	(p)	∩	J (p)	=	{p}	for	all	p	∈	M).	As

mentioned	previously,	causality	implies	chronology	but	the	implication	does	not	run	in	the	other	direction	(see

figure	16.2).	The	next	few	conditions	serve	to	rule	out	“almost”	closed	causal	curves.

We	say	a	spacetime	(M,g )	satisfies	the	future	distinguishability	condition	if	there	do	not	exist	distinct	points	p,q

∈	M	such	that	I (p)	=	I (q).	The	past	distinguishability	condition	is	defined	analogously.	One	can	show	that	a

spacetime	(M,g )	satisfies	the	future	(respectively,	past)	distinguishability	condition	if	and	only	if,	for	all	points	p	∈

M	and	every	open	set	O	containing	p,	there	is	an	open	set	V	⊂	O	also	containing	p	such	that	no	future

(respectively,	past)	directed	causal	curve	that	starts	at	p	and	leaves	V	ever	returns	to	V.	We	say	a	spacetime

satisfies	the	distinguishability	condition	if	it	satisfies	both	the	past	and	future	distinguishability	conditions.

Future	or	past	distinguishability	implies	causality.	But	the	converse	is	not	true.	Of	course,	distinguishability	implies

past	(or	future)	distinguishability.	But	one	can	certainly	find	spacetimes	that	satisfy	future	(respectively,	past)

distinguishability	but	not	past	(respectively,	future)	distinguishability	(Hawking	and	Ellis	1973).

Consider	two	distinguishing	spacetimes	(M,g )	and	(Mʹ,gʹ )	and	a	bijection	φ	:	M	→	Mʹ	such	that	for	all	p,q	∈	M,	p

∈	I (q)	if	and	only	if	φ	(p)	∈	I (φ(q)).	One	can	show	(Malament	1977)	that	φ	is	a	diffeomorphism	and	φ (g )	=	ω

gʹ 	for	some	conformal	factor	ω:	Mʹ	→	ℝ.	Thus,	if	the	causal	structure	of	spacetime	is	sufficiently	well-behaved,

that	structure	alone	determines	the	shape	of	the	universe,	as	well	as	the	metric	structure	up	to	a	conformal	factor.

We	say	a	spacetime	satisfies	the	strong	causality	condition	if,	for	all	points	p	∈	M	and	every	open	set	O	containing

p,	there	is	an	open	set	V	⊂	O	also	containing	p	such	that	no	causal	curve	intersects	V	more	than	once.	If	a

spacetime	(M,g )	satisfies	strong	causality,	then,	for	every	compact	set	K	⊂	M,	a	causal	curve	γ:	I	→	K	must	have

future	and	past	endpoints	in	K.	Thus,	in	a	strongly	causal	spacetime,	an	inextendible	causal	curve	cannot	be

“imprisoned”	in	a	compact	set.	Clearly,	strong	causality	implies	distinguishability.	One	can	show	that	the	implication

does	not	run	in	the	other	direction	(Hawking	and	Ellis	1973).

Figure	16.6 	Cylindrical	Minkowski	spacetime	with	three	horizontal	lines	removed	as	shown.	The	spacetime

is	strongly	causal	but	not	stably	causal.

A	spacetime	(M,g )	satisfies	the	stable	causality	condition	if	there	is	a	timelike	vector	field	ξ 	on	M	such	that	the

spacetime	(M,	g 	+	ξ 	ξ )	satisfies	the	chronology	condition.	Physically,	even	if	the	light	cones	are	“opened”	by	a

small	amount	at	each	point,	the	spacetime	remains	free	of	closed	timelike	curves.	We	say	a	spacetime	(M,g )

admits	a	global	time	function	if	there	is	a	smooth	function	t:	M	→	ℝ	such	that,	for	any	distinct	points	p,q	∈	M,	if	p	∈

J (q),	then	t(p)	〉	t(q).	The	function	assigns	a	“time”	to	every	point	in	M	such	that	it	increases	along	every

(nontrivial)	future-directed	causal	curve.	An	important	result	is	that	a	spacetime	admits	a	global	time	function	if	and

only	if	it	satisfies	stable	causality	(Hawking	1969).	One	can	also	show	that	stable	causality	implies	strong	causality

but	the	converse	is	false	(see	figure	16.6).

The	remaining	causality	conditions	not	only	require	that	there	be	no	almost	closed	causal	curves	but,	in	addition,

that	there	be	limitations	on	the	kinds	of	“gaps”	in	spacetime	(Hawking	and	Sachs	1974).

We	say	a	spacetime	(M,g )	satisfies	the	causal	continuity	condition	if	it	satisfies	distinguishability	and,	for	all	p,	q

∈	M,	I 	(p)	⊆	I (q)	if	and	only	if	I (q)	⊆	I (p).	Physically,	causal	continuity	ensures	that	points	that	are	close	to	one

another	do	not	have	wildly	different	timelike	futures	and	pasts.	One	can	show	that	causal	continuity	implies	stable
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causality.	The	converse	is	not	true.	A	counterexample	can	be	constructed	by	taking	Minkowski	spacetime	and

excising	from	the	manifold	a	compact	set	with	nonempty	interior.	The	resulting	spacetime	satisfies	stable	causality

but	not	causally	continuity.

A	spacetime	(M,g )	satisfies	the	causal	simplicity	condition	if	it	satisfies	distinguishability	and,	in	addition,	for	all	p

∈	M,	the	sets	J 	(p)	and	J (p)	are	closed.	One	can	show	that	causal	simplicity	implies	causal	continuity.	The

converse	is	false,	since	Minkowski	spacetime	with	a	point	removed	from	the	manifold	satisfies	causal	continuity	but

not	causal	simplicity.

Finally,	we	say	a	spacetime	(M,g )	satisfies	global	hyperbolicity	if	it	satisfies	strong	causality	and,	in	addition,	for

all	p,q	∈	M,	the	set	J 	(p)	⊂	J (q)	is	compact.	A	fundamental	result	is	that	a	spacetime	satisfies	global	hyperbolicity

if	and	only	if	it	admits	a	Cauchy	surface	(Geroch	1970b).	In	addition,	one	can	show	that	the	manifold	of	any

spacetime	that	satisfies	global	hyperbolicity	must	have	the	topology	of	ℝ	×	∑	for	any	Cauchy	surface	∑.	Global

hyperbolicity	implies	causal	simplicity	but	the	converse	is	not	true.	Anti-de	Sitter	spacetime	is	one	counterexample

(Hawking	and	Ellis	1973).

In	sum,	we	have	the	following	implications	(none	of	which	run	in	the	other	direction):	global	hyperbolicity	→	causal

simplicity	→	causal	continuity	→	stable	causality	→	strong	causality	→	distinguishability	→	future	(or	past)

distinguishability	→	causality	→	chronology.

There	are	a	number	of	senses	in	which	a	spacetime	may	be	said	to	contain	a	“singularity.” 	Here,	we	restrict

attention	to	the	most	important	one:	geodesic	incompleteness.	We	say	a	geodesic	γ:	I	→	M	is	incomplete	if	it	is

maximal	and	such	that	I	≠	ℝ.	We	say	a	future-directed	maximal	timelike	or	null	geodesic	γ:	I	→	M	is	future

incomplete	(respectively,	past	incomplete)	if	there	is	a	r	∈	ℝ	such	that	r	〉	S	for	all	s	∈	I.	A	past	incomplete

geodesic	is	defined	analogously.

Naturally,	a	spacetime	is	timelike	geodesically	incomplete	if	it	contains	a	timelike	incomplete	geodesic.	In	a

timelike	geodesically	incomplete	spacetime,	it	is	possible	for	a	nonaccelerating	massive	particle	to	experience	only

a	finite	amount	of	time.	We	can	define	spacelike	and	null	geodesic	incompleteness	analogously.	Finally,	we	say

that	a	spacetime	is	geodesically	incomplete	if	it	is	either	timelike,	spacelike,	or	null	geodesically	incomplete.

If	a	spacetime	has	an	extension,	it	is	geodesically	incomplete.	The	converse	is	false.	Consider	Minkowski

spacetime	(M,g )	and	let	Mʹ	be	the	manifold	M	−	{p}	for	any	p	∈	M.	Let	ω:	Mʹ	→	ℝ	be	a	conformal	factor	that

approaches	zero	as	the	missing	point	p	is	approached.	The	resulting	spacetime	(Mʹ,	ωg )	is	maximal	but

contains	timelike,	spacelike,	and	null	incomplete	geodesics.	Other	maximal	spacetimes	exist	which	are

geodesically	incomplete	and	have	a	flat	metric. 	In	other	words,	one	can	have	singularities	without	any	spacetime

curvature	at	all.	Since	there	are	certainly	flat	spacetimes	that	are	geodesically	complete	(e.g.,	Minkowski

spacetime),	it	follows	that	geodesic	incompleteness	is	a	global	property.	We	mention	in	passing	that	the	property	of

being	maximal	is	also	global.

Finally,	one	can	show	that	timelike,	spacelike,	and	null	incompleteness	are	independent	conditions	in	the	sense

that	there	are	spacetimes	that	are	incomplete	in	any	one	of	the	three	types	and	complete	in	the	other	two	(Geroch

1968).	Additionally,	one	can	show	that	compact	spacetimes	are	not	necessarily	geodesically	complete	(Misner

1963).	These	two	results	suggest	that	geodesic	incompleteness	fails	to	mesh	completely	with	our	notion	of	a	“hole”

in	spacetime.

4.	Which	Properties	are	Reasonable?

So	far,	we	have	provided	examples	of	a	number	of	spacetime	properties.	In	this	section,	we	ask:	Which	properties

are	“physically	reasonable”?

It	is	usually	taken	for	granted	that	“the	normal	physical	laws	we	determine	in	our	spacetime	vicinity	are	applicable

at	all	other	spacetime	points”	(Ellis	1975,	246).	This	assumption	allows	us	to	stipulate	that	the	local	property	of

being	a	solution	to	Einstein's	equation	is	a	physically	reasonable	one.	And	often	this	means	that	we	take	the	energy

conditions	as	necessarily	satisfied.	However,	some	have	argued	that	even	the	energy	conditions	can	be	violated

in	some	physically	reasonable	spacetimes	(Vollick	1997).
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One	global	property	that	is	usually	taken	to	be	physically	reasonable	is	that	spacetime	be	maximal.	Metaphysical

considerations	seem	to	drive	the	assumption.	One	asks	(Geroch	1970a,	262),	“Why,	after	all,	would	Nature	stop

building	our	universe	…	when	She	could	just	as	well	have	carried	on?”	Of	course,	such	reasoning	can	be

questioned	(Earman	1995,	Norton	(2011)).

What	about	the	global	properties	concerning	singularities	and	causal	structure?	Which	of	them	are	to	be

considered	physically	reasonable?

4.1	Singularities

Much	of	the	work	in	global	structure	has	concerned	singularities.	The	task	has	been	to	show,	using	fairly

conservative	assumptions,	that	all	physically	reasonable	spacetimes	must	be	(null	or	timelike)	geodesically

incomplete.	The	project	has	produced	a	number	of	theorems	of	this	type.	Here,	we	examine	an	influential	one	due

to	Hawking	and	Penrose	(1970).

Three	preliminary	conditions	are	crucial	and	each	has	been	taken	to	be	satisfied	by	all	(or	almost	all)	physically

reasonable	spacetimes.	We	shall	temporarily	adopt	these	background	assumptions	in	what	follows.	The	first	is

chronology	(no	closed	timelike	curves).	The	second	is	the	convergence	condition	(R 	ξ 	ξ 	≥	0	for	all	unit	timelike

vectors	ξ ).	Recall	that	the	convergence	condition	is	satisfied	in	four	dimensions	if	and	only	if	the	strong	energy

condition	is.	In	this	section,	we	will	restrict	attention	to	four-dimensional	spacetimes.	The	third	is	the	generic

condition—that	each	causal	geodesic	with	tangent	ξ	 	contains	a	point	at	which	ξ R 	ξ 	ξ 	ξ 	≠	0.	Physically,

the	generic	condition	requires	that	somewhere	along	each	causal	curve	a	certain	effective	curvature	is

encountered.	Although	highly	symmetric	space-times	may	not	satisfy	the	generic	condition	(e.g.,	Minkowski

spacetime),	it	is	thought	to	be	satisfied	by	all	sufficiently	“generic”	ones.	Now,	consider	the	following	statement.

(S)	Any	spacetime	that	satisfies	chronology,	the	convergence	condition,	the	generic	condition,	and,	must

be	timelike	or	null	geodesically	incomplete.

We	seek	to	fill	in	the	blank	with	physically	reasonable	“boundary”	conditions	that	make	(S)	true.	Hawking	and

Penrose	(1970)	considered	three	of	them	(see	also	Earman	1999).

First,	if	the	boundary	condition	is	the	requirement	that	there	exist	a	compact	slice,	(S)	is	true.	So,	a	“spatially

closed”	universe	is	singular	if	it	is	physically	reasonable.	One	can	show	that	the	existence	of	a	compact	slice	is	a

necessary	condition	for	predicting	future	spacetime	events	(Manchak	2008).	Thus,	we	have	the	somewhat

counterintuitive	result	that	prediction	is	possible	in	a	physically	reasonable	spacetime	only	if	singularities	are

present.

Second,	(S)	is	true	if	the	boundary	condition	is	the	requirement	that	there	exist	a	trapped	surface.	A	trapped

surface	is	a	two-dimensional	compact	spacelike	surface	T	such	that	both	sets	of	“ingoing”	and	“outgoing”	future-

directed	null	geodesics	orthogonal	to	T	have	negative	expansion	at	T. 	Physically,	whenever	a	sufficiently	large

amount	of	matter	is	contained	in	a	small	enough	region	of	spacetime,	a	trapped	surface	forms	(Schoen	and	Yau

1983).

Third,	(S)	is	true	if	the	boundary	condition	is	the	requirement	that	there	is	a	point	p	∈	M	such	that	the	expansion

along	every	future	(or	past)	directed	null	geodesic	through	p	is	somewhere	negative.	Physically,	a	spacetime	that

satisfies	this	condition	contains	a	contracting	region	in	the	causal	future	(or	past)	of	a	point.	It	is	thought	that	the

observable	portion	of	our	own	universe	contains	such	a	region	(Ellis	2007).

Additional	examples	of	boundary	conditions	that	make	(S)	true	could	be	multiplied	(Senovilla	1998).	And	instead	of

boundary	conditions,	one	can	also	find	causal	conditions	that	make	(S)	true.	We	mention	one	here.	It	turns	out	that

(S)	is	true	if	the	causal	condition	is	the	requirement	that	stable	causality	is	not	satisfied	(Minguzzi	2009).	Thus,

physically	reasonable	spacetimes	(which	are	assumed	to	be	causally	well	behaved	in	the	sense	that	they	satisfy

chronology)	are	singular	if	they	are	not	too	causally	well	behaved.	One	naturally	wonders	if	it	is	possible	for

physically	reasonable	spacetimes	to	avoid	singularities	if	the	chronology	condition	is	dropped.	But	this	seems

unlikely	(Tipler	1977;	Kriele	1990).

A	large	number	of	physically	reasonable	spacetimes	(including	our	own)	seem	to	satisfy	at	least	one	of	the	above
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mentioned	boundary	conditions	and	hence	contain	singularities.	And	the	worry	has	been	that	these	singularities

can	be	observed	directly—that	they	are	“naked”	in	some	sense.	So,	one	would	like	to	show	that	all	(or	almost	all)

physically	reasonable	spacetimes	do	not	contain	naked	singularities.	This	is	the	“cosmic	censorship”	hypothesis.

There	are	a	number	of	ways	to	formulate	the	hypothesis	(Joshi	1993;	Penrose	1999).	Here,	we	consider	one.

Figure	16.7 	Minkowski	spacetime	with	one	point	removed	is	nakedly	singular.	The	future	incomplete

geodesic	γ,	contained	in	the	timelike	past	of	p,	approaches	the	missing	point.

We	do	not	wish	to	count	a	“big	bang”	singularity	as	naked	and	therefore	restrict	attention	to	future	(rather	than

past)	incomplete	timelike	or	null	geodesics.	We	say	a	spacetime	(M,	g )	is	nakedly	singular	if	there	is	a	point	p	∈

M	and	a	future	incomplete	timelike	or	null	geodesic	γ:	I	→	M	such	that	the	range	of	γ	is	contained	in	I (p)	(see

figure	16.7).

One	can	show	that	a	nakedly	singular	spacetime	does	not	admit	a	Cauchy	surface	(Geroch	and	Horowitz	1979).

Thus,	if	all	physically	reasonable	spacetimes	are	globally	hyperbolic,	then	the	cosmic	censorship	hypothesis	is

true.	And	Penrose	(1969,	1979)	has	suggested	that	one	might	be	able	to	show	the	antecedent	of	this	conditional.

The	idea	would	be	to	show	that	spacetimes	that	fail	to	be	globally	hyperbolic	are	unstable	under	certain	types	of

perturbations.	However,	such	a	claim	is	difficult	to	express	precisely	(Geroch	1971).	And	although	some	evidence

does	seem	to	indicate	that	instabilities	are	present	in	nonglobally	hyperbolic	spacetimes	(Chandrasekhar	and

Hartle	1982),	still	other	evidence	suggests	otherwise	(Morris,	Thorne,	and	Yurtsever	1988).

There	is	also	an	epistemological	predicament	at	issue.	An	observer	never	can	have	the	evidential	resources	to

rule	out	the	possibility	that	his	or	her	spacetime	is	not	globally	hyperbolic—even	under	any	assumptions

concerning	local	spacetime	structure	(Manchak	2011b).	And	how	could	we	ever	know	that	all	physically

reasonable	spacetimes	are	globally	hyperbolic	if	we	cannot	even	be	confident	that	our	own	spacetime	is?

4.2	Time	Travel

If	the	cosmic	censorship	hypothesis	is	false,	there	are	physically	reasonable	space-times	that	do	not	satisfy	global

hyperbolicity	Might	there	be	some	physically	reasonable	spacetimes	that	do	not	even	satisfy	chronology?	We

investigate	the	question	here.

One	way	to	rule	out	a	number	of	chronology-violating	spacetimes	concerns	self-consistency	constraints	on	matter

fields	of	various	types.	Here,	we	examine	source	free	Klein-Gordon	fields.	Let	(M,	g )	be	a	spacetime.	We	say	an

open	set	U	⊂	M	is	causally	regular	if,	for	every	function	φ:	U	→	ℝ	which	satisfies	∇ 	∇ 	φ	=	0,	there	is	a	function	φʹ:

M	→	ℝ	such	that	∇ 	∇ 	φʹ	=	0	and	φʹ.| 	=	φ.	We	say	(M,g )	is	causally	benign	if,	for	every	p	∈	M	and	every	open

set	U	containing	p,	there	is	an	open	set	Uʹ	⊂	U	containing	p	which	is	causally	regular.

It	has	been	argued	that	a	spacetime	that	is	not	causally	benign	is	not	physically	reasonable.	We	certainly	know

that	every	globally	hyperbolic	spacetime	is	causally	benign.	But	although	some	chronology	violating	spacetimes

are	not	causally	benign,	a	number	of	others	are	(Yurtsever	1990;	Friedman	2004).

Given	the	existence	of	causally	benign	yet	chronology	violating	spacetimes,	another	area	of	research	seems

fruitful	to	pursue.	One	wonders	if	chronology	violating	region	can,	in	some	sense,	be	“created”	by	rearranging	the

distribution	and	flow	of	matter	(Stein	1970).	In	other	words,	can	a	physically	reasonable	spacetime	contain	a	“time

machine”	of	sorts?	Here,	we	examine	one	way	of	formalizing	the	question	given	by	Earman,	Smeenk,	and	Wüthrich
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(2009).

First,	in	order	to	count	as	a	time	machine,	a	spacetime	(M,	g )	must	contain	a	spacelike	slice	S	⊂	M	representing	a

“time”	before	the	time	machine	is	switched	on.	Second,	the	spacetime	must	also	have	a	chronology	violating

region	V	after	the	machine	is	turned	on.	So	we	require	V	⊂	J [S].	Finally,	in	order	to	capture	the	idea	that	a	time

machine	must	“create”	a	chronology	violating	region,	every	physically	reasonable	maximal	extension	of	int(D(s))

must	contain	a	chronology	violating	region	Vʹ. 	Consider	the	following	statement.

(T)	There	is	a	spacetime	(M,	g )	with	a	spacelike	slice	S	⊂	M	and	a	chronology	violating	region	V	⊂	J [S]

such	that	every	maximal	extension	of	int(D(s))	which	satisfies	contains	some	chronology	violating	region

Vʹ.

We	seek	to	fill	in	the	blank	with	physically	reasonable	“potency”	conditions	that	make	(T)	true.	And	we	know	from

counterexamples	constructed	by	Krasnikov	(2002)	that	(T)	will	be	false	unless	there	is	a	potency	condition	and	this

condition	limits	spacetime	“holes”	in	some	sense.

But	Hawking	(1992)	has	suggested	that	limiting	holes	may	not	be	enough.	Indeed,	he	conjectured	that	all	physically

reasonable	spacetimes	are	“protected”	from	chronology	violations	and	provided	some	evidence	for	the	claim.	We

say	H (s)	is	compactly	generated	if	all	past	directed	null	geodesics	through	H (s)	enter	and	remain	in	some

compact	set.	Any	spacetime	with	a	slice	S	such	that	H (s)	is	nonempty	and	compactly	generated	does	not	satisfy

strong	causality.	And	Hawking	showed	there	is	no	spacetime	that	satisfies	the	weak	energy	condition	which	has	a

noncompact	slice	S	such	that	H (s)	is	nonempty	and	compactly	generated.

Figure	16.8 	Misner	spacetime.	Every	maximal,	hole-free	extension	of	int(D(s))	(the	region	below	the	dotted

line)	contains	some	chronology	violating	region.

But	some	have	argued	that	insisting	on	a	compactly	generated	Cauchy	horizon	rules	out	some	physically

reasonable	spacetimes	(Ori	1993;	Krasnikov	1999).	And,	of	course,	a	slice	S	need	not	be	noncompact	to	be

physically	reasonable.	Thus,	Hawking's	chronology	protection	conjecture	remains	an	open	question.

Are	there	any	potency	conditions	that	make	(T)	true?	We	say	a	spacetime	(M,g )	is	hole-free	if,	for	any	spacelike

surface	S	in	M	there	is	no	isometric	embedding	θ	:D(S)	→	Mʹ	into	another	spacetime	(Mʹ,	gʹ)	such	that	θ(D(s))	≠

D(θ(S)).	Physically,	hole-freeness	ensures	that,	for	any	spacelike	surface	S,	the	domain	of	dependence	D(s)	is	“as

large	as	it	can	be.”	And	one	can	show	that	any	spacetime	with	one	point	removed	from	the	underlying	manifold

fails	to	be	hole-free.	It	has	been	argued	that	all	physically	reasonable	spacetimes	are	hole-free	(Clarke	1976;

Geroch	1977).	And	it	turns	out	that	(T)	is	true	if	the	potency	condition	is	hole-freeness	(Manchak	2009b).	The	two-

dimensional	spacetime	of	Misner	(1967)	can	be	used	to	prove	the	result	(see	figure	16.8).

However,	hole-freeness	may	not	be	a	physically	reasonable	potency	condition	after	all.	Indeed,	some	maximal,

globally	hyperbolic	models,	including	Minkowski	spacetime,	are	not	hole-free	(Manchak	2009a;	Krasnikov	2009).

But,	another	more	reasonable	“no	holes”	potency	condition	can	be	used	to	make	(T)	true:	the	demand	that,	for	all

p	∈	M,	J (p)	and	J (p)	are	closed	(Manchak	2011a).	Call	this	condition	causal	closedness	and	recall	that	causal

closedness	is	used,	along	with	distinguishability,	to	define	causal	simplicity.

Not	only	is	causal	closedness	satisfied	by	all	globally	hyperbolic	models,	including	Minkowski	spacetime,	but	it	is

also	satisfied	by	many	chronology	violating	spacetimes	as	well	(e.g.,	Gödel	spacetime,	Misner	spacetime).	In	this

sense,	then,	it	is	a	more	appropriate	condition	than	hole-freeness.	But	is	causal	closedness	satisfied	by	all
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physically	reasonable	spacetimes?	The	question	is	open.	So	too	is	the	question	of	which	other	potency	conditions

make	(T)	true.

5.	Conclusion

Here,	we	have	outlined	the	basic	structure	of	relativistic	spacetime.	As	we	have	seen,	general	relativity	allows	for	a

wide	variety	of	global	spacetime	properties—some	of	them	quite	unusual.	And	one	wonders	which	of	these

properties	are	physically	reasonable.

Early	work	focused	on	singularities.	Initially,	a	number	of	results	established	that	all	physically	reasonable

spacetimes	are	geodesically	incomplete.	Next,	the	relationship	between	these	singularities	and	determinism	was

investigated:	Can	a	physically	reasonable	(and	therefore	geodesically	incomplete)	spacetime	fail	to	be	globally

hyperbolic?	The	question	remains	open.

Recently,	focus	has	shifted	somewhat	toward	acausality:	Can	physically	reasonable	spacetimes	contain	closed

timelike	curves?	If	so,	can	these	closed	timelike	curves	be	“created”	in	some	sense	by	rearranging	the	distribution

and	flow	of	matter?	Again,	these	questions	remain	open.
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Notes:

(1)	In	what	follows,	the	reader	is	encouraged	to	consult	Hawking	and	Ellis	(1973),	Geroch	and	Horowitz	(1979),

Wald	(1984),	Joshi	(1993),	and	Malament	(2012).
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(2)	See	Earman	(2008)	for	a	discussion	of	this	condition.

(3)	See	Earman	(2002)	for	a	discussion	of	this	condition.

(4)	Minkowski	spacetime	(M,g )	is	such	that	M	=	ℝ ,	g 	is	flat,	and	there	exist	no	incomplete	geodesics	(defined

below).	See	Hawking	and	Ellis	(1973).

(5)	In	what	follows,	for	any	set	S,	the	sets	 ,	 ,	and	int(S)	denote	the	closure,	boundary,	and	interior	of	S,

respectively

(6)	In	what	follows,	square	brackets	denote	anti-symmetrization.	Parentheses	denote	symmetrization.	See

Malament	(2012).

(7)	Here,	we	drop	the	cosmological	constant	term	−λg 	sometimes	added	to	the	left	side	of	the	equation	for	some

λ	∈	ℝ.	For	more	on	this	term,	see	Earman	(2001).

(8)	Although	we	only	consider	a	small	handful	here,	there	are	an	infinite	number	of	conditions	in	the	causal

hierarchy	(Carter	1971).

(9)	See	Ellis	and	Schmidt	(1977),	Geroch,	Liang,	and	Wald	(1982),	Clarke	(1993),	and	Curiel	(1999)	for	details.

(10)	Here	is	one	example.	Remove	a	point	from	ℝ 	and	take	the	universal	covering	space.	Let	the	resulting

spacetime	manifold	have	a	flat	metric.

(11)	For	a	related	discussion,	see	Hogarth	(1997).

(12)	The	(scalar)	expansion	of	a	congruence	of	null	geodesics	is	a	bit	complicated	to	define	(see	Wald	1984).	But

one	can	get	some	idea	of	the	quantity	by	noting	that	the	expansion	of	a	congruence	of	timelike	geodesics	with	unit

tangent	field	ξ 	is	∇ ξ .

(13)	See	also	Earman	and	Wüthrich	(2010)	and	Smeenk	and	Wüthrich	(2011).

(14)	Here	we	abuse	the	notation	somewhat.	Properly,	we	require	that	every	physically	reasonable	maximal

extension	of	(int(D(s)),g )	must	contain	a	chronology	violating	region	Vʹ.
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Abstract	and	Keywords

This	chapter	addresses	philosophical	questions	raised	in	contemporary	work	on	cosmology.	It	provides	an

overview	of	the	Standard	Model	for	cosmology	and	argues	that	its	deficiency	in	addressing	theories	regarding	the

very	early	universe	can	be	resolved	by	introducing	a	dynamical	phase	of	evolution	that	eliminates	the	need	for	a

special	initial	state.	The	chapter	also	discusses	recent	hypotheses	about	dark	matter	and	energy,	issues	that	it

relates	to	philosophical	debates	about	underdetermination.

Keywords:	cosmology,	Standard	Model,	very	early	universe,	dynamical	phase,	initial	state,	dark	matter,	dark	energy,	underdetermination

1.	Introduction

Cosmology	has	made	enormous	progress	in	the	last	several	decades.	It	is	no	longer	a	neglected	subfield	of

physics,	as	it	was	as	recently	as	1960;	it	is	instead	an	active	area	of	fundamental	research	that	can	boast	of	a

Standard	Model	well-supported	by	observations.	Prior	to	1965	research	in	cosmology	had	a	strikingly	philosophical

tone,	with	debates	focusing	explicitly	on	scientific	method	and	the	aims	and	scope	of	cosmology	(see,	e.g.,	Munitz

1962;	North	1965;	Kragh	1996).	One	might	suspect	that	with	the	maturation	of	the	field	these	questions	have	been

settled,	leaving	little	room	for	philosophers	to	contribute.	Although	the	nature	of	the	field	has	changed	dramatically

with	an	increase	of	observational	knowledge	and	theoretical	sophistication,	there	are	still	ongoing	foundational

debates	regarding	cosmology's	proper	aims	and	methods.	Cosmology	confronts	a	number	of	questions	dear	to	the

hearts	of	philosophers	of	science:	the	limits	of	scientific	explanation,	the	nature	of	physical	laws,	and	different

types	of	underdetermination,	for	example.	There	is	an	opportunity	for	philosophers	to	make	fruitful	contributions	to

debates	in	cosmology	and	to	consider	the	ramifications	of	new	ideas	in	cosmology	for	other	areas	of	philosophy

and	foundations	of	physics.

Due	to	the	uniqueness	of	the	universe	and	its	inaccessibility,	cosmology	has	often	been	characterized	as

“unscientific”	or	inherently	more	speculative	than	other	parts	of	physics.	How	can	one	formulate	a	scientific	theory

of	the	“universe	as	a	whole”?	Even	those	who	reject	skepticism	regarding	cosmology	often	assert	instead	that

cosmology	can	only	make	progress	by	employing	a	distinctive	methodology.	These	discussions,	in	my	view,	have

by	and	large	failed	to	identify	the	source	and	the	extent	of	the	evidential	challenges	faced	by	cosmologists.	There

are	no	convincing,	general	no-go	arguments	showing	the	impossibility	of	secure	knowledge	in	cosmology;	there

are	instead	specific	problems	that	arise	in	attempting	to	gain	observational	and	theoretical	access	to	the	universe.

In	some	cases,	cosmologists	have	achieved	knowledge	as	secure	as	that	in	other	areas	of	physics—arguably,	for

example,	in	the	account	of	big	bang	nucleosynthesis.

Cosmologists	do,	however,	face	a	number	of	distinctive	challenges.	The	finitude	of	the	speed	of	light,	a	basic

feature	of	relativistic	cosmology,	insures	that	global	properties	of	the	universe	cannot	be	established	directly	by

observations	(section	5).	This	is	a	straightforward	limit	on	observational	access	to	the	universe,	but	there	are	other

PDF Compressor Free Version 



Philosophy of Cosmology

Page 2 of 34

obstacles	of	a	different	kind.	Cosmology	relies	on	extrapolating	local	physical	laws	to	hold	universally.	These

extrapolations	make	it	possible	to	infer,	from	observations	of	standard	candles	such	as	Type	Ia	supernovae, 	the

startling	conclusion	that	the	universe	includes	a	vast	amount	of	dark	matter	and	dark	energy.	Yet	the	inference

relies	on	extrapolating	general	relativity	(GR),	and	the	observations	may	reveal	the	need	for	a	new	gravitational

theory	rather	than	new	types	of	matter.	It	is	difficult	to	adjudicate	this	debate	due	to	the	lack	of	independent	access

to	the	phenomena	(section	3).	The	early	universe	(section	6)	is	interesting	because	it	is	one	of	the	few	testing

grounds	for	quantum	gravity.	Without	a	clear	understanding	of	the	initial	state	derived	from	such	a	theory,

however,	it	is	difficult	to	use	observations	to	infer	the	dynamics	governing	the	earliest	stages	of	the	universe's

evolution.	Finally,	it	is	not	clear	how	to	take	the	selection	effect	of	our	presence	as	observers	into	account	in

assessing	evidence	for	cosmological	theories	(section	7).

These	challenges	derive	from	distinctive	features	of	cosmology.	One	such	feature	is	the	interplay	between	global

aspects	of	the	universe	and	local	dynamical	laws.	The	Standard	Model	of	cosmology	is	based	on	extrapolating

local	laws	to	the	universe	as	a	whole.	Yet,	there	may	be	global-to-local	constraints.	The	uniqueness	of	the	universe

implies	that	the	normal	ways	of	thinking	about	laws	of	physics	and	the	contrast	between	laws	and	initial	conditions

do	not	apply	straightforwardly	(section	4).	In	other	areas	of	physics,	the	initial	or	boundary	conditions	themselves

are	typically	used	to	explain	other	things	rather	than	being	the	target	of	explanation.	Many	lines	of	research	in

contemporary	cosmology	aim	to	explain	why	the	initial	state	of	the	Standard	Model	obtained,	but	the	nature	of	this

explanatory	project	is	not	entirely	clear.	And	due	to	the	uniqueness	of	the	universe	and	the	possibility	of	anthropic

selection	effects	it	is	not	clear	what	underwrites	the	assignment	of	probabilities.

What	follows	is	not	a	survey	of	a	thoroughly	explored	field	in	philosophy	of	physics.	There	are	a	variety	of	topics	in

this	area	that	philosophers	could	fruitfully	study,	but	as	of	yet	the	potential	for	philosophical	work	has	not	been	fully

realized. 	The	leading	contributions	have	come	primarily	from	cosmologists	who	have	turned	to	philosophical

considerations	arising	from	their	work.	The	literature	has	a	number	of	detailed	discussions	of	specific	issues,	but

there	are	few	attempts	at	a	more	systematic	approach.	As	a	result,	this	essay	is	an	idiosyncratic	tour	of	various

topics	and	arguments	rather	than	a	survey	of	a	well-charted	intellectual	landscape.	It	is	also	a	limited	tour	and

leaves	out	a	variety	of	important	issues—most	significantly,	the	impact	of	quantum	mechanics	on	issues	ranging

from	the	origin	of	density	perturbations	in	the	early	universe	to	the	possible	connections	between	Everettian	and

cosmological	multiverses.	But	I	hope	that	despite	these	limitations,	this	survey	may	nonetheless	encourage	other

philosophers	to	actualize	the	potential	for	contributions	to	foundational	debates	within	cosmology.

2.	Overview	of	the	Standard	Model

Since	the	early	1970s	cosmology	has	been	based	on	what	Weinberg	(1972)	dubbed	the	“Standard	Model.”	This

model	describes	the	universe's	spacetime	geometry,	material	constituents,	and	their	dynamical	evolution.	The

Standard	Model	is	based	on	extending	local	physics—including	general	relativity,	quantum	physics,	and	statistical

physics—to	cosmological	scales	and	to	the	universe	as	a	whole.	A	satisfactory	cosmological	model	should	be

sufficiently	rich	to	allow	one	to	fix	basic	observational	relations,	and	to	account	for	various	striking	features	of	the

universe,	such	as	the	existence	of	structures	like	stars	and	galaxies,	as	consequences	of	the	underlying

dynamics.

The	Standard	Model	describes	the	universe	as	starting	from	an	extremely	high-temperature	early	state	(the	“big

bang”)	and	then	expanding,	cooling,	and	developing	structures	such	as	stars	and	galaxies.	At	the	largest	scales

the	universe's	spacetime	geometry	is	represented	by	the	expanding	universe	models	of	general	relativity.	The

early	universe	is	assumed	to	begin	with	matter	and	radiation	in	local	thermal	equilibrium,	with	the	stress-energy

dominated	by	photons.	As	the	universe	expands,	different	types	of	particles	“freeze	out”	of	equilibrium,	leaving	an

observable	signature	of	earlier	stages	of	evolution.	Large-scale	structures	in	the	universe,	such	as	galaxies	and

clusters	of	galaxies,	arise	later	via	gravitational	clumping	from	initial	“seeds.”	Here	I	will	give	a	brief	sketch	of	the

Standard	Model	to	provide	the	necessary	background	for	the	ensuing	discussion.

2.1	Expanding	Universe	Models

Einstein	(1917)	introduced	a	strikingly	new	conception	of	cosmology,	as	the	study	of	exact	solutions	of	general

relativity	that	describe	the	spacetime	geometry	of	the	universe.	One	would	expect	gravity	to	be	the	dominant	force
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in	shaping	the	universe's	structure	at	large	scales,	and	it	is	natural	to	look	for	solutions	of	Einstein's	field	equations

(EFE)	compatible	with	astronomical	observations.	Einstein's	own	motivation	for	taking	the	first	step	in	relativistic

cosmology	was	to	vindicate	Mach's	principle. 	He	also	sought	a	solution	that	describes	a	static	universe,	that	is,

one	whose	spatial	geometry	is	unchanging.	He	forced	his	theory	to	accommodate	a	static	model	by	modifying	his

original	field	equations,	with	the	addition	of	the	infamous	cosmological	constant	ʌ.	As	a	result	Einstein	missed	one

of	the	most	profound	implications	of	his	new	theory:	general	relativity	quite	naturally	implies	that	the	universe

evolves	dynamically	with	time.	Four	of	Einstein's	contemporaries	discovered	a	class	of	simple	evolving	models,	the

Friedman-Lemaître-Robertson-Walker	(FLRW)	models,	that	have	proven	remarkably	useful	in	representing	the

spacetime	geometry	of	our	universe.

These	models	follow	from	symmetry	assumptions	that	dramatically	simplify	the	task	of	solving	EFE.	They	require

that	the	spacetime	geometry	is	both	homogeneous	and	isotropic;	this	is	also	called	imposing	the	“cosmological

principle.”	Roughly	speaking,	homogeneity	requires	that	at	a	given	moment	of	cosmic	time	every	spatial	point

“looks	the	same,”	and	isotropy	holds	if	there	are	no	geometrically	preferred	spatial	directions.	These	requirements

imply	that	the	models	are	topologically	 ,	visualizable	as	a	“stack”	of	three-dimensional	spatial	surfaces	Σ(t)

labeled	by	values	of	the	cosmic	time	t.	The	worldlines	of	“fundamental	observers,”	taken	to	be	at	rest	with	respect

to	matter,	are	orthogonal	to	these	surfaces,	and	the	cosmic	time	corresponds	to	the	proper	time	measured	by	the

fundamental	observers.	The	spatial	geometry	of	Σ	is	such	that	there	is	an	isometry	carrying	any	point	p	∈	Σ	to	any

other	point	lying	in	the	same	surface	(homogeneity),	and	at	any	point	p	the	three	spatial	directions	are	isometric

(isotropy).

The	cosmological	principle	tightly	constrains	the	properties	of	the	surfaces	Σ(t).	These	are	three-dimensional

spaces	(Riemannian	manifolds)	of	constant	curvature,	and	all	of	the	surfaces	in	a	given	solution	have	the	same

topology.	If	the	surfaces	are	simply	connected,	there	are	only	three	possibilities	for	Σ:	(1)	spherical	space,	for	the

case	of	positive	curvature;	(2)	Euclidean	space,	for	zero	curvature;	and	(3)	hyperbolic	space,	for	negative

curvature. 	Textbook	treatments	often	neglect	to	mention,	however,	that	replacing	global	isotropy	and

homogeneity	with	local	analogs	opens	the	door	to	a	number	of	other	possibilities.	For	example,	there	are	models	in

which	the	surfaces	Σ	have	finite	volume	but	are	multiply	connected,	consisting	of,	roughly	speaking,	cells	pasted

together. 	Although	isotropy	and	homogeneity	hold	locally	at	each	point,	above	some	length	scale	there	would	be

geometrically	preferred	directions	reflecting	how	the	cells	are	connected.	In	these	models	it	is	in	principle	possible

to	see	“around	the	universe”	and	observe	multiple	images	of	a	single	object,	but	there	is	at	present	no	strong

observational	evidence	of	such	effects.

Imposing	global	isotropy	and	homogeneity	reduces	EFE—a	set	of	10	nonlinear,	coupled	partial	differential

equations—to	a	pair	of	differential	equations	governing	the	scale	factor	R(t)	and	ρ(t),	the	energy	density	of	matter.

The	scale	factor	measures	the	changing	spatial	distance	between	fundamental	observers.	The	dynamics	are	then

captured	by	the	Friedmann	equation: 	(1)

and	(a	special	case	of)	the	Raychaudhuri	equation:	(2)

Ṙ	means	differentiation	with	respect	to	the	cosmic	time	t,	G	is	Newton's	gravitational	constant,	and	ʌ	is	the

cosmological	constant.	The	curvature	of	surfaces	Σ(t)	of	constant	cosmic	time	is	given	by	 ,	where	k	=

−1,0,1	for	negative,	flat,	and	positive	curvature	(respectively).	The	assumed	symmetries	force	the	matter	to	be

described	as	a	perfect	fluid	with	energy	density	ρ	and	pressure	p. 	The	energy	density	and	pressure	are	given	by

the	equation	of	state	for	different	kinds	of	perfect	fluids;	for	example,	for	“pressureless	dust”	p	=	0,	whereas	for

radiation	p	=	ρ/3.	Given	a	specification	of	the	matter	content,	there	exist	unique	solutions	for	the	scale	factor	R(t)

and	the	energy	density	ρ(t)	for	each	type	of	matter	included	in	the	model.

Several	features	of	the	dynamics	of	these	models	are	clear	from	inspection	of	these	equations.	Suppose	we	take

“ordinary”	matter	to	always	have	positive	total	stress-energy	density,	in	the	sense	of	requiring	that	ρ	+	3p	〉	0.

Then,	from	(2),	it	is	clear	that	the	effect	of	such	ordinary	matter	is	to	decelerate	cosmic	expansion,	 —
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reflecting	the	familiar	fact	that	gravity	is	a	force	of	attraction.	But	this	is	only	so	for	ordinary	matter.	A	positive

cosmological	constant	(or	matter	with	negative	stress-energy)	leads,	conversely,	to	accelerating	expansion,	

.	Einstein	satisfied	his	preference	for	a	static	model	by	choosing	a	value	of	ʌ	that	precisely	balances	the

effect	of	ordinary	matter,	such	that	 .	But	his	solution	is	unstable,	in	that	a	slight	concentration	(deficit)	of

ordinary	matter	triggers	run-away	contraction	(expansion).	It	is	difficult	to	avoid	dynamically	evolving	cosmological

models	in	general	relativity.

Restricting	consideration	to	ordinary	matter	and	setting	ʌ	=	0,	the	solutions	fall	into	three	types	depending	on	the

relative	magnitude	of	two	terms	on	the	right-hand	side	of	Eq.	(1),	representing	the	effects	of	energy	density	and

curvature.	For	the	case	of	flat	spatial	geometry	k	=	0,	the	energy	density	takes	exactly	the	value	needed	to

counteract	the	initial	velocity	of	expansion	such	that	Ṙ	→	0	as	t	→	∞.	This	solution	separates	the	two	other	classes:

if	the	energy	density	is	greater	than	critical,	there	is	sufficient	gravitational	attraction	to	reverse	the	initial

expansion,	and	the	spatial	slices	Σ	have	spherical	geometry	(k	=	+1);	if	the	energy	density	is	less	than	critical,	the

sign	of	Ṙ	never	changes,	expansion	never	stops,	and	the	spatial	slices	have	hyperbolic	geometry	(k	=	−1). 	This

simple	picture	does	not	hold	if	ʌ	≠	0,	as	the	behavior	then	depends	on	the	relative	magnitude	of	the	cosmological

constant	term	and	ordinary	matter.

The	equations	above	lead	to	simple	solutions	for	R(t)	for	models	including	a	single	type	of	matter:	for

electromagnetic	radiation,	R(t)	∝	t 	;	for	pressureless	dust	R(t)	∝	t 	;	and	for	a	cosmological	constant,	R(t)	∝

e . 	Obviously,	more	realistic	models	include	several	types	of	matter.	The	energy	density	for	different	types	of

matter	dilutes	with	expansion	at	different	rates:	pressureless	dust—ρ(t)	∝	R 	;	radiation—ρ(t)	∝	R 	;	and	a

cosmological	constant	remains	constant.	As	a	result	of	these	different	dilution	rates,	a	complicated	model	can	be

treated	in	terms	of	a	sequence	of	simple	models	describing	the	effects	of	the	dominant	type	of	matter	on	cosmic

evolution.	At	t	≈	1	second,	the	Standard	Model	describes	the	universe	as	filled	with	matter	and	radiation,	where	the

latter	initially	has	much	higher	energy	density.	Because	the	energy	density	of	radiation	dilutes	more	rapidly	than

that	of	matter,	the	initial	radiation-dominated	phase	is	followed	by	a	matter-dominated	phase	that	extends	until	the

present.	Current	observations	indicate	the	presence	of	“dark	energy”	(discussed	in	more	detail	below)	with

properties	like	a	ʌ	term.	Supposing	these	are	correct,	in	the	future	the	universe	will	eventually	transition	to	a	dark-

energy-dominated	phase	of	exponential	expansion,	given	that	the	energy	density	of	a	ʌ	term	does	not	dilute	at	all

with	expansion.

FLRW	models	with	ordinary	matter	have	a	singularity	at	a	finite	time	in	the	past.	Extrapolating	back	in	time,	given

that	the	universe	is	currently	expanding,	Eq.	(2)	implies	that	the	expansion	began	at	some	finite	time	in	the	past.

The	current	rate	of	expansion	is	given	by	the	Hubble	parameter,	 .	Simply	extrapolating	this	expansion	rate

backward,	R(t)	→	0	at	the	Hubble	time	H 	;	from	Eq.	(2)	the	expansion	rate	must	increase	at	earlier	times,	so	R(t)

→	0	at	a	time	less	than	the	Hubble	time	before	now.	As	this	“big	bang”	is	approached,	the	energy	density	and

curvature	increase	without	bound.	This	reflects	the	instability	of	evolution	governed	by	EFE:	as	R(t)	decreases,	the

energy	density	and	pressure	both	increase,	and	they	both	appear	with	the	same	sign	on	the	right-hand	side	of	Eq.

(2).	It	was	initially	hoped	that	the	singularity	could	be	avoided	in	more	realistic	models	that	are	not	perfectly

homogeneous	and	isotropic,	but	Penrose,	Hawking,	and	Geroch	showed	in	the	1960s	that	singularities	hold	quite

generically	in	models	suitable	for	cosmology.	It	is	essential	for	this	line	of	argument	that	the	model	includes

ordinary	matter	and	no	cosmological	constant;	since	the	ʌ	term	appears	in	Eq.	(2)	with	the	opposite	sign,	one	can

avoid	the	initial	singularity	by	including	a	cosmological	constant	(or	matter	with	a	negative	stress-energy).

One	of	the	most	remarkable	discoveries	in	twentieth-century	astronomy	was	Hubble's	(1929)	observation	that	the

red-shifts	of	spectral	lines	in	galaxies	increase	linearly	with	their	distance. 	Hubble	took	this	to	show	that	the

universe	is	expanding	uniformly,	and	this	effect	can	be	given	a	straightforward	qualitative	explanation	in	the	FLRW

models.	The	FLRW	models	predict	a	change	in	frequency	of	light	from	distant	objects	that	depends	directly	on

R(t). 	There	is	an	approximately	linear	relationship	between	red-shift	and	distance	at	small	scales	for	all	the	FLRW

models,	and	departures	from	linearity	at	larger	scales	can	be	used	to	measure	spatial	curvature.

At	the	length	scales	of	galaxies	and	clusters	of	galaxies,	the	universe	is	anything	but	homogeneous	and	isotropic,

and	the	use	of	the	FLRW	models	involves	a	(usually	implicit)	claim	that	above	some	length	scale	the	average

matter	distribution	is	sufficiently	uniform.	By	hypothesis	the	models	do	not	describe	the	formation	and	evolution	of

inhomogeneities	that	give	rise	to	galaxies	and	other	structures.	Prior	to	1965,	the	use	of	the	models	was	typically
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justified	on	the	grounds	of	mathematical	utility	or	an	argument	in	favor	of	the	cosmological	principle,	with	no

expectation	that	the	models	were	in	more	than	qualitative	agreement	with	observations—	especially	when

extrapolated	to	early	times.	The	situation	changed	dramatically	with	the	discovery	that	the	FLRW	models	provide

an	extremely	accurate	description	of	the	early	universe,	as	revealed	by	the	uniformity	of	the	cosmic	background

radiation	(CBR,	described	below).	The	need	to	explain	why	the	universe	is	so	strikingly	symmetric	was	a	driving

force	for	research	in	early	universe	cosmology	(see	section	6	below).

2.2	Thermal	History

Alvy	Singer's	mother	in	Annie	Hall	is	right:	Brooklyn	is	not	expanding.	But	this	is	not	because	the	cosmic	expansion

is	not	real	or	has	no	physical	effects.	Rather,	in	the	case	of	gravitationally	bound	systems	such	as	the	Earth	or	the

solar	system	the	effects	of	cosmic	expansion	are	far,	far	too	small	to	detect. 	In	many	domains	the	cosmological

expansion	can	be	ignored.	The	dynamical	effects	of	expansion	are,	however,	the	central	theme	in	the	Standard

Model's	account	of	the	thermal	history	of	the	early	universe.

Consider	a	given	volume	of	the	universe	at	an	early	time,	filled	with	matter	and	radiation	assumed	to	be	initially	in

local	thermal	equilibrium. 	The	dynamical	effects	of	the	evolution	of	R(t)	are	locally	the	same	as	slowly	varying	the

volume	of	this	region,	imagining	that	the	matter	and	radiation	are	enclosed	in	a	box	that	expands	(or	contracts)

adiabatically.	For	some	stages	of	evolution	the	contents	of	the	box	interact	on	a	sufficiently	short	timescale	that

equilibrium	is	maintained	through	the	change	of	volume,	which	then	approximates	a	quasi-static	process.	When	the

interaction	timescale	becomes	greater	than	the	expansion	timescale,	however,	the	volume	changes	too	fast	for	the

interaction	to	maintain	equilibrium.	This	leads	to	a	departure	from	equilibrium;	particle	species	“freeze	out”	and

decouple,	and	entropy	increases.	Without	a	series	of	departures	from	equilibrium,	cosmology	would	be	a	boring

subject—the	system	would	remain	in	equilibrium	with	a	state	determined	solely	by	the	temperature,	without	a	trace

of	things	past.	Departures	from	equilibrium	are	of	central	importance	in	understanding	the	universe's	thermal

history.

Two	particularly	important	cases	are	big	bang	nucleosynthesis	and	the	decoupling	of	radiation	from	matter.	The

Standard	Model	describes	the	synthesis	of	light	elements	as	occurring	during	a	burst	of	nuclear	interactions	that

transpire	as	the	universe	falls	from	a	temperature	of	roughly	10 	K,	at	t	≍	3	minutes,	to	10 	K,	at	about	20

minutes. 	Prior	to	this	interval,	any	deuterium	formed	by	combining	protons	and	neutrons	is	photodissociated

before	heavier	nuclei	can	build	up,	whereas	after	this	interval,	the	temperature	is	too	low	to	overcome	the	Coulumb

barriers	between	the	colliding	nuclei.	But	during	this	interval	the	deuterium	nuclei	exist	long	enough	to	serve	as

seeds	for	formation	of	heavier	nuclei	because	they	can	capture	other	nucleons.	Calculating	the	primordial

abundances	of	light	elements	starts	from	an	initial	“soup”	at	t	≍	1	second,	including	neutrons,	protons,	electrons,

and	photons	in	local	thermal	equilibrium. 	Given	experimentally	measured	values	of	the	relevant	reaction	rates,

one	can	calculate	the	change	in	relative	abundances	of	these	constituents	and	the	appearance	of	nuclei	of	the

light	elements.	The	result	of	these	calculations	is	a	prediction	of	light-element	abundances	that	depends	on

physical	features	of	the	universe	at	this	time,	such	as	the	total	density	of	baryonic	matter	and	the	baryon	to	photon

ratio.	Observations	of	primordial	element	abundances	can	then	be	taken	as	constraining	the	cosmological	model's

parameters.	Although	there	are	still	discrepancies	(notably	regarding	Lithium	7)	whose	significance	is	unclear,	the

values	of	the	parameters	inferred	from	primordial	abundances	in	conjunction	with	nucleosynthesis	calculations	are

in	rough	agreement	with	values	determined	from	other	types	of	observations.

As	the	temperature	drops	below	≍	4,000K,	“re-combination”	occurs	as	the	electrons	become	bound	in	stable

atoms. 	As	a	result,	the	rate	of	one	of	the	reactions	keeping	the	photons	and	matter	in	equilibrium	(Compton

scattering	of	photons	off	electrons)	drops	below	the	expansion	rate.	The	photons	decouple	from	the	matter	with	a

black-body	spectrum.	After	decoupling,	the	photons	cool	adiabatically	with	the	expansion,	and	the	temperature

drops	as	T	∝	1/R,	but	the	black-body	spectrum	is	unaffected.	This	“cosmic	background	radiation”	(CBR)	carries	an

enormous	amount	of	information	regarding	the	universe	at	the	time	of	decoupling.	It	is	difficult	to	provide	a	natural,

alternative	explanation	for	the	black-body	spectrum	of	this	radiation.

The	initial	detection	of	the	CBR	and	subsequent	measurements	of	its	properties	played	a	crucial	role	in	convincing

physicists	to	trust	the	extrapolations	of	physics	to	these	early	times,	and	ever	since	its	discovery,	the	CBR	has

been	a	target	for	increasingly	sophisticated	observational	programs.	These	observations	established	that	the	CBR

has	a	uniform	temperature	to	within	1	part	in	10 ,	and	the	minute	fluctuations	in	temperature	provide	empirical
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guidance	for	the	development	of	early	universe	theories.

In	closing,	two	aspects	of	the	accounts	of	the	thermal	history	deserve	emphasis.	First,	the	physics	used	in

developing	these	ideas	has	independent	empirical	credentials.	Although	the	very	idea	of	early	universe	cosmology

was	regarded	as	speculative	when	calculations	of	this	sort	were	first	performed	(Alpher,	Bethe,	and	Gamow	1948),

the	basic	nuclear	physics	was	not.	Second,	treating	the	constituents	of	the	early	universe	as	being	in	local	thermal

equilibrium	before	things	get	interesting	is	justified	provided	that	the	reaction	rates	are	higher	than	the	expansion

rate	at	earlier	times.	This	is	an	appealing	feature,	since	equilibrium	has	the	effect	of	washing	away	dependence	on

earlier	states	of	the	universe.	As	a	result	processes	such	as	nucleosynthesis	are	relatively	insensitive	to	the	state

of	the	very	early	universe.	The	dynamical	evolution	through	nucleosynthesis	is	based	on	well-understood	nuclear

physics,	and	equilibrium	effaces	the	unknown	physics	at	higher	energies.

2.3	Structure	Formation

By	contrast	with	these	successes,	the	Standard	Model	lacks	a	compelling	account	of	how	structures	like	galaxies

formed.	This	reflects	the	difficulty	of	the	subject,	which	requires	integrating	a	broader	array	of	physical	ideas	than

those	required	for	the	study	of	nucleosynthesis	or	the	FLRW	models.	It	also	requires	more	sophisticated

mathematics	and	computer	simulations	to	study	dynamical	evolution	beyond	simple	linear	perturbation	theory.

Newtonian	gravity	enhances	clumping	of	a	nearly	uniform	distribution	of	matter,	as	matter	is	attracted	more

strongly	to	regions	with	above	average	density.	Jeans	(1902)	studied	the	growth	of	fluctuations	in	Newtonian

gravity	and	found	that	fluctuations	with	a	mode	greater	than	a	critical	length	exhibit	instability	and	their	amplitude

grows	exponentially.	The	first	study	of	a	similar	situation	in	general	relativity	(Lifshitz	1946)	showed,	by	contrast,

that	expansion	in	the	FLRW	models	counteracts	this	instability,	leading	to	much	slower	growth	of	initial

perturbations.	Lifshitz	(1946)	concluded	that	the	gravitational	enhancement	picture	could	not	produce	galaxies

from	plausible	“seed”	perturbations	and	rejected	it.	Two	decades	later	the	argument	was	reversed:	given	the

gravitational	enhancement	account	of	structure	formation	(no	viable	alternative	accounts	had	been	discovered),

the	seed	perturbations	had	to	be	much	larger	than	Lifshitz	expected.	Many	cosmologists	adopted	a	more

phenomenological	approach,	using	observational	data	to	constrain	the	initial	perturbation	spectrum	and	other

parameters	of	the	model.

Contemporary	accounts	of	structure	formation	treat	observed	large-scale	structures	as	evolving	by	gravitational

enhancement	from	initial	seed	perturbations.	The	goal	is	to	account	for	observed	properties	of	structures	at	a

variety	of	scales—	from	features	of	galaxies	to	statistical	properties	of	the	large-scale	distribution	of	galaxies—by

appeal	to	the	dynamical	evolution	of	the	seed	perturbations	through	different	physical	regimes.	Harrison,	Peebles,

and	Zel'dovich	independently	argued	that	the	initial	perturbations	should	be	scale	invariant,	that	is,	lacking	any

characteristic	length	scale. 	Assuming	that	these	initial	fluctuations	are	small	(with	a	density	contrast	 ),

they	can	be	treated	as	linear	perturbations	to	a	background	cosmological	model	where	the	dynamical	evolution	of

individual	modes	is	specified	by	general	relativity	As	the	perturbations	grow	in	amplitude	and	reach	 ,

perturbation	theory	no	longer	applies	and	the	perturbation	mode	“separates”	from	cosmological	expansion	and

begins	to	collapse.	In	current	models,	structure	grows	hierarchically	with	smaller	length	scales	going	nonlinear	first.

Models	of	evolution	of	structures	at	smaller	length	scales	(e.g.,	the	length	scales	of	galaxies)	as	the	perturbations

go	nonlinear	incorporate	physics	in	addition	to	general	relativity,	such	as	gas	dynamics,	to	describe	the	collapsing

clump	of	baryonic	matter.

The	current	consensus	regarding	structure	formation	is	called	the	ʌCDM	model.	The	name	indicates	that	the	model

includes	a	nonzero	cosmological	constant	(ʌ)	and	“cold”	dark	matter	(CDM).	(Cold	dark	matter	is	discussed	in	the

next	section.)	The	model	has	several	free	parameters	that	can	be	constrained	by	measurements	of	a	wide	variety

of	phenomena.	The	richness	of	these	evidential	constraints	and	their	mutual	compatibility	provide	some	confidence

that	the	ACDM	model	is	at	least	partially	correct.	There	are,	however,	ongoing	debates	regarding	the	status	of	the

model.	For	example,	arguably	it	does	not	capture	various	aspects	of	galaxy	phenomenology.	Although	I	do	not

have	the	space	to	review	these	debates	here,	it	is	clear	that	current	accounts	of	structure	formation	face	more

unresolved	challenges	and	problems	than	other	aspects	of	the	Standard	Model.
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3.	Dark	Matter	and	Dark	Energy

The	main	support	for	the	Standard	Model	comes	from	its	successful	accounts	of	big	bang	nucleosynthesis,	the

redshift-distance	relation,	and	the	CBR.	But	pushing	these	lines	of	evidence	further	reveals	that,	if	the	Standard

Model	is	basically	correct,	the	vast	majority	of	the	matter	and	energy	filling	the	universe	cannot	be	ordinary	matter.

According	to	the	“concordance	model,”	normal	matter	contributes	≍	4%	of	the	total	energy	density,	with	≍	22%	in

the	form	of	non-baryonic	dark	matter	and	another	≍	74%	in	the	form	of	dark	energy.

Dark	matter	was	first	proposed	based	on	observations	of	galaxy	clusters	and	galaxies. 	Their	dynamical	behavior

cannot	be	accounted	for	solely	by	luminous	matter	in	conjunction	with	Newtonian	gravity.	More	recently,	it	was

discovered	that	the	deuterium	abundance,	calculated	from	big	bang	nucleosynthesis,	puts	a	tight	bound	on	the

total	amount	of	baryonic	matter.	Combining	this	constraint	from	big	bang	nucleosynthesis	with	other	estimates	of

cosmological	parameters	leads	to	the	conclusion	that	there	must	be	a	substantial	amount	of	non-baryonic	dark

matter.	Accounts	of	structure	formation	via	gravitational	enhancement	also	seem	to	require	non-baryonic	cold	dark

matter.	Adding	“cold”	dark	matter	to	models	of	structure	formation	helps	to	reconcile	the	uniformity	of	the	CBR	with

the	subsequent	formation	of	structure.	The	CBR	indicates	that	any	type	of	matter	coupled	to	the	radiation	must

have	been	very	smooth,	much	too	smooth	to	provide	seeds	for	structure	formation.	Cold	dark	matter	decouples

from	the	baryonic	matter	and	radiation	early,	leaving	a	minimal	imprint	on	the	CBR. 	After	recombination,	however,

the	cold	dark	matter	perturbations	generate	perturbations	in	the	baryonic	matter	sufficiently	large	to	seed	structure

formation.

The	first	hint	of	what	is	now	called	“dark	energy”	also	came	in	studies	of	structure	formation,	which	seemed	to

require	a	nonzero	cosmological	constant	to	fit	observational	constraints	(the	ACDM	models).	Subsequent

observations	of	the	redshift-distance	relation,	with	supernovae	(type	Ia)	used	as	a	powerful	new	standard	candle,

led	to	the	discovery	in	1998	that	the	expansion	of	the	universe	is	accelerating. 	This	further	indicates	the	need	for

dark	energy,	namely	a	type	of	matter	that	contributes	to	Eq.	(2)	like	a	ʌ	term,	such	that	 .

Most	cosmologists	treat	these	developments	as	akin	to	Le	Verrier's	discovery	of	Neptune.	In	both	cases,

unexpected	results	regarding	the	distribution	of	matter	are	inferred	from	observational	discrepancies	using	the

theory	of	gravity.	Unlike	the	case	of	Le	Verrier,	however,	this	case	involves	the	introduction	of	new	types	of	matter

rather	than	merely	an	additional	planet.	The	two	types	of	matter	play	very	different	roles	in	cosmology,	despite	the

shared	adjective.	Dark	energy	affects	cosmological	expansion	but	is	irrelevant	on	smaller	scales,	whereas	dark

matter	dominates	the	dynamics	of	bound	gravitational	systems	such	as	galaxies.	There	are	important	contrasts	in

the	evidential	cases	in	their	favor	and	in	their	current	statuses.	Some	cosmologists	have	called	the	concordance

model	“absurd”	and	“preposterous”	because	of	the	oddity	of	these	new	types	of	matter	and	their	huge	abundance

relative	to	that	of	ordinary	matter.	There	is	also	not	yet	an	analog	of	Le	Verrier's	successful	follow-up	telescopic

observations.	Perhaps	the	appropriate	historical	analogy	is	instead	the	“zodiacal	masses”	introduced	to	account

for	Mercury's	perihelion	motion	before	GR.	Why	not	modify	the	underlying	gravitational	theory	rather	than	introduce

one	or	both	of	these	entirely	new	types	of	matter?

The	ongoing	debate	between	accepting	dark	matter	and	dark	energy	vs.	pursuing	alternative	theories	of	gravity

and	cosmology	turns	on	a	number	of	issues	familiar	to	philosophers	of	science.	Does	the	evidence	underdetermine

the	appropriate	gravitational	theory?	At	what	stage	should	the	need	to	introduce	distinct	types	of	matter	with	exotic

properties	cast	doubt	on	the	gravitational	theory	and	qualify	as	anomalies	in	Kuhn's	sense?	How	successful	are

alternative	theories	compared	to	GR	and	the	Standard	Model,	relative	to	different	accounts	of	what	constitutes

empirical	success?	What	follows	is	meant	to	be	a	primer	identifying	the	issues	that	seem	most	relevant	to	a	more

systematic	treatment	of	these	questions.

Confidence	that	GR	adequately	captures	the	relevant	physics	supports	the	mainstream	position,	accepting	dark

matter	and	dark	energy.	The	application	of	GR	at	cosmological	scales	involves	a	tremendous	extrapolation,	but	this

kind	of	extrapolation	of	presumed	laws	has	been	incredibly	effective	throughout	the	history	of	physics.	This

particular	extrapolation,	furthermore,	does	not	extend	beyond	the	expected	domain	of	applicability	of	GR.	No	one

trusts	GR	at	sufficiently	high	energies,	extreme	curvatures,	and	short	length	scales.	Presumably	it	will	be

superseded	by	a	theory	of	quantum	gravity.	Discovering	that	GR	fails	at	low	energies,	low	curvature,	and	large

length	scales—the	regime	relevant	to	this	issue—would,	however,	be	extremely	surprising.	In	fact,	avoiding	dark

matter	entirely	would	require	the	even	more	remarkable	concession	that	Newtonian	gravity	fails	at	low
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accelerations.	In	addition	to	the	confidence	in	our	understanding	of	gravity	in	this	regime,	GR	has	proven	to	be	an

extremely	rigid	theory	that	cannot	be	easily	changed	or	adjusted. 	At	present,	there	is	no	compelling	way	to

modify	GR	so	as	to	avoid	the	need	for	dark	matter	and	dark	energy,	while	at	the	same	time	preserving	GR's	other

empirical	successes	and	basic	theoretical	principles.	(Admittedly	this	may	reflect	little	more	than	a	failure	of

imagination;	it	was	also	not	obvious	how	to	change	Newtonian	gravity	to	avoid	the	need	for	zodiacal	masses.)

The	independence	of	the	different	lines	of	evidence	indicating	the	need	for	dark	matter	and	dark	energy	provides	a

second	powerful	argument	in	favor	of	the	mainstream	position.	The	sources	of	systematic	error	in	estimates	of	dark

matter	from	big	bang	nucleosynthesis	and	galaxy	rotation	curves	(discussed	below),	for	example,	are	quite

different.	Evidence	for	dark	energy	also	comes	from	observations	with	very	different	systematics,	although	they	all

measure	properties	of	dark	energy	through	its	impact	on	spacetime	geometry	and	structure	formation.	Several

apparently	independent	parts	of	the	Standard	Model	would	need	to	be	mistaken	in	order	for	all	these	different	lines

of	reasoning	to	fail.

The	case	for	dark	energy	depends	essentially	on	the	Standard	Model,	but	there	is	a	line	of	evidence	in	favor	of

dark	matter	based	on	galactic	dynamics	rather	than	cosmology.	Estimates	of	the	total	mass	for	galaxies	(and

clusters	of	galaxies),	inferred	from	observed	motions	in	conjunction	with	gravitational	theory,	differ	dramatically

from	mass	estimates	based	on	observed	luminous	matter. 	To	take	the	most	famous	example,	the	orbital	velocities

of	stars	and	gas	in	spiral	galaxies	would	be	expected	to	drop	with	the	radius	as	r 	outside	the	bright	central

region;	observations	indicate	instead	that	the	velocities	asymptotically	approach	a	constant	value	as	the	radius

increases. 	There	are	several	other	properties	of	galaxies	and	clusters	of	galaxies	that	lead	to	similar

conclusions.	The	mere	existence	of	spiral	galaxies	seems	to	call	for	a	dark	matter	halo,	given	that	the	luminous

matter	alone	is	not	a	stable	configuration	under	Newtonian	gravity. 	The	case	for	dark	matter	based	on	these

features	of	galaxies	and	clusters	draws	on	Newtonian	gravity	rather	than	GR.	Relativistic	effects	are	typically

ignored	in	studying	galactic	dynamics,	given	the	practical	impossibility	of	modeling	a	full	galactic	mass	distribution

in	GR.	But	it	seems	plausible	to	assume	that	the	results	of	Newtonian	gravity	for	this	regime	can	be	recovered	as

limiting	cases	of	a	more	exact	relativistic	treatment.

There	is	another	way	of	determining	the	mass	distribution	in	galaxies	and	clusters	that	does	depend	on	GR,	but	not

the	full	Standard	Model.	Even	before	he	had	reached	the	final	version	of	GR,	Einstein	realized	that	light-bending	in

a	gravitational	field	would	lead	to	the	magnification	and	distortion	of	images	of	distant	objects.	This	lensing	effect

can	be	used	to	estimate	the	total	mass	distribution	of	a	foreground	object	based	on	the	distorted	images	of	a

background	object,	which	can	then	be	contrasted	with	the	visible	matter	in	the	foreground	object. 	Estimates	of

dark	matter	based	on	gravitational	lensing	are	in	rough	agreement	with	those	based	on	orbital	velocities	in	spiral

galaxies,	yet	they	draw	on	different	regimes	of	the	underlying	gravitational	theory.

Critics	of	the	mainstream	position	argue	that	introducing	dark	matter	and	dark	energy	with	properties	chosen

precisely	to	resolve	the	mass	discrepancy	is	ad	hoc.	Whatever	the	strength	of	this	criticism,	the	mainstream

position	does	convert	an	observational	discrepancy	in	cosmology	into	a	problem	in	fundamental	physics,	namely

that	of	providing	a	believable	physics	for	dark	matter	and	dark	energy.

In	this	regard	the	prospects	for	dark	matter	seem	more	promising.	Theorists	have	turned	to	extensions	of	the

Standard	Model	of	particle	physics	in	the	search	for	dark	matter	candidates,	in	the	form	of	weakly	interacting

massive	particles.	Although	the	resulting	proposals	for	new	types	of	particles	are	speculative,	there	is	no	shortage

of	candidates	that	are	theoretically	natural	(according	to	the	conventional	wisdom)	and	as	yet	compatible	with

observations.	There	also	do	not	appear	to	be	any	fundamental	principles	that	rule	out	the	possibility	of	appropriate

dark	matter	candidates.

With	respect	to	dark	energy,	by	contrast,	the	discovery	of	accelerating	expansion	has	exacerbated	what	many

regard	as	a	crisis	in	fundamental	physics. 	Dark	energy	can	either	take	the	form	of	a	true	ʌ	term	or	some	field

whose	stress-energy	tensor	effectively	mimics	ʌ.	As	such	it	violates	an	energy	condition	associated	with

“ordinary”	matter,	although	few	theorists	now	take	this	condition	as	inviolable. 	A	more	fundamental	problem

arises	in	comparing	the	observed	value	of	dark	energy	with	a	calculation	of	the	vacuum	energy	density	in	quantum

field	theory	(QFT).	The	vacuum	energy	of	a	quantum	field	diverges.	It	is	given	by	integrating	the	zero-point

contributions	to	the	total	energy,	½ℏω(k)	per	oscillation	mode,	familiar	from	the	quantum	harmonic	oscillator,	over

momentum	(k).	Evaluating	this	quartically	divergent	quantity	by	introducing	a	physical	cutoff	at	the	Planck	scale,
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the	result	is	120	orders	of	magnitude	larger	than	the	observed	value	of	the	cosmological	constant. 	This	is

sometimes	called	the	“old”	cosmological	constant	problem:	Why	isn't	there	a	cancellation	mechanism	that	leads	to

ʌ	=	0?	Post-1998,	the	“new”	problem	concerns	understanding	why	the	cosmological	constant	is	quite	small

(relative	to	the	vacuum	energy	density	calculated	in	QFT)	but	not	exactly	zero,	as	indicated	by	the	accelerating

expansion.

Both	problems	rest	on	the	crucial	assumption	that	the	vacuum	energy	density	in	QFT	couples	to	gravity	as	an

effective	cosmological	constant.	Granting	this	assumption,	the	calculation	of	vacuum	energy	density	qualifies	as

one	of	the	worst	theoretical	predictions	ever	made.	What	turns	this	dramatic	failure	into	a	crisis	is	the	difficulty	of

controlling	the	vacuum	energy	density,	by,	say,	introducing	a	new	symmetry.	Recently,	however,	an	anthropic

response	to	the	problem	has	drawn	increasing	support.	On	this	approach,	the	value	of	ʌ	is	assumed	to	vary	across

different	regions	of	the	universe,	and	the	observed	value	is	“explained”	as	an	anthropic	selection	effect	(we	will

return	to	this	approach	in	section	7	below).

Whether	abandoning	the	assumption	that	the	vacuum	energy	is	“real”	and	gravitates	is	a	viable	response	to	the

crisis	depends	on	two	issues.	First,	what	does	the	empirical	success	of	QFT	imply	regarding	the	reality	of	vacuum

energy?	The	treatment	of	the	scaling	behavior	of	the	vacuum	energy	density	above	indicates	that	vacuum	energy

in	QFT	is	not	fully	understood	given	current	theoretical	ideas.	This	is	not	particularly	threatening	in	calculations	that

do	not	involve	gravity,	since	one	can	typically	ignore	the	vacuum	fluctuations	and	calculate	quantities	that	depend

only	on	relative	rather	than	absolute	values	of	the	total	energy.	This	convenient	feature	also	suggests,	however,

that	the	vacuum	energy	may	be	an	artifact	of	the	formalism	that	can	be	stripped	away	while	preserving	QFT's

empirical	content.	Second,	how	should	the	standard	treatment	of	the	vacuum	energy	from	flat-space	QFT	be

extended	to	the	context	of	the	curved	spacetimes	of	GR?	The	symmetries	of	flat	spacetime	so	crucial	to	the

technical	framework	of	QFT	no	longer	obtain,	and	there	is	not	even	a	clear	way	of	identifying	a	unique	vacuum

state	in	a	generic	curved	spacetime.	Reformulating	the	treatment	of	the	scaling	behavior	of	the	vacuum	energy

density	is	thus	a	difficult	problem.	It	is	closely	tied	to	the	challenge	of	combining	QFT	and	GR	in	a	theory	of	quantum

gravity.	In	QFT	on	curved	spacetimes	(one	attempt	at	combining	QFT	and	GR)	different	renormalization	techniques

are	used	that	eliminate	the	vacuum	energy.	The	question	is	whether	this	approach	simply	ignores	the	problem	by

fiat	or	reflects	an	appropriate	generalization	of	renormalization	techniques	to	curved	spacetimes.	These	two	issues

are	instances	of	familiar	questions	for	philosophers—what	parts	of	a	theory	are	actually	supported	by	its	empirical

success,	and	what	parts	should	be	preserved	or	abandoned	in	combining	it	with	another	theory?	Philosophers

have	offered	critical	evaluations	of	the	conventional	wisdom	in	physics	regarding	the	cosmological	constant

problem,	and	there	are	opportunities	for	further	work.

Returning	to	the	main	line	of	argument,	the	prospects	for	an	analog	of	Le	Verrier's	telescopic	observations	differ	for

dark	matter	and	dark	energy.	There	are	several	experimental	groups	currently	searching	for	dark	matter

candidates,	using	a	wide	range	of	different	detector	designs	and	searching	through	different	parts	of	the	parameter

space	(see,	e.g.,	Sumner	2002).	Successful	detection	by	one	of	these	experiments	would	provide	evidence	for

dark	matter	that	does	not	depend	directly	on	gravitational	theory.	The	properties	of	dark	energy,	by	way	of

contrast,	insure	that	any	attempt	at	a	noncosmological	detection	would	be	futile.	The	energy	density	introduced	to

account	for	accelerated	expansion	is	so	low,	and	uniform,	that	any	local	experimental	study	of	its	properties	is

practically	impossible	given	current	technology.

There	are	different	routes	open	for	those	hoping	to	avoid	dark	energy	and	dark	matter.	Dark	energy	is	detected	by

the	observed	departures	from	the	spacetime	geometry	that	one	would	expect	in	a	matter-dominated	FLRW	model.

Taking	this	departure	to	indicate	the	presence	of	an	unexpected	contribution	to	the	universe's	overall	matter	and

energy	content	thus	depends	on	assuming	that	the	FLRW	models	hold.	There	are	then	two	paths	open	to	those

exploring	alternatives	to	dark	energy.	The	first	is	to	change	the	underlying	gravitational	theory	and	to	base

cosmology	on	an	alternative	to	GR	that	does	not	support	this	inference.	A	second	would	be	to	retain	GR	but	reject

the	FLRW	models.	For	example,	models	that	describe	the	observable	universe	as	having	a	lower	density	than

surrounding	regions	can	account	for	the	accelerated	expansion	without	dark	energy.	Cosmologists	have	often

assumed	that	we	are	not	in	a	“special”	location	in	the	universe.	This	claim	is	often	called	the	“Copernican

principle,”	to	which	we	will	return	in	section	5	below.	This	principle	obviously	fails	in	these	models,	as	our

observable	patch	would	be	located	in	an	unusual	region—a	large	void. 	It	has	also	been	proposed	that	the

accelerated	expansion	may	be	accounted	for	by	GR	effects	that	come	into	view	in	the	study	of	inhomogeneous

models	without	dark	energy.	Buchert	(2008)	reviews	the	idea	that	the	back-reaction	of	inhomogeneities	on	the
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background	spacetime	leads	to	an	effective	acceleration.	These	proposals	both	face	the	challenge	of	accounting

for	the	various	observations	that	are	regarded,	in	the	concordance	model,	as	manifestations	of	dark	energy.

On	the	other	hand,	dark	matter	can	only	be	avoided	by	modifying	gravity—	including	Newtonian	gravity—as

applied	to	galaxies.	Milgrom	(1983)	argued	that	a	modification	of	Newtonian	dynamics	(called	MOND)	successfully

captures	several	aspects	of	galaxy	phenomenology.	According	to	Milgrom's	proposal,	below	an	acceleration

threshold	(a 	≍	10	m/s )	Newton's	second	law	should	be	modified	to	 .	This	modification	accounts	for

observed	galaxy	rotation	curves	without	dark	matter.	But	it	also	accounts	for	a	wide	variety	of	other	properties	of

galaxies,	many	of	which	Milgrom	successfully	predicted	based	on	MOND	(see,	e.g.,	Sanders	and	McGaugh	2002,

Bekenstein	2010	for	reviews).	Despite	these	successes,	MOND	has	not	won	widespread	support.	Even	advocates

of	MOND	admit	that	at	first	blush	it	looks	like	an	extremely	odd	modification	of	Newtonian	gravity.	Yet	it	fares

remarkably	well	in	accounting	for	various	features	of	galaxies—too	well,	according	to	its	advocates,	to	be

dismissed	as	a	simple	curve	fit.	MOND	does	not	fare	as	well	for	clusters	of	galaxies	and	may	have	problems	in

accounting	for	structure	formation.	In	addition	to	these	potential	empirical	problems,	it	is	quite	difficult	to	embed

MOND	within	a	compelling	alternative	to	GR.

In	sum,	it	is	reasonable	to	hope	that	the	situation	with	regard	to	dark	matter	and	dark	energy	will	be	clarified	in	the

coming	years	by	various	lines	of	empirical	investigation	that	are	currently	underway.	The	apparent

underdetermination	of	different	alternatives	may	prove	transient,	with	empirical	work	eventually	forcing	a

consensus.	Whether	or	not	this	occurs,	there	is	also	a	possibility	for	contributions	to	the	debate	from	philosophers

concerned	with	underdetermination	and	evidential	reasoning.	The	considerations	above	indicate	that	even	in	a

case	where	competing	theories	are	(arguably)	compatible	with	all	the	evidence	that	is	currently	available,

scientists	certainly	do	not	assign	equal	credence	to	the	truth	of	the	competitors.	Philosophers	could	contribute	to

this	debate	by	helping	to	articulate	a	richer	notion	of	empirical	support	that	sheds	light	on	these	judgments	(cf.	the

closing	chapter	of	Harper	2012).

4.	Uniqueness	of	the	Universe

The	uniqueness	of	the	universe	is	the	main	contrast	between	cosmology	and	other	areas	of	physics.	The	alleged

methodological	challenge	posed	by	uniqueness	was	one	of	the	main	motivations	for	the	steady-state	theory.	The

claim	that	a	generalization	of	the	cosmological	principle,	the	“perfect	cosmological	principle,”	is	a	precondition	for

scientific	cosmology,	is	no	longer	accepted. 	It	is,	however,	often	asserted	that	cosmology	cannot	discover	new

laws	of	physics	as	a	direct	consequence	of	the	uniqueness	of	its	object	of	study. 	Munitz	(1962)	gives	a	concise

formulation	of	this	common	argument:

With	respect	to	these	familiar	laws	[of	physics]	…	we	should	also	mark	it	as	a	prerequisite	of	the	very

meaning	and	use	of	such	laws	that	we	be	able	to	refer	to	an	actual	or	at	least	possible	plurality	of

instances	to	which	the	law	applies.	For	unless	there	were	a	plurality	of	instances	there	would	be	neither

interest	nor	sense	in	speaking	of	a	law	at	all.	If	we	knew	that	there	were	only	one	actual	or	possible

instance	of	some	phenomenon	it	would	hardly	make	sense	to	speak	of	finding	a	law	for	this	unique

occurrence	qua	unique.	This	last	situation	however	is	precisely	what	we	encounter	in	cosmology.	For	the

fact	that	there	is	at	least	but	not	more	than	one	universe	to	be	investigated	makes	the	search	for	laws	in

cosmology	inappropriate.	(Munitz	1962,	37)

Ellis	(2007)	reaches	a	similar	conclusion:

The	concept	of	“Laws	of	Physics”	that	apply	to	only	one	object	is	questionable.

We	cannot	scientifically	establish	“laws	of	the	universe”	that	might	apply	to	the	class	of	all	such

objects,	for	we	cannot	test	any	such	proposed	law	except	in	terms	of	being	consistent	with	one	object

(the	observed	universe).	(Ellis	2007,	1217,	emphasis	in	the	original)

His	argument	for	this	claim	emphasizes	that	we	cannot	perform	experiments	on	the	universe	by	creating	particular

initial	conditions.	In	many	observational	sciences	(such	as	astronomy)	the	systems	under	study	also	cannot	be

manipulated,	but	it	is	still	possible	to	do	without	experiments	by	studying	an	ensemble	of	instances	of	a	given	type

of	system.	However,	this	is	also	impossible	in	cosmology.
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If	these	arguments	are	correct,	then	cosmology	should	be	treated	as	a	merely	descriptive	or	historical	science	that

cannot	discover	novel	physical	laws.	Both	arguments	rest	on	problematic	assumptions	regarding	laws	of	nature

and	scientific	method.	Here	I	will	sketch	an	alternative	account	that	allows	for	the	possibility	of	testing	cosmological

laws	despite	the	uniqueness	of	the	universe.

Before	turning	to	that	task,	I	should	mention	a	different	source	of	skepticism	regarding	the	possibility	of	scientific

cosmology	based	on	distinctive	laws.	Kant	argued	that	attempts	at	scientific	cosmology	inevitably	lead	to

antinomies	because	no	object	corresponds	to	the	idea	of	the	“universe.”	Relativistic	cosmology	circumvents	this

argument	insofar	as	cosmological	models	have	global	properties	that	are	well-defined,	albeit	empirically

inaccessible.	(This	is	discussed	further	in	section	5.)	Yet	contemporary	worries	resonant	with	Kant	concerning	how

to	arrive	at	the	appropriate	concepts	for	cosmological	theorizing.	Smolin	(2000)	criticizes	relativistic	cosmology	for

admitting	such	global	properties	and	proposes	instead	that:	“Every	quantity	in	a	cosmological	theory	that	is

formally	an	observable	should	in	fact	be	measurable	by	some	observer	inside	the	universe.” 	A	different	question

arises,	for	example,	in	extrapolating	concepts	to	domains	such	as	the	early	universe.	Rugh	and	Zinkernagel	(2009)

argue	that	there	is	no	physical	footing	for	spacetime	concepts	in	the	very	early	universe	due	to	the	lack	of

physical	processes	that	can	be	used	to	determine	spacetime	scales.

Munitz's	formulation	makes	his	assumptions	about	the	relationship	between	laws	and	phenomena	clear:	the

phenomena	are	instances	of	the	law,	just	as	Fa	∧	Ga	would	be	an	instance	of	the	“law”	∀x(Fx	→	Gx).	Even	if	we

grant	this	conception	of	laws,	Munitz's	argument	would	only	apply	to	a	specific	kind	of	cosmological	law.	If	we	take

EFE	as	an	example	of	a	“cosmological	law,”	then	it	has	multiple	instantiations	in	the	straightforward	sense	that

every	subregion	of	a	solution	of	EFE	is	also	a	solution. 	The	same	holds	for	other	local	dynamical	laws	applicable

in	cosmology,	such	as	those	of	QFT.	A	single	universe	has	world	enough	for	multiple	instantiations	of	the	local

dynamics.	This	is	true	as	well	of	laws	whose	effects	may	have,	coincidentally,	only	been	important	within	some

finite	subregion	of	the	universe.	For	example,	consider	a	theory,	such	as	inflation	(see	section	6	below),	whose

implications	are	only	manifest	in	the	early	universe.	The	laws	of	this	theory	would	be	“instantiated”	again	if	we

were	ever	able	to	reach	sufficiently	high	energy	levels	in	an	experimental	setting.	Although	the	theory	may	in

practice	only	have	testable	implications	“once,”	it	has	further	counterfactual	implications.	Munitz's	argument	would

apply,	however,	to	cosmological	laws	that	are	formulated	directly	in	terms	of	global	properties,	as	opposed	to	local

dynamical	laws	extrapolated	to	apply	to	the	universe	as	a	whole.	Subregions	of	the	universe	would	not	count	as

instantiations	of	a	“global	law”	in	the	same	sense	that	they	are	instantiations	of	the	local	dynamical	laws.	Penrose's

Weyl	curvature	hypothesis	(proposed	in	Penrose	1979)	is	an	example	of	such	a	law. 	This	law	is	formulated	as	a

constraint	on	initial	conditions	and	it	does	differ	strikingly	in	character	from	local	dynamical	laws.

Phenomena	are	not,	however,	“instantiations”	of	laws	of	nature	in	Munitz's	straightforward	logical	sense.	Treating

them	as	such	attributes	to	the	laws	empirical	content	properly	attributed	only	to	equations	derived	from	the	laws

with	the	help	of	supplementary	conditions. 	A	simple	example	should	help	to	make	this	contrast	clear.	Newton's

three	laws	of	motion	must	be	combined	with	other	assumptions	regarding	the	relevant	forces	and	distribution	of

matter	to	derive	a	set	of	equations	of	motion,	describing,	say,	the	motion	of	Mars	in	response	to	the	Sun's

gravitational	field.	It	is	this	derived	equation	describing	Mars's	motion	that	is	compared	to	the	phenomena	and	used

to	calculate	the	positions	of	Mars	given	some	initial	conditions.	The	motion	of	Mars	is	not	an	“instance”	of	Newton's

laws;	rather,	the	motion	of	Mars	is	well	approximated	by	a	solution	to	an	equation	derived	from	Newton's	laws	along

with	a	number	of	other	assumptions.

Ellis's	argument	does	not	explicitly	rest	on	a	conception	of	phenomena	as	instantiations	of	laws.	But	he	and	Munitz

both	overlook	a	crucial	aspect	of	testing	laws.	Continuing	with	the	same	example,	there	is	no	expectation	that	at	a

given	stage	of	inquiry	one	has	completely	captured	the	motion	of	Mars	with	a	particular	derived	equation,	even	as

further	physical	effects	(such	as	the	effects	of	other	planets)	are	included.	The	success	of	Newton's	theory	(in	this

case)	consists	in	the	ability	to	give	more	and	more	refined	descriptions	of	the	motion	of	Mars,	all	based	on	the	three

laws	of	motion	and	the	law	of	gravity.	This	assessment	does	not	depend	primarily	on	“multiplicity	of	instances,”

experimental	manipulation,	or	observation	of	other	members	of	an	ensemble.	Instead,	the	modal	force	of	laws	is

reflected	in	their	role	in	developing	a	richer	account	of	the	motions.	Due	to	this	role	they	can	be	subject	to	ongoing

tests.

The	standard	arguments	that	it	is	not	possible	to	discover	laws	in	cosmology	assume	that	the	universe	is	not	only

unique,	but	in	effect	“given”	to	us	entirely,	all	at	once—leaving	cosmologists	with	nothing	further	to	discover,	and
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no	refinements	to	make	and	test.	A	novel	law	in	cosmology	could	be	supported	by	its	success	in	providing

successively	more	refined	descriptions	of	some	aspect	of	the	universe's	history,	just	as	Newtonian	mechanics	is

supported	(in	part)	by	its	success	in	underwriting	research	related	to	the	solar	system.	This	line	of	argument,	if

successful,	shows	that	cosmological	laws	are	testable	in	much	the	same	sense	as	Newton's	laws.	This	suggests

that	“laws	of	the	universe”	should	be	just	as	amenable	to	an	empiricist	treatment	of	the	laws	of	nature	as	are	other

laws	of	physics.

None	of	this	is	to	say	that	there	are	no	distinctive	obstacles	to	assessing	cosmo-logical	laws.	But	we	need	to

disentangle	obstacles	that	arise	due	to	specific	features	of	our	universe	from	those	that	follow	from	the	uniqueness

of	the	object	of	study.	Consider	(contrary	to	the	Standard	Model)	a	universe	that	reached	some	finite	maximum

temperature	as	t	→	0,	and	suppose	(perhaps	more	absurdly)	that	physicists	in	this	universe	had	sufficient	funds	to

build	accelerators	to	probe	physics	at	this	energy	scale.	Many	of	the	challenges	faced	in	early	universe

cosmology	in	our	universe	would	not	arise	for	cosmologists	in	this	other	possible	universe.	They	would	have

independent	lines	of	evidence	(from	accelerator	experiments	and	observations	of	the	early	universe)	to	aid	in

reconstructing	the	history	of	the	early	universe,	rather	than	basing	their	case	in	favor	of	novel	physics	solely	on	its

role	in	the	reconstruction.	This	suggests	that	obstacles	facing	cosmology	have	to	do	primarily	with	theoretical	and

observational	accessibility,	which	may	be	exacerbated	by	uniqueness,	rather	than	with	uniqueness	of	the	universe

per	se.

5.	Global	Structure

The	Standard	Model	takes	the	universe	to	be	well-approximated	by	an	FLRW	model	at	sufficiently	large	scales.	To

what	extent	can	observations	determine	the	spacetime	geometry	of	the	universe	directly?	The	question	can	be

posed	more	precisely	in	terms	of	the	region	visible	to	an	observer	at	a	location	in	spacetime	p—the	causal	past,

J (p),	of	that	point.	This	set	includes	all	points	from	which	signals	traveling	at	or	below	the	speed	of	light	can	reach

p. 	What	can	observations	confined	to	J (p)	reveal	about:	(1)	the	spacetime	geometry	ofJ 	(p)	itself,	and	(2)	the

rest	of	spacetime	outside	of	J (p)?	Here	we	will	consider	these	questions	on	the	assumption	that	GR	and	our	other

physical	theories	apply	universally,	setting	aside	debates	(such	as	those	in	section	3)	about	whether	these	are	the

correct	theories.	How	much	do	these	theories	allow	us	to	infer,	granting	their	validity?

Spacetime	geometry	is	reflected	in	the	motion	of	astronomical	objects	and	in	effects	on	the	radiation	they	emit,

such	as	cosmological	red-shift.	To	what	extent	would	the	spacetime	geometry	be	fixed	by	observations	of	an

“ideal	data	set,”	consisting	of	comprehensive	observations	of	a	collection	of	standard	objects,	with	known	intrinsic

size,	shape,	mass,	and	luminosity,	distributed	throughout	the	universe?	Of	course	astronomers	cannot	avail

themselves	of	such	a	data	set.	Converting	the	actual	data	recorded	by	observatories	into	a	map	of	the	universe,

filled	with	different	kinds	of	astronomical	objects	with	specified	locations	and	states	of	motion,	is	an	enormously

difficult	task.	The	difficulty	of	completing	this	task	poses	one	kind	of	epistemic	limitation	to	cosmology.	Exploring	this

limitation	would	require	delving	into	the	detailed	astrophysics	used	to	draw	conclusions	regarding	the	nature,

location,	and	motion	of	distant	objects.	This	kind	of	limitation	contrasts	with	one	arising	from	a	different	source,

namely	that	we	have	an	observational	window	on	J (p)	rather	than	the	entire	spacetime.	Even	if	we	had	access	to

an	ideal	data	set,	what	we	can	observe	is	not	sufficient	to	answer	questions	regarding	global	spacetime	geometry

unless	we	accept	further	principles	underwriting	local-to-global	inferences.

The	modest	goal	of	pinning	down	the	geometry	of	J (p)	observationally	can	be	realized	by	observers	with	the	ideal

data	set	mentioned	above	(see	Ellis	1980;	Ellis	et	al.	1985).	The	relevant	evidence	comes	from	two	sources:	the

radiation	emitted	by	distant	objects	reaching	us	along	our	null	cone,	and	evidence,	such	as	geophysical	data,

gathered	from	“along	our	world	line,”	so	to	speak.	Ellis	et	al.	(1985)	prove	that	the	ideal	data	set	is	necessary	and

sufficient,	in	conjunction	with	EFE	and	a	few	other	assumptions,	to	determine	the	spacetime	geometry	of	J (p).

Considering	the	ideal	data	set	helps	to	clarify	the	contrast	between	what	we	can	in	principle	determine	locally,

namely	the	spacetime	geometry	of	J (p),	and	what	we	can	determine	globally.

For	points	p,	q	with	nonintersecting	causal	pasts,	we	would	not	expect	the	physical	state	on	J 	(p)	to	fix	that	of	J

(q). 	Does	the	spacetime	geometry	of	J (p),	or	of	a	collection	of	such	sets,	nonetheless	constrain	the	large-scale

or	global	properties	of	spacetime?	Global	properties	of	spacetime	vary	in	general	relativity,	because	unlike	earlier

theories	such	as	Newtonian	mechanics,	spacetime	is	treated	as	dynamical	rather	than	as	a	fixed	background.	EFE
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impose	a	local	constraint	on	the	spacetime	geometry,	but	this	is	compatible	with	a	wide	variety	of	global

properties. 	Various	global	properties	have	been	defined	as	part	of	stating	and	proving	theorems	such	as	the

singularity	theorems,	including	“causality	conditions”	that	specify	the	extent	to	which	a	spacetime	deviates	from

the	causal	structure	of	Minkowski	spacetime	(see	Geroch	and	Horowitz	1979	for	a	clear	introduction).	For	example,

a	globally	hyperbolic	spacetime	possesses	a	Cauchy	surface,	a	null	or	spacelike	surface	∑	intersected	exactly

once	by	every	inextendible	timelike	curve.	In	a	spacetime	with	a	Cauchy	surface,	EFE	admit	a	well-posed	initial

value	formulation:	specifying	appropriate	initial	data	on	a	Cauchy	surface	∑	determines	a	unique	solution	to	the

field	equations	(up	to	diffeomorphism).	This	is	properly	understood	as	a	global	property	of	the	entire	spacetime.

Although	submanifolds	of	a	given	spacetime	may	be	compatible	or	incompatible	with	global	hyperbolicity,	this

property	cannot	be	treated	as	a	property	ascribed	to	local	regions	and	then	“added	up”	to	deliver	a	global

property.

What	does	J (p)	reveal	about	the	rest	of	spacetime?	Suppose	we	do	not	impose	any	strong	global	assumptions

such	as	isotropy	and	homogeneity.	Fully	specifying	the	physical	state	in	the	region	J 	(p)	places	few	constraints	on

the	global	properties	of	spacetime.	This	is	clear	if	we	consider	what	is	shared	by	all	the	spacetimes	into	which	J (p)

can	be	isometrically	embedded,	where	we	allow	p	to	be	any	point	in	a	given	spacetime. 	(That	is,	we	shift	from

considering	the	causal	past	of	a	single	observer	to	the	causal	past	of	all	possible	observers	in	the	spacetime.)	Call

this	the	set	of	spacetimes	“observationally	indistinguishable”	(OI)	from	a	given	spacetime.	Except	for	the

exceptional	case	where	there	is	a	p′	such	that,	like	Borges's	Aleph,	J (p′)	includes	the	entire	spacetime,	there	is	a

technique	(due	to	Malament	1977;	Manchak	2009)	for	constructing	OI	counterparts	that	do	not	share	all	the	global

properties	of	the	original	spacetime. 	The	property	of	having	a	Cauchy	surface,	for	example,	will	not	be	shared	by

all	the	members	of	a	set	of	OI	spacetimes.	More	generally,	the	only	properties	that	will	be	held	in	common	in	all

members	of	the	set	of	OI	spacetimes	are	those	that	can	be	conclusively	established	by	a	single	observer

somewhere	in	the	spacetime.

The	scope	of	underdetermination	can	be	reduced	by	imposing	constraints	that	eliminate	potential	OI	spacetimes.

Consider,	for	example,	restricting	consideration	to	spacetimes	that	are	spatially	homogeneous.	The	isometries	on	∑

(implied	by	homogeneity),	which	carry	any	point	on	∑	into	any	other,	apparently	block	the	construction	of	an

indistinguishable	counterpart	with	different	global	properties. 	Homogeneity	is	just	one	example	of	a	global

property	that	could	be	imposed.	Whatever	property	is	imposed	to	eliminate	underdetermination,	it	must	be	global	to

be	effective	given	that	the	technique	for	constructing	indistinguishable	counterparts	preserves	local	properties.

This	line	of	argument	clarifies	the	“cosmological	principle.”	The	cosmological	principle	is	the	strongest	of	many

possible	“uniformity	principles”	or	global	stipulations	that	allow	local-to-global	inferences.	If	we	require	only	that	the

J (p)	sets	for	all	observers	can	be	embedded	in	a	cosmological	model,	then	the	global	properties	of	spacetime	are

radically	underdetermined.	Introducing	different	constraints	on	the	construction	of	the	indistinguishable

counterparts	mitigates	the	degree	of	underdetermination.	The	cosmological	principle	is	the	strongest	of	these

constraints—strong	enough	to	eliminate	the	underdetermination:	every	observer	can	take	their	limited	view	on	the

universe	as	accurately	reflecting	its	global	properties.

Figure	17.1 	This	figure	contrasts	the	standard	big	bang	model	(a)	and	Ellis,	Maartens,	and	Nel's	(1978)
model	(b);	in	the	latter,	a	cylindrical	timelike	singularity	surrounds	an	observer	O	located	near	the	axis	of
symmetry,	and	the	constant	time	surface	t 	from	which	the	CBR	is	emitted	in	the	standard	model	is
replaced	with	a	surface	r 	at	fixed	distance	from	O.

However,	this	merely	pushes	the	original	question	back	one	step:	What	grounds	do	we	have	for	imposing	such	a

global	constraint	on	spacetime? 	It	is	unappealing	to	simply	assert	that	the	cosmological	principle	holds	a	priori,	or

to	treat	it	as	a	precondition	for	cosmological	theorizing.	But	one	may	hope	to	justify	the	principle	by	appealing	to	a
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weaker	general	principle	in	conjunction	with	theorems	relating	homogeneity	and	isotropy	Global	isotropy	around

every	point	implies	global	homogeneity,	and	it	is	natural	to	seek	a	similar	theorem	with	a	weaker	antecedent

formulated	in	terms	of	observable	quantities.	The	Ehlers-Geren-Sachs	(EGS)	theorem	(Ehlers,	Geren,	and	Sachs,

1968)	shows	that	if	all	fundamental	observers	in	an	expanding	model	find	that	freely	propagating	background

radiation	is	exactly	isotropic,	then	their	spacetime	is	an	FLRW	model. 	If	our	causal	past	is	“typical,”	observations

along	our	worldline	will	constrain	what	other	observers	should	see.	This	assumption	is	often	called	the	“Copernican

principle,”	which	requires	that	no	point	p	is	distinguished	from	other	points	q	by	any	spacetime	symmetries.	This

principle	rules	out	models	such	as	Ellis,	Maartens	and	Nel's	(1978)	example	of	a	“cylindrical”	counterpart	to	the

observed	universe	(see	figure	17.1). 	(This	example	illustrates	the	tension	between	the	Copernican	principle	and

anthropic	reasoning	(see	section	7	below).	Ellis,	Maartens,	and	Nel	point	out	that	in	their	model	one	would	only

expect	to	find	observers	near	the	axis	of	symmetry	of	the	model,	as	that	is	the	only	region	hospitable	to	life.)

Combining	the	observed	near	isotropy	of	the	CBR,	the	EGS	theorem,	and	the	Copernican	principle	yields	an

argument	in	favor	of	the	approximate	validity	of	the	FLRW	models.

Alternatively,	one	could	dispense	with	the	Copernican	principle	and	its	ilk	by	showing	that	an	early	phase	of	the

universe's	evolution	leads	to	an	approximately	FLRW	universe.	This	was	the	aim	of	Misner's	“chaotic	cosmology”

program	launched	shortly	after	the	discovery	of	the	CBR,	an	aim	taken	up	with	greater	acclaim	by	inflationary

cosmology	(see	section	6	below).	If	this	approach	succeeds,	then	homogeneity	and	isotropy	over	some	length

scale	would	be	a	consequence	of	underlying	physics,	effectively	replacing	a	priori	principles	regarding	the

uniformity	of	nature	with	factual	claims	about	the	universe's	evolution.	The	warrant	for	an	inductive	inference

regarding	distant	regions	of	the	universe	would	then	depend	on	the	justification	for	this	account.	Note,	however,

that	the	account	may	not	justify	the	conclusion	that	the	universe	is	globally	almost-FLRW.	In	the	case	of	inflation,

for	example,	homogeneity	and	isotropy	hold	in	the	interior	of	an	inflationary	bubble	(which	could	be	much	larger

than	J (p)),	but	the	universe	at	much	larger	scales	has	dramatic	nonuniformities	(bubble	walls,	colliding	bubbles,

regions	between	the	bubbles,	and	so	on).

The	Copernican	principle	has	come	under	increased	scrutiny	recently	due	to	its	role	in	the	case	for	dark	energy.

Departures	from	an	FLRW	geometry	could	simply	indicate	the	failure	of	the	models	rather	than	the	presence	of	a

new	kind	of	matter.	Recently	there	have	been	two	suggestions	for	ways	to	test	the	Copernican	principle	on	scales

comparable	to	the	observable	universe.	First,	the	Sunyaev-Zel'dovich	effect 	can	be	used	to	indirectly	measure

the	isotropy	of	the	CBR	as	observed	from	distant	points.	Any	anisotropies	in	the	CBR	as	seen	at	a	distant	point	q	will

be	reflected	in	a	temperature	difference	in	the	scattered	radiation;	the	distortion	in	the	observed	black-body

spectrum	in	principle	reveals	the	failure	of	isotropy	from	distant	points	not	on	our	worldline	(Caldwell	and	Stebbins,

2008).	This	allows	one	to	prove	that	the	local	universe	is	almost-FLRW	based	on	an	EGS	theorem	and	observations

of	the	CBR	without	invoking	the	Copernican	principle	(Clifton,	Clarkson,	and	Bull,	2011).	A	second	test	of	the

Copernican	principle	is	based	on	a	consistency	relation	between	several	observables	that	holds	in	the	FLRW

models	(Uzan,	Clarkson,	and	Ellis,	2008).

These	discussions	focus	on	whether	J (p)	can	be	well	approximated	by	an	FLRW	model.	This	question	is	closely

tied	to	assessing	the	case	for	dark	energy	and	in	determining	the	parameters	of	the	Standard	Model.	What	are	the

further	implications	if	the	universe	is	almost-FLRW	on	much	larger	scales,	or	if	the	cosmological	principle	holds

globally	throughout	all	of	spacetime?	More	generally,	what	are	the	empirical	stakes	of	determining	the	global

properties	of	spacetime?	Some	global	spacetime	properties	are	plausibly	treated	as	preconditions	for	the	possibility

of	formulating	local	dynamical	laws. 	And	the	global	properties	are	obvious	candidates	for	fundamental	features	of

spacetime	from	a	realist's	point	of	view.	Proofs	of	the	singularity	theorems	require	assumptions	regarding	global

causal	structure.	Further,	the	origin	and	eventual	fate	of	the	universe	are	quite	different	in	a	globally	almost-FLRW

model	and	in	an	observationally	indistinguishable	counterpart	to	it.	Yet	despite	all	of	this,	there	is	a	clear	contrast

between	claiming	that	the	observable	universe	is	almost-FLRW	and	the	extension	of	that	to	a	global	claim	regarding

all	of	spacetime.	The	former	plays	a	fundamental	role	in	evidential	reasoning	in	contemporary	cosmology,	whereas

the	latter	is	disconnected	from	empirical	research	by	its	very	nature.	Thus,	the	status	of	the	cosmological	principle

seems	to	differ	significantly	in	practice	from	that	of	other	principles	supporting	inductive	generalizations—it	does

not	lead,	as	in	Newton's	case	of	taking	gravity	to	be	truly	universal,	to	a	wide	variety	of	further	claims	that	can

serve	as	the	basis	for	a	subsequent	research	program.

6.	Early	Universe	Cosmology
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Extrapolating	the	Standard	Model	backward	in	time	leads	to	a	singularity	within	a	finite	time,	and	as	t	→	0	the

temperature	and	energy	scales	increase	without	bound.	Even	if	the	singularity	itself	is	somehow	avoided,	the	early

universe	is	expected	to	have	reached	energy	scales	far	higher	than	anything	produced	at	Fermilab	or	CERN.	The

early	universe	is	thus	a	fruitful	testing	ground	for	high-energy	physics,	and	since	the	early	1980s	there	has	been

an	explosion	of	research	in	this	area.	Yet	it	is	not	clear	whether	observations	of	the	early	universe	can	play

anything	like	the	role	that	accelerator	experiments	did	in	guiding	an	earlier	phase	of	research	in	particle	physics.

Other	aspects	of	the	Standard	Model	are	based	on	extrapolating	well-established	physics,	but	the	physics	applied

to	the	early	universe	often	cannot	be	tested	by	other	means.	Instead	the	case	in	favor	of	new	physical	ideas	is

often	based	on	their	role	in	a	plausible	reconstruction	of	the	universe's	history.	Here	I	will	assess	a	common	style	of

argument	adopted	in	this	literature,	namely	that	a	theory	of	early	universe	cosmology	should	be	accepted	because

it	renders	the	observed	history	of	the	universe	probable	rather	than	merely	possible.

There	is	general	agreement	that	the	(cosmological)	Standard	Model	should	be	supplemented	with	an	account	of

physical	processes	in	the	very	early	universe.	The	early	universe	falls	within	the	domains	of	applicability	of	both

quantum	field	theory	and	general	relativity,	yet	the	two	theories	have	yet	to	be	combined	successfully.	The

framework	of	the	Standard	Model	is	thus	not	expected	to	apply	to	the	very	early	universe.	Although	research	in

quantum	gravity	is	often	motivated	by	calls	for	“theoretical	unification”	and	the	like,	it	can	also	be	motivated	by	the

more	prosaic	demand	for	a	consistent	theory	applicable	to	phenomena	such	as	the	early	universe	and	black	holes

(cf.	Callender	and	Huggett,	2001).	This	“overlapping	domains”	argument	does	not	imply	anything	in	detail

regarding	what	an	early	universe	theory	should	look	like,	or	how	it	would	augment	or	contribute	to	the	Standard

Model.

The	overlapping	domains	argument	should	not	be	confused	with	the	common	claim	that	general	relativity	is

incomplete	because	it	“breaks	down”	as	t	→	0	and	fails	to	provide	a	description	of	what	happens	at	(or	before)	the

singularity. 	It	is	hard	to	see	how	general	relativity	can	be	convicted	of	incompleteness	on	its	own	terms.	(Here	I

am	following	the	line	of	argument	in	Earman	(1995);	Curiel	(1999).)	If	general	relativity	proved	to	be	the	correct	final

theory,	then	there	is	nothing	more	to	be	said	regarding	singularities;	the	laws	of	general	relativity	apply	throughout

the	entire	spacetime,	and	there	is	no	obvious	incompleteness.	On	the	other	hand,	there	are	good	reasons	to	doubt

that	general	relativity	is	the	correct	final	theory,	and	further	reasons	to	expect	that	the	successor	to	general

relativity	will	have	novel	implications	for	singularities.	But	then	the	argument	for	incompleteness	is	based	on

grounds	other	than	the	mere	existence	of	singularities.

Cosmologists	often	give	a	very	different	reason	for	supplementing	the	Standard	Model:	it	is	explanatorily	deficient,

because	it	requires	an	“improbable”	initial	state.	Guth	(1981)	gave	an	influential	presentation	of	two	aspects	of	the

Standard	Model	as	problematic:

The	standard	model	of	hot	big-bang	cosmology	requires	initial	conditions	which	are	problematic	in	two

ways:	(1)	The	early	universe	is	assumed	to	be	highly	homogeneous,	in	spite	of	the	fact	that	separated

regions	were	causally	disconnected	(horizon	problem)	and	(2)	the	initial	value	of	the	Hubble	constant	must

be	fine	tuned	to	extraordinary	accuracy	…	(flatness	problem).	(Guth	1981,	347)

Figure	17.2 	This	figure	illustrates	the	horizon	problem.	Lightcones	are	at	45°	but	distances	are	distorted,
much	like	a	Mercator	projection.	Two	points	p,	q	on	the	surface	of	last	scattering	t ,	both	falling	within	our
past	light	cone,	do	not	have	overlapping	light	cones.

Horizons	in	cosmology	measure	the	maximum	distance	light	travels	within	a	given	time	period;	the	horizon	delimits

the	spacetime	region	from	which	signals	emitted	at	some	time	t 	traveling	at	or	below	the	speed	of	light	could	reach

a	given	point.	The	existence	of	particle	horizons	in	the	FLRW	models	indicates	that	distant	regions	are	not	in	causal
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contact. 	There	are	observed	points	on	the	CBR	separated	by	a	distance	greater	than	the	particle	horizon	at	that

time	(see	figure	17.2).	The	Standard	Model	assumes	that	these	regions	have	the	same	properties—e.g.,	the	same

temperature	to	within	1	part	in	10 	—even	though	they	were	not	in	causal	contact.	In	slightly	different	terms,	if	one

expects	no	correlations	between	the	causally	disjoint	regions	it	is	mysterious	how	the	observable	universe	could

be	so	well	approximated	by	an	FLRW	model.

The	flatness	problem	arises	because	the	energy	density	at	early	times	has	to	be	very	close	to	the	value	of	the

critical	density	Ω	=	1. 	An	FLRW	model	close	to	the	“flat”	k	=	0	model,	with	nearly	critical	density,	at	some

specified	early	time	is	driven	rapidly	away	from	critical	density	under	FLRW	dynamics;	the	flat	model	is	an	unstable

fixed	point	under	dynamical	evolution. 	This	aspect	of	the	dynamics	makes	it	extremely	puzzling	to	find	that	the

universe	is	still	close	to	the	critical	density—this	requires	an	extremely	finely-tuned	choice	of	the	energy	density	at

the	Planck	time	Ω(t ),	namely	|Ω(t )	−	1|	≤	10 .

The	horizon	and	flatness	problems	both	reflect	properties	of	the	FLRW	models.	There	are	other	similar	“fine-tuning”

problems	related	to	other	aspects	of	the	Standard	Model.	The	account	of	structure	formation	requires	a	set	of

“seed”	perturbations	that	have	two	troubling	features:	first,	the	perturbations	have	to	be	coherent	on	super-

horizon	length	scales,	and,	second,	the	amplitude	of	the	perturbations	was	much	smaller	than	one	would	expect

for	natural	possibilities	such	as	thermal	fluctuations. 	There	are	other	puzzling	features	not	related	to	the	seed

perturbations.	It	is	not	clear,	for	example,	why	the	baryon-to-photon	ratio,	relevant	to	nucleosynthesis	calculations,

has	the	particular	value	it	does.	(This	list	could	be	extended.)	The	general	complaint	is	that	the	Standard	Model

requires	a	variety	of	seemingly	implausible	assumptions	regarding	the	initial	state.	Why	did	the	universe	start	off

with	such	a	glorious	pre-established	harmony	between	causally	disjoint	regions?	How	was	the	initial	energy	density

so	delicately	chosen	that	we	are	still	close	to	the	flat	model?	(And	so	on.)	Although	these	features	are	all	possible

according	to	the	Standard	Model,	the	fact	that	they	obtain	seems,	intuitively,	to	be	incredibly	improbable.	The

Standard	Model	treats	these	posits	as	brute	facts	not	subject	to	further	explanation.

By	contrast,	Guth	proposed	to	supplement	the	Standard	Model	by	modifying	the	very	early	expansion	history	of	the

universe,	drawing	on	ideas	in	particle	physics.	Guth	proposed	that	the	universe	underwent	a	transient	phase	of	λ-

dominated,	exponential	expansion	at	roughly	10 	s.	Introducing	this	inflationary	stage	eases	the	conflict	between

a	“natural”	or	“generic”	initial	state	and	the	observed	universe,	in	the	following	sense.	Imagine	choosing	a

cosmological	model	at	random	from	among	the	space	of	solutions	of	EFE.	Even	without	a	good	understanding	of

this	space	of	solutions	or	how	one's	choice	is	to	be	“actualized,”	it	seems	clear	that	one	of	the	maximally

symmetric	FLRW	models	must	be	an	incredibly	“improbable”	choice. 	New	dynamics	in	the	form	of	inflation	makes

it	possible	for	“generic”	pre-inflationary	initial	conditions	to	evolve	into	the	uniform,	flat	state	required	by	the

Standard	Model. 	According	to	the	Standard	Model	alone,	what	we	observe	is	incredibly	improbable;	according	to

the	Standard	Model	plus	inflation,	what	we	observe	is	to	be	expected.

This	is	an	example	of	a	general	strategy,	which	I	will	call	the	“dynamical	approach”:	given	a	theory	that	apparently

requires	special	initial	conditions,	augment	the	theory	with	new	dynamics	such	that	the	dependence	on	special

initial	conditions	is	reduced.	McMullin	(1993)	describes	a	preference	for	this	approach	as	accepting	an

“indifference	principle,”	which	states	that	a	theory	that	is	indifferent	to	the	initial	state,	that	is,	robust	under

changes	of	it,	is	preferable	to	one	that	requires	special	initial	conditions.	Theorists	who	accept	the	indifference

principle	can	identify	fruitful	problems	by	considering	the	contrast	between	a	“natural”	initial	state	and	the

observed	universe	and	then	seek	new	dynamics	to	reconcile	the	two.

This	line	of	reasoning	is	frequently	endorsed	as	a	motivation	for	inflation	in	the	huge	literature	on	the	topic	following

Guth's	paper.	However,	a	number	of	skeptics	have	challenged	the	dynamical	approach	as	a	general	methodology

and	as	a	motivation	for	accepting	inflation. 	One	line	of	criticism	concerns	whether	inflation	achieves	the	stated

aim	of	eliminating	the	need	for	special	initial	conditions,	as	opposed	to	merely	shifting	it	to	a	different	aspect	of	the

physics.	In	effect	inflation	exchanges	the	degrees	of	freedom	associated	with	the	spacetime	geometry	of	the	initial

state	for	the	properties	of	a	field	(or	fields)	driving	an	inflationary	stage.	This	exchange	has	obvious	advantages	if

physics	can	place	tighter	constraints	on	the	relevant	fields	than	on	the	initial	state	of	the	universe.	What	is	gained,

however,	if	the	field	(or	fields)	responsible	for	inflation	has	to	be	in	a	special	state	to	trigger	inflationary	expansion,

or	to	have	other	finely	tuned	properties,	to	be	compatible	with	observations?

There	are	also	direct	challenges	to	the	dynamical	approach	itself,	sometimes	presented	in	concert	with	advocacy
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of	an	alternative	“theory	of	initial	conditions”	approach.	First,	why	should	we	assume	that	the	initial	state	of	the

universe	is	“generic”?	Penrose,	in	particular,	has	argued	that	this	proposal	is	not	compatible	with	a	neo-

Boltzmannian	account	of	the	second	law	of	thermodynamics	(cf.	Albrecht	2004).	Penrose	(1979)	treats	the	second

law	as	arising	from	a	lawlike	constraint	on	the	initial	state	of	the	universe,	requiring	that	it	has	low	entropy.	Rather

than	introducing	a	subsequent	stage	of	dynamical	evolution	that	erases	the	imprint	of	the	initial	state,	we	should

aim	to	formulate	a	“theory	of	initial	conditions”	that	accounts	for	its	special	features.	Second,	how	should	we	make

sense	of	the	implicit	probability	judgments	employed	in	these	arguments?	The	assessment	of	an	initial	state	as

“generic,”	or,	on	the	other	hand,	as	“special,”	is	based	on	a	choice	of	measure	over	the	allowed	initial	states	of

the	system.	But	on	what	grounds	is	one	measure	to	be	chosen	over	another?	Furthermore,	how	does	a	chosen

measure	relate	to	the	probability	assigned	to	the	actualization	of	the	initial	state?	It	is	clear	that	the	usual	way	of

rationalizing	measures	in	statistical	mechanics,	such	as	appeals	to	ergodicity,	do	not	apply	in	this	case	because

the	state	of	the	universe	does	not	“sample”	the	allowed	phase	space.

Assessing	the	dynamical	approach	depends	on	a	number	of	central	issues	in	philosophy	of	science.	Philosophers

steeped	in	debates	regarding	scientific	explanation	may	find	it	exciting	to	discover	a	major	scientific	research

program	motivated	by	explanatory	intuitions.	Proponents	of	inflation	often	sound	as	though	their	main	concern	is	to

make	the	early	universe	safe	for	Reichenbach's	principle	of	the	common	cause.	Or,	they	emphasize	the	unification

between	particle	physics	and	cosmology	achieved	in	their	models.	While	these	connections	are	intriguing,	they

both	must	be	treated	with	a	grain	of	salt. 	A	more	general	question	is	whether	the	explanatory	intuitions	betray	an

overly	strong	rationalistic	tendency	to	demand	explanations	of	everything.	Callender	(2004a,	b)	argues	in	favor	of

accepting	a	posited	initial	state	as	a	brute	fact,	in	part	by	showing	that	purported	“explanations”	of	it	are	mostly

vacuous.

A	quite	different	approach	purports	to	explain	various	features	of	the	universe	as	necessary	conditions	for	our

presence	as	observers,	to	which	we	now	turn.

7.	Anthropic	Reasoning

There	has	been	a	great	deal	of	controversy	regarding	anthropic	reasoning	in	cosmology	in	the	last	few	decades.

Weinberg	(2007)	describes	the	acceptance	of	anthropic	reasoning	as	a	radical	change	for	the	better	in	how

theories	should	be	assessed,	comparable	to	the	introduction	of	symmetry	principles.	In	assessing	cosmological

theories	we	need,	on	this	view,	to	account	for	selection	effects	due	to	our	presence	as	observers	and	to	consider

factors	such	as	the	number	of	observers	predicted	to	exist	by	competing	theories.	How	exactly	this	is	to	be	done

remains	a	matter	of	dispute.	There	is	no	widely	accepted	standard	account	of	anthropic	reasoning.	Critics	of	this

line	of	thought	argue	that	insofar	as	anthropic	reasoning	introduces	new	aspects	of	theory	assessment,	as

opposed	to	merely	putting	an	anthropic	gloss	on	some	accepted	inductive	methodology,	it	is	ill-motivated	or	even

incoherent.	A	methodology	that	is	itself	controversial	is	not	particularly	useful	in	forging	consensus,	so	the

articulation	and	assessment	of	anthropic	reasoning	is	clearly	an	essential	task.	Philosophers	have	already

contributed	to	this	effort	and	should	continue	to	do	so.	My	aim	here	is	to	provide	a	brief	overview	of	the	debate,

with	an	emphasis	on	connections	with	the	philosophical	literature.

Two	exemplary	cases	should	suffice	to	introduce	anthropic	reasoning.	Dirac	(1937)	noted	that	various	“large

numbers”	defined	in	terms	of	the	fundamental	constants	have	the	same	order	of	magnitude.	This	coincidence	(and

others)	inspired	his	“Large	Number	Hypothesis”:	dimensionless	numbers	constructed	from	the	fundamental

constants	“are	connected	by	a	simple	mathematical	relation,	in	which	the	coefficients	are	of	the	order	of

magnitude	unity”	(Dirac,	1937,	323).	Since	one	of	these	numbers	includes	the	age	of	the	universe	t ,	so	must	they

all.	This	implies	time	variation	of	the	gravitational	“constant”	G.	Dicke	(1961)	argued	that	attention	to	selection

effects	undermined	the	evidential	value	of	this	surprising	coincidence.	Surprise	at	the	coincidence	might	be

warranted	if	t 	could	be	treated	as	“a	random	choice	from	a	wide	range	of	possible	values”	(Dicke,	1961,	440),	but

there	can	only	be	observers	to	wonder	at	the	coincidence	for	some	small	range	of	t.	Dicke	(1961)	argued	that	the

value	of	t	must	fall	within	an	interval	such	that	Dirac's	coincidence	automatically	holds	given	two	necessary

conditions	for	the	existence	of	observers	like	us. 	The	evidence	allegedly	provided	by	the	large	number

coincidence	bears	no	relation	to	the	truth	or	falsity	of	Dirac's	hypothesis	or	the	Standard	Model. 	Taking	the

coincidence	as	evidence	for	the	large	number	hypothesis	would	be	as	misguided	as	concluding	(recycling

Eddington's	example)	that	there	are	no	fish	smaller	than	6	inches	in	a	pond	based	on	the	absence	of	such	small
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fish	in	a	fisherman's	basket,	even	though	the	fisherman's	net	has	gaps	too	large	to	hold	these	fish.

Attention	has	recently	focused	on	a	different	kind	of	anthropic	reasoning	exemplified	by	Weinberg's	(1987)

prediction	for	λ. 	Just	as	in	Dicke's	arguments	regarding	t,	within	the	Standard	Model	the	value	of	λ	cannot	be

freely	chosen.	Because	a	λ	term	does	not	dilute	with	expansion,	a	cosmological	model	with	λ	〉	0	will	transition	from

matter-dominated	to	vacuum-dominated	expansion.	Weinberg	showed	that	structure	formation	via	gravitational

enhancement	stops	in	the	vacuum-dominated	stage.	The	existence	of	large	gravitationally	bound	systems	(large

enough	to	lead	to	the	formation	of	stars)	then	imposes	an	upper	bound	on	possible	values	of	λ,	keeping	other

aspects	of	the	Standard	Model	fixed. 	It	is	plausible	to	take	the	existence	of	gravitationally	bound	systems	as	a

necessary	precondition	for	the	existence	of	observers.	There	is	also	a	lower	bound:	a	negative	λ	term	contributes

to	EFE	like	normal	matter	and	energy,	and	adding	a	large	negative	λ	term	leads	to	a	model	that	recollapses	before

there	is	time	for	observers	to	arise.

So	far	the	argument	is	similar	to	Dicke's	elucidation	of	anthropic	bounds	on	t.	But	Weinberg	next	predicted	that	λ's

observed	value	should	be	close	to	the	mean	of	the	values	suitable	for	life.	If	we	inhabit	a	“multiverse”	in	which	the

value	of	λ	varies	in	different	regions, 	the	prediction	is	obtained	by	using	the	presence	of	observers	as	a

selection	effect.	Weinberg	assumed	that	the	probability	distribution	for	values	of	λ	in	the	multiverse	is	uniform	within

the	anthropic	bounds	and	that	we	are	typical	members	of	the	reference	class	of	observers	in	the	universe	Vilenkin

(1995)	calls	this	the	“principle	of	mediocrity”	(PM).	In	Bayesian	terms,	an	initially	flat	probability	distribution	for	the

value	of	λ	is	turned	into	a	prediction—a	sharply	peaked	distribution	around	a	preferred	value—by	conditionalizing

on	the	existence	of	large	gravitationally	bound	systems,	serving	as	a	proxy	for	observers.	Each	of	these

assumptions	is	controversial.	I	will	postpone	more	detailed	discussion	of	the	multiverse	until	the	next	section	and

take	up	the	PM	shortly.	The	first	assumption	is	often	justified	by	appeals	to	simplicity	or	naturalness,	but	it	is	on

unsure	footing	without	further	specification	of	how	the	multiverse	is	generated. 	Nonetheless,	Weinberg's

prediction	of	a	positive	value	of	λ	within	two	orders	of	magnitude	of	currently	accepted	values	has	been	widely

cited	as	a	striking	success	of	anthropic	reasoning.

Different	views	regarding	anthropic	reasoning	can	be	characterized	in	part	by	whether	they	take	Weinberg's

argument	as	a	valid	extension	of	Dicke's.	Many	anthropic	skeptics	accept	Dicke's	reasoning	but	see	it	as	an

illustration	of	how	to	take	selection	effects	into	account,	without	any	truly	anthropic	elements	(e.g.,	Earman,	1987;

Smolin,	2007).	Dicke	simply	follows	through	the	consequences	of	the	existence	of	main	sequence	stars	and	heavy

elements.	The	nature	of	“observers”	and	whether	they	are	typical	members	of	a	given	reference	class	play	no

role.	Furthermore,	as	Roush	(2003)	emphasizes,	Dicke's	argument	devalues	a	particular	body	of	evidence.	The

apparent	coincidences	that	troubled	Dirac	reflect	deep	biases	in	the	evidence	available	to	us,	and	as	a	result	have

no	value	in	assessing	his	hypothesis.	Weinberg's	argument,	by	contrast,	takes	the	successful	“prediction”	of	a

surprising	value	for	a	particular	parameter	as	evidence	in	favor	of	a	multiverse.	Thus	it	is	more	in	line	with	Dirac's

idea	that	such	coincidences	can	be	revealing	rather	than	with	Dicke's	response.	It	also	depends	on	assumptions

regarding	our	“typicality”	among	members	of	a	reference	class,	raising	a	number	of	issues	that	Dicke's	argument

avoids.	Proponents	of	anthropic	reasoning	argue	that	these	issues	have	to	be	dealt	with	in	order	to	assess

cosmological	theories.

Some	have	argued	that	the	PM	must	be	assumed	in	order	to	extract	any	predictions	at	all	from	cosmological

theories	that	describe	an	infinite	universe. 	Consider	an	observation	O,	for	example	that	the	CBR	has	an	average

temperature	within	the	observer's	Hubble	volume	of	T	=	3.14159…K,	in	agreement	with	the	decimal	expansion	of	π

to	some	specified	number	of	digits.	Suppose	we	have	a	cosmological	theory	T	that	predicts	the	existence	of	an

open	FLRW	model	with	infinite	spatial	slices	∑	and	also	assigns	a	nonzero	probability	to	O.	Then	there	is	an

observer	for	whom	O	is	true	somewhere	in	the	vast	reaches	of	the	infinite	universe.	The	point	generalizes	to	other

observations	and	threatens	to	undermine	the	use	of	any	observations	to	assess	cosmological	theories. 	(This

challenge	arises	even	in	the	Standard	Model,	provided	that	the	universe	is	not	closed,	and	does	not	depend	on

more	speculative	multiverse	proposals.)	This	skeptical	conclusion	can	only	be	evaded	by	accepting	the	principle

of	mediocrity,	according	to	this	line	of	thought:	we	are	interested	not	in	the	reports	of	such	improbable	“freak

observers,”	but	rather	in	our	observations—	where	we	regard	ourselves	as	randomly	selected	from	an	appropriate

reference	class.	Even	“infinite	universe”	theories	can	make	predictions	by	employing	the	PM,	once	the	appropriate

reference	class	has	been	specified.

The	PM	leads,	unfortunately,	to	absurd	results	in	other	cases.	These	problems	are	arguably	due	to	the	explicit
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reliance	on	the	choice	of	a	reference	class.	This	choice	does	not	reflect	a	factual	claim	about	the	world,	yet	it	can

lead	directly	to	striking	empirical	results,	as	illustrated	in	the	Doomsday	argument	(e.g.,	Leslie	1992;	Gott	1993;

Bostrom	2002).	The	argument	follows	from	applying	the	PM	to	one's	place	in	human	history,	in	particular	by

asserting	that	one	should	occupy	a	“typical”	birth	rank	among	the	reference	class	consisting	of	all	humans	who

have	ever	lived.	This	implies	that	there	are	roughly	as	many	humans	born	before	and	after	one's	own	birth.	For	this

to	be	true,	given	the	current	rate	of	population	growth,	“doomsday”—a	rapid	drop	in	the	growth	rate	of	the	human

population—must	be	just	around	the	corner. 	The	conclusion	of	the	argument	depends	critically	on	the	reference

class.	Starkman	and	Trotta	(2006)	argue	that	Weinberg's	prediction	of	λ	is	similarly	sensitive	to	the	reference	class

used	in	applying	the	PM.

Philosophers	have	discussed	a	number	of	other	cases,	from	Sleeping	Beauties	to	Presumptuous	Philosophers,

meant	to	test	principles	proposed	for	anthropic	reasoning. 	Stated	more	generally,	these	proposals	regard	how	to

incorporate	indexical	information	(about,	e.g.,	one's	location	in	the	history	of	mankind)	in	evidential	reasoning.

Straightforward	modifications	of	the	PM	to	avoid	the	Doomsday	argument	lead	to	counterintuitive	results	in	these

other	cases.	Bostrom	(2002)	advocates	responding	to	the	Doomsday	argument	by	considering	a	different

reference	class	when	applying	the	PM,	but	his	arguments	that	there	is	a	unique	reference	class	that	resolves	the

problems	are	unconvincing.	An	alternative	response	is	to	take	the	number	of	observers	in	the	reference	class	into

account,	by	weighting	the	prior	probability	by	this	number. 	For	example,	if	a	theory	predicts	that	there	will	be	10

more	observers	(in	the	appropriate	reference	class)	than	a	competing	theory,	then	the	prior	probabilities	should

have	this	same	ratio.	This	effectively	blocks	the	Doomsday	argument.	It	has	unpalatable	consequences	of	its	own,

however,	if	it	is	taken	as	a	general	methodological	principle:	it	implies	nearly	unshakeable	confidence	in	theories

that	predict	large	numbers	of	observers.

The	combined	effect	of	accepting	PM	and	adjusting	the	priors	to	take	account	of	the	number	of	observers	is	to

eliminate	the	dependence	on	a	choice	of	a	particular	reference	class,	as	Neal	(2006)	shows.	Rather	than	introduce

the	reference	class	only	to	eliminate	its	impact,	why	not	simply	apply	Bayesian	conditionalization?	Neal	(2006)

argues	that	standard	Bayesian	conditionalization	on	all	nonindexical	evidence	available	resolves	the	various

puzzles	associated	with	anthropic	reasoning,	with	one	caveat.	On	this	approach	anthropic	reasoning	is	just	a

species	of	Bayesian	conditionalization,	and	there	is	no	need	to	introduce	further	methodological	principles. 	(It	is

crucial	to	conditionalize	on	everything	because,	as	analyses	of	selection	effects	like	Dicke's	show,	it	is	not	always

transparent	which	aspects	of	our	evidence	are	relevant.)

This	approach	leads	to	the	following	assessment	of	anthropic	predictions,	such	as	Weinberg's	prediction	of	λ.

Consider	a	multiverse	theory	T 	in	which	the	value	of	λ	(and	perhaps	other	parameters)	takes	on	different	values

in	different	regions,	contrasted	with	a	theory	T 	in	which	the	value	of	λ	is	not	fixed	by	theoretical	principles,	but

does	not	vary	in	different	regions.	Suppose	that	∆	is	the	range	of	values	of	λ	compatible	with	all	available	evidence

(including,	for	example,	the	existence	of	galaxies	at	high	redshifts),	and	that	according	to	T 	the	fraction	of	regions

with	a	value	of	λ	within	∆	is	given	by	f, 	whereas	T 	assigns	a	probability	of	g	to	∆.	If	one	assigns	equal	priors	to

the	two	theories,	the	odds	ratio	for	T 	to	T 	upon	conditionalization	will	be	given	by	f/g.	The	evaluation	of	the	two

theories	depends	on	the	probability	they	assign	to	a	value	of	λ	within	∆.	Whether	the	theory	involves	a

“multiverse”	with	λ	varying	in	different	regions	is	irrelevant	to	the	comparison.	The	assessment	also	does	not

depend	on	considering	how	∆	compares	to	∆′,	the	range	of	parameter	values	of	λ	compatible	with	“intelligent	life”

(or	“advanced	civilizations,”	etc.).

The	caveat	is	that	this	analysis	applies	to	universes	in	which	the	evidence	is	sufficiently	rich	to	single	out	a	unique

observer.	Neal	acknowledges	that	in	an	infinite	universe	the	argument	above	regarding	“freak	observers”	poses	a

threat,	given	that	there	will	be	multiple	observers	with	the	same	total	body	of	evidence.	He	goes	on	to	argue,

however,	that	it	is	implausible	that	our	evidential	reasoning	should	depend	on	whether	the	universe	is	large	enough

to	contain	observers	with	exactly	the	same	evidence.	(This	is,	of	course,	exactly	the	context	in	which	cosmologists

feel	the	need	to	invoke	the	PM—see,	e.g.,	Garriga	and	Vilenkin	2007.)

Philosophers	have	rejected	the	use	of	PM	on	other	grounds.	Norton	(2010)	has	challenged	the	employment	of

probability	distributions	as	a	way	of	representing	neutrality	of	evidential	support,	as	part	of	a	more	general	criticism

of	Bayesian-ism.	He	argues	that	the	ability	to	get	something	from	nothing—a	striking	empirical	result	from	innocuous

assumptions,	as	in	the	Doomsday	argument—reflects	the	extra	representational	baggage	associated	with

describing	ignorance	using	a	probability	measure.	Probability	measures	are	assumed	to	be	countably	additive,	and
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this	prevents	them	from	expressing	complete	evidential	neutrality.	Assigning	a	uniform	prior	probability	over	the

values	of	some	parameter	such	as	λ	implies	that	a	value	in	a	finite	interval	is	disfavored	by	the	evidence,	rather

than	treating	all	of	these	values	neutrally.	One	might	hope	that	invoking	a	“random”	choice	among	members	of	a

reference	class	can	underwrite	ascriptions	of	probability.	Norton	counters	that	invocations	of	indifference

principles	such	as	PM	actually	support	the	ascription	of	neutral	evidential	warrant	rather	than	uniform	probability.

This	brief	survey	has	sketched	three	different	lines	of	thought	regarding	anthropic	reasoning.	The	most

conservative	option	is	to	apply	standard	Bayesian	methodology	to	cases	where	anthropic	issues	arise.	The	hope	is

that	these	cases	can	be	treated	by	carefully	attending	to	details	without	introducing	new	principles	of	general

scope,	and	without	invoking	reference	classes.	One	advantage	of	the	conservative	position	is	the	availability	of

arguments	in	favor	of	the	basic	tenets	of	Bayesianism.	It	would	be	surprising	if	the	validity	of	these	methodological

principles	were	in	fact	sensitive	to	whether	we	live	in	a	vast,	finite	universe	or	a	truly	infinite	universe.	Against	the

conservatives,	Norton	directly	attacks	the	use	of	probability	to	represent	degrees	of	belief	in	cases	of	neutral

support,	such	as	undetermined	parameters.	This	general	criticism	of	Bayesianism	has	implications	much	broader

than	anthropic	reasoning,	but	the	conclusions	it	leads	to	in	this	case	are	similar	to	those	of	the	conservative

Bayesian:	a	rejection	of	the	need	to	provide	anthropic	explanations	of	particular	parameter	values.	Finally,	a	third

position	is	that	there	are	important	and	new	methodological	principles	required	to	handle	indexical	information	and

selection	effects.	One	goal	of	such	an	account	would	be	to	clarify	this	style	of	reasoning,	which	is	widely	employed

within	contemporary	cosmology.	What	is	lacking	so	far,	in	my	view,	is	a	compelling	account	of	what	these

principles	are	and	a	motivation	for	accepting	them.

8.	MULTIVERSE

Anthropic	reasoning	is	often	discussed	in	tandem	with	the	multiverse	(cf.	Zinkernagel	2011).	Weinberg's	anthropic

prediction	for	λ	is	based	on	applying	a	selection	effect	to	a	multiverse	in	which	the	value	of	λ	varies	in	different

regions.	The	multiverse	idea	has	gained	traction	in	part	because	Weinberg's	approach	is	widely	regarded	as	the

only	viable	solution	to	the	cosmological	constant	problem,	and	other	similar	problems	may	also	admit	only

anthropic	solutions.

Two	different	lines	of	thought	in	physics	also	support	the	introduction	of	the	multiverse.	First,	within	inflationary

cosmology	the	same	mechanism	that	produces	a	uniform,	homogeneous	universe	on	scales	on	the	order	of	the

Hubble	radius	leads	to	a	dramatically	different	global	structure	of	the	universe.	Inflation	is	said	to	be	“generically

eternal”	in	the	sense	that	inflationary	expansion	continues	in	different	regions	of	the	universe,	constantly	creating

bubbles	such	as	our	own	universe,	in	which	inflation	is	followed	by	reheating	and	a	much	slower	expansion. 	The

individual	bubbles	are	effectively	causally	isolated	from	other	bubbles	and	are	often	called	“pocket	universes.”

The	second	line	of	thought	relates	to	the	proliferation	of	vacua	in	string	theory.	Many	string	theorists	now	expect

that	there	will	be	a	vast	landscape	of	allowed	vacua,	with	no	way	to	fulfill	the	original	hope	of	finding	a	unique

compactification	of	extra	dimensions	to	yield	low-energy	physics.

Both	of	these	developments	suggest	treating	the	low-energy	physics	of	the	observed	universe	as	partially	fixed	by

parochial	contingencies	related	to	the	history	of	a	particular	pocket	universe.	Other	regions	of	the	multiverse	may

have	drastically	different	low-energy	physics	because,	for	example,	the	inflaton	field	tunneled	into	a	local	minima

with	different	properties. 	Here	my	main	focus	will	be	on	a	philosophical	issue	that	is	relatively	independent	of	the

details	of	implementation:	In	what	sense	does	the	multiverse	offer	satisfying	explanations?

But,	first,	what	do	we	mean	by	a	“multiverse”	in	this	setting? 	These	lines	of	thought	lead	to	a	multiverse	with	two

important	features.	First,	it	consists	of	causally	isolated	pocket	universes,	and	second,	there	is	significant	variation

from	one	pocket	universe	to	another.	There	are	other	ideas	of	a	multiverse,	such	as	an	ensemble	of	distinct

possible	worlds,	each	in	its	own	right	a	topologically	connected,	maximal	spacetime,	completely	isolated	from	other

elements	of	the	ensemble.	But	in	contemporary	cosmology,	the	pocket	universes	are	all	taken	to	be	effectively

causally	isolated	parts	of	a	single,	topologically	connected	spacetime—the	multiverse.	Such	regions	also	occur	in

some	cosmological	spacetimes	in	classical	GR.	In	De	Sitter	spacetime,	for	example,	there	are	inextendible	timelike

geodesics	γ	 ,γ	 	such	that	J (γ	 )	does	not	intersect	J (γ	 ).	In	cases	like	this	the	definition	of	“effectively	causally

isolated”	can	be	cashed	out	in	terms	of	relativistic	causal	structure,	but	for	a	quantum	multiverse	the	definition

needs	to	be	amended.
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The	example	of	pocket	universes	within	De	Sitter	spacetime	lacks	the	second	feature,	variation	from	one	pocket

universe	to	another.	This	can	take	several	forms,	from	variation	in	the	constants	appearing	in	the	Standard	Models

of	cosmology	and	particle	physics	to	variation	of	the	laws	themselves.	Within	the	context	of	eternal	inflation	or	the

string	theory	landscape,	what	were	previously	regarded	as	“constants”	may	instead	be	fixed	by	the	dynamics.	For

example,	λ	is	often	treated	as	the	consequence	of	the	vacuum	energy	of	a	scalar	field	displaced	from	the	minimum

of	its	effective	potential.	The	variation	of	λ	throughout	the	multiverse	may	then	result	from	the	scalar	field	settling

into	different	minima.	Greater	diversity	is	suggested	by	the	string	theory	landscape,	according	to	which	the	details

of	how	extra	dimensions	are	compactified	and	stabilized	are	reflected	in	different	low-energy	physics.

In	the	multiverse	some	laws	will	be	demoted	from	universal	to	parochial	regularities.	But	presumably	there	are	still

universal	laws	that	govern	the	mechanism	that	generates	pocket	universes.	This	mechanism	for	generating	a

multiverse	with	varying	features	may	be	a	direct	consequence	of	an	aspect	of	a	theory	that	is	independently	well-

tested.	Rather	than	treating	the	nature	of	the	ensemble	as	speculative	or	conjectural,	one	might	then	have	a

sufficiently	clear	view	of	the	multiverse	to	calculate	probability	distributions	of	different	observables,	for	example.	In

this	case,	there	is	a	direct	reply	to	multiverse	critics	who	object	that	the	idea	is	“unscientific”	because	it	is

“untestable”:	other	regions	of	the	multiverse	would	then	have	much	the	same	status	as	other	unobservable	entities

proposed	by	empirically	successful	theories. 	Unfortunately	for	fans	of	the	multiverse,	the	current	state	of	affairs

does	not	seem	so	straightforward.	Although	multiverse	proposals	are	motivated	by	trends	in	fundamental	physics,

the	detailed	accounts	of	how	the	multiverse	arises	are	typically	beyond	theoretical	control.	As	long	as	this	is	the

case,	there	is	a	risk	that	the	claimed	multiverse	explanations	are	just-so	stories	where	the	mechanism	of

generating	the	multiverse	is	contrived	to	do	the	job.	This	strikes	me	as	a	legitimate	worry	regarding	current

multiverse	proposals,	but	I	will	set	this	aside	for	the	sake	of	discussion.

Suppose,	then,	that	we	are	given	a	multiverse	theory	with	an	independently	motivated	dynamical	account	of	the

mechanism	churning	out	pocket	universes.	What	explanatory	questions	might	this	theory	answer,	and	what	is	the

relevance	of	the	existence	of	the	multiverse	itself	to	its	answers? 	Here	we	can	distinguish	between	two	different

kinds	of	questions.	First,	should	we	be	surprised	to	measure	a	value	of	a	particular	parameter	X	(such	as	λ)	to	fall

within	a	particular	range?	Our	surprise	ought	to	be	mitigated	by	a	discussion	of	anthropic	bounds	on	X,	revealing

various	unsuspected	connections	between	our	presence	and	the	range	of	allowed	values	for	the	parameter	in

question.	But,	as	with	Dicke's	approach	discussed	above,	this	explanation	can	be	taken	to	demystify	the	value	of	X

without	also	providing	evidence	for	a	multiverse.	The	value	of	this	discussion	lies	in	tracing	the	connections

between,	e.g.,	the	time-scale	needed	to	produce	carbon	in	the	universe	or	the	constraints	on	expansion	rate

imposed	by	the	need	to	form	galaxies.	The	existence	of	a	multiverse	is	irrelevant	to	this	line	of	reasoning.

A	second	question	pertains	to	X,	without	reference	to	our	observation	of	it:	Why	does	the	value	of	X	fall	within

some	range	in	a	particular	pocket	universe?	The	answer	to	this	question	offered	by	a	multiverse	theory	will

apparently	depend	on	contingent	details	regarding	the	mechanism	that	produced	the	pocket	universe.	This

explanation	will	be	historical	in	the	sense	that	the	observed	values	of	the	parameter	will	ultimately	be	traced	back

to	the	mechanism	that	produced	the	pocket	universe. 	It	may	be	surprising	that	various	features	of	the	universe

are	given	this	type	of	explanation	rather	than	following	as	necessary	consequences	of	fundamental	laws.

However,	the	success	of	historical	explanations	does	not	support	the	claim	that	other	pocket	universes	must	exist.

Analogously,	the	success	of	historical	explanations	in	evolutionary	biology	does	not	imply	the	existence	of	other

worlds	where	pandas	have	more	elegant	thumbs.

To	put	the	point	in	a	slightly	different	form,	the	value	of	converting	questions	about	modalities	in	cosmology	into

questions	about	location	within	a	vastly	enlarged	ontology	is	not	clear.	Both	types	of	questions	can	apparently	be

answered	adequately	without	making	the	further	ontological	commitment	to	the	actual	existence	of	other	pocket

universes.

9.	Conclusion

One	theme	running	through	the	discussion	above	is	the	attempt	to	identify	distinctive	evidential	challenges	faced	in

cosmology.	There	is	an	echo	of	skepticism	regarding	the	possibility	of	knowledge	of	the	universe-as-a-whole	in	the

discussion	of	global	properties	of	the	universe	(section	5).	Local	observations	are	not	sufficient	to	warrant

conclusions	regarding	global	properties	without	help	from	general	principles	like	the	cosmological	principle,	which
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is	itself	on	unsure	footing.	This	does	not,	however,	support	a	general	skepticism	about	cosmology.	Most

contemporary	research	in	cosmology	is	compatible	with	agnosticism	regarding	the	global	properties	of	the

universe.	The	challenges	arise,	not	from	the	limits	imposed	by	the	causal	structure	of	GR,	but	from	the	difficulty	in

gaining	access	to	the	relevant	phenomena	via	independent	routes.	As	the	discussion	in	section	3	illustrates,

assuming	that	the	Standard	Model	is	basically	correct	makes	it	possible	to	infer	the	presence	of	dark	matter	and

dark	energy.	It	is	difficult	to	rule	out	the	possibility	that	the	same	observations	used	as	the	basis	for	this	inference

instead	reveal	flaws	in	the	Standard	Model.	Yet	this	does	not	mean	that	all	the	responses	to	the	observations	should

be	given	equal	credence.	Philosophers	of	science	ought	to	offer	an	account	of	empirical	support	that	clarifies	the

assessment	of	different	responses.	Regarding	early	universe	cosmology	(section	6),	the	theory	being	used	to

describe	the	underlying	physics	is	tested	through	its	role	in	providing	a	reconstruction	of	the	universe's	history.

The	field	has	been	partially	driven	by	strong	explanatory	intuitions	favoring	a	theory	that	renders	the	observed

history	probable	or	expected,	although	it	is	unclear	how	to	move	beyond	intuitive	discussions	of	probability.

Cosmologists	have	to	face	the	possibility	that	the	data	they	use	to	assess	theories	is	subject	to	unexpected

anthropic	selection	effects	(section	7).	Whether	these	selection	effects	can	be	treated	within	standard	approaches

to	confirmation	theory	or	require	new	principles	of	anthropic	reasoning	is	currently	being	debated.	Finally,

cosmologists	may	also	see	their	explanatory	aims	change,	with	various	features	of	the	universe	traced	to

environmental	features	of	our	pocket	universe	rather	than	being	derived	from	dynamical	laws	(section	8).
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Notes:

(1)	A	“standard	candle”	is	an	object	whose	intrinsic	luminosity	can	be	determined;	the	observed	apparent

magnitude	then	provides	an	accurate	measurement	of	the	distance	to	the	object.

(2)	This	is	not	to	say	that	there	is	no	literature	on	the	topic,	and	much	of	it	will	be	cited	below.	For	more	systematic

reviews	of	the	literature	by	someone	whose	contributions	have	shaped	the	field,	and	which	I	draw	on	in	the

following,	see	Ellis	(1999,	2007).

(3)	Of	the	several	textbooks	that	cover	this	territory,	see	in	particular	Peebles	(1993);	Dodelson	(2003);	Weinberg

(2008);	see	Longair	(2006)	for	a	masterful	historical	survey	of	the	development	of	cosmology	and	astrophysics.

(4)	At	the	time,	Einstein	formulated	Mach's	principle	as	the	requirement	that	inertia	derives	from	interactions	with

other	bodies	rather	than	from	a	fixed	background	spacetime.	His	model	eliminated	the	need	for	anti-Machian

boundary	conditions	by	eliminating	boundaries:	it	describes	a	universe	with	spatial	sections	of	finite	volume,

without	edges.	See	Smeenk	(2012)	for	further	discussion.

(5)	An	isometry	is	a	transformation	that	preserves	the	spacetime	geometry;	more	precisely,	a	diffeomorphism	ϕ	that

leaves	the	spacetime	metric	invariant,	i.e.,	(ϕ g) 	=	g .

(6)	A	topological	space	is	simply	connected	if,	roughly	speaking,	every	closed	loop	can	be	smoothly	contracted	to

a	point.	For	example,	the	surface	of	a	bagel	is	multiply	connected,	as	there	are	two	different	types	of	loops	that

cannot	be	continuous	deformed	to	a	point.	There	is	another	possibility	for	a	globally	isotropic	space	with	constant

positive	curvature	that	is	multiply	connected,	namely	projective	space	(with	the	same	metric	as	spherical	space

but	a	different	topology).	These	three	possibilities	are	unique	up	to	isometry	See,	e.g.,	Wolf	(2011),	for	a	detailed

discussion.
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(7)	See	Ellis	(1971)	for	a	pioneering	study	of	this	kind	of	model,	and	Lachieze-Rey	and	Luminet	(1995)	for	a	more

recent	review.

(8)	EFE	are:	G 	+	ʌg 	=	8π	T ,	where	G 	is	the	Einstein	tensor,	T 	is	the	stress-energy	tensor,	g 	is	the	metric,

and	ʌ	is	the	cosmological	constant.	Equation	(1)	follows	from	the	“time-time”	component	of	EFE,	and	equation	(2)	is

the	difference	between	it	and	the	“space-space”	component.	(All	other	components	vanish	due	to	the

symmetries.)	The	Raychaudhuri	equation	is	a	fundamental	equation	that	describes	the	evolution	of	a	cluster	of

nearby	worldlines,	e.g.,	for	the	particles	making	up	a	small	ball	of	dust,	in	response	to	curvature.	It	takes	on	the

simple	form	given	here	due	to	the	symmetries	we	have	assumed:	in	the	FLRW	models	the	small	ball	of	dust	can

change	only	its	volume	as	a	function	of	time,	but	in	general	there	can	be	a	volume-preserving	distortion	(shear)

and	torsion	(rotation)	of	the	ball	as	well.

(9)	The	stress	energy	tensor	for	a	perfect	fluid	is	given	by	T 	=	(ρ	+	p)ζ ζ 	+	(p)g ,	where	ζ 	is	the	tangent

vector	to	the	trajectories	of	the	fluid	elements.

(10)	These	are	both	classes	of	solutions,	where	members	of	the	class	have	spatial	sections	with	curvature	of	the

same	sign	but	different	values	of	the	spatial	curvature	at	a	given	cosmic	time.

(11)	One	can	treat	the	cosmological	constant	as	a	distinctive	type	of	matter,	in	effect	moving	it	from	the	left	to	the

right	side	of	EFE	and	treating	it	as	a	component	of	the	stress-energy	tensor.	It	can	be	viewed	instead	as	properly

included	on	the	left-hand	side	as	part	of	the	spacetime	geometry.	This	issue	of	interpretation	does	not,	however,

make	a	difference	with	regard	to	the	behavior	of	the	solution.

(12)	Hubble's	distance	estimates	have	since	been	rejected,	leading	to	a	drastic	decrease	in	the	estimate	of	the

current	rate	of	expansion	(the	Hubble	parameter,	H ).	However,	the	linear	redshift-distance	relation	has	withstood

scrutiny	as	the	sample	size	has	increased	from	24	bright	galaxies	(in	Hubble	1929)	to	hundreds	of	galaxies	at

distances	100	times	greater	than	Hubble's,	and	as	astrophysicists	have	developed	other	observational	methods	for

testing	the	relation	(see	Peebles	1993,	82–93	for	an	overview).

(13)	The	problem	is	underspecified	without	some	stipulation	regarding	the	worldlines	traversed	by	the	observers

emitting	and	receiving	the	signal.	Assuming	that	both	observers	are	fundamental	observers,	a	photon	with

frequency	ω	emitted	at	a	cosmic	time	t 	will	be	measured	to	have	a	frequency	 	at	a	later	time	t .	(For	an

expanding	universe,	this	leads	to	a	red-shift	of	the	light	emitted.)	Given	a	particular	solution	one	can	calculate	the

exact	relationship	between	spectral	shift	and	distance.

(14)	Quantitatively	estimating	the	dynamical	effects	of	the	expansion	on	local	systems	is	remarkably	difficult.	One

approach	is,	schematically,	to	imbed	a	solution	for	a	local	system	(such	as	a	Schwarzschild	solution)	into	an	FLRW

spacetime,	taking	care	to	impose	appropriate	junction	conditions	on	the	boundary.	One	can	then	calculate	an

upper	bound	on	the	effect	of	the	cosmological	expansion;	the	effect	will	presumably	be	smaller	in	a	more	realistic

model,	which	includes	a	hierarchy	of	imbedded	solutions	representing	structures	at	larger	length	scales	such	as

the	galaxy	and	the	Local	Group	of	galaxies.	Because	of	the	nonlinearity	of	EFE	it	is	surprisingly	subtle	to	make	the

idea	of	a	“quasi-isolated”	system	immersed	in	a	background	cosmological	model	precise,	and	to	differentiate

effects	due	to	the	expansion	from	those	due	to	changes	within	the	local	system	(such	as	growing	inhomogeneity).

See	Carrera	and	Giulini	(2010)	for	a	recent	systematic	treatment	of	these	issues.

(15)	This	assumption	of	local	thermal	equilibrium	as	an	“initial	state”	at	a	given	time	presumes	that	the	interaction

timescales	are	much	less	than	the	expansion	timescale	at	earlier	times.

(16)	The	departures	from	equilibrium	are	described	using	the	Boltzmann	equation.	The	Boltzmann	equation

formulated	in	an	FLRW	spacetime	includes	an	expansion	term.	As	long	as	the	collision	term	(for	some	collection	of

interacting	particles)	dominates	over	the	expansion	term	then	the	interactions	are	sufficient	to	maintain	equilibrium,

but	as	the	universe	cools,	the	collision	term	becomes	subdominant	to	the	expansion	term,	and	the	particles

decouple	from	the	plasma	and	fall	out	of	equilibrium.	To	find	the	number	density	at	the	end	of	this	freezing	out

process,	one	typically	has	to	solve	a	differential	equation	(or	a	coupled	set	of	differential	equations	for	multiple

particle	species)	derived	from	the	Boltzmann	equation.

(17)	See	Olive,	Steigman,	and	Walker	(2000)	for	a	review	of	big	bang	nucleosynthesis.
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(18)	These	are	called	“primordial”	or	“relic”	abundances	to	emphasize	that	they	are	the	abundances	calculated	to

hold	at	t	≍	20	minutes.	Inferring	the	values	of	these	primordial	abundances	from	observations	requires	an

understanding	of	the	impact	of	subsequent	physical	processes,	and	the	details	differ	substantially	for	the	various

light	elements.

(19)	The	term	“re-combination”	is	misleading,	as	the	electrons	were	not	previously	bound	in	stable	atoms.	See

Weinberg	(2008)	and	section	2.3	for	a	description	of	the	intricate	physics	of	recombination.

(20)	The	black-body	nature	of	the	spectrum	was	firmly	established	by	the	COBE	(Cosmic	Background	Explorer)

mission	in	1992.	The	difficulty	in	finding	an	alternative	stems	from	the	fact	that	the	present	universe	is	almost

entirely	transparent	to	the	CBR	photons,	and	the	matter	that	does	absorb	and	emit	radiation	is	not	distributed

uniformly.	To	produce	a	uniform	sea	of	photons	with	a	black-body	spectrum,	one	would	need	to	introduce	an

almost	uniformly	distributed	type	of	matter	that	thermalizes	radiation	from	other	processes	to	produce	the	observed

microwave	background,	yet	is	nearly	transparent	at	other	frequencies.	Advocates	of	the	quasi-steady	state

cosmology	have	argued	that	whiskers	of	iron	ejected	from	supernovae	could	serve	as	just	such	a	thermalizer	of

radiation	in	the	far	infrared.	See,	e.g.,	Li	(2003)	for	a	discussion	of	this	proposal	and	persuasive	objections	to	it.

(21)	More	precisely,	the	different	perturbation	modes	have	the	same	density	contrast	when	their	wavelength

equals	the	Hubble	radius,	H .

(22)	Cosmologists	use	“concordance	model”	to	refer	to	the	Standard	Model	of	cosmology	with	the	specified

contributions	of	different	types	of	matter.	The	case	in	favor	of	a	model	with	roughly	these	contributions	to	the

overall	energy	density	was	made	well	before	the	discovery	of	cosmic	acceleration	(see,	e.g.,	Ostriker	and

Steinhardt	(1995);	Krauss	and	Turner	(1999)).	Coles	and	Ellis	(1997)	give	a	useful	summary	of	the	opposing

arguments	(in	favor	of	a	model	without	a	dark	energy	component)	as	of	1997,	and	see	Frieman,	Turner,	and

Huterer	(2008)	for	a	more	recent	review.

(23)	See	Trimble	(1987)	for	a	discussion	of	the	history	of	the	subject	and	a	systematic	review	of	various	lines	of

evidence	for	dark	matter.

(24)	“Hot”	vs.	“cold”	refers	to	the	thermal	velocities	of	relic	particles	for	different	types	of	dark	matter.	Hot	dark

matter	decouples	while	still	“relativistic,”	in	the	sense	that	the	momentum	is	much	greater	than	the	rest	mass,	and

relics	at	late	times	would	still	have	large	quasi-thermal	velocities.	Cold	dark	matter	is	“non-relativistic”	when	it

decouples,	meaning	that	the	momentum	is	negligible	compared	to	the	rest	mass,	and	relics	have	effectively	zero

thermal	velocities.

(25)	Type	Ia	supernovae	do	not	have	the	same	intrinsic	luminosity,	but	the	shape	of	the	light	curve	(the	luminosity

as	a	function	of	time	after	the	initial	explosion)	is	correlated	with	intrinsic	luminosity.	See	Kirshner	(2009)	for	an

overview	of	the	use	of	supernovae	in	cosmology.

(26)	These	brief	remarks	are	not	exhaustive;	there	are	further	lines	of	evidence	for	dark	matter	and	dark	energy;

see,	e.g.,	Bertone,	Hooper,	and	Silk	(2005)	for	a	review	of	evidence	for	dark	matter	and	Huterer	(2010)	on	dark

energy.

(27)	See	Vanderburgh	(2003,	2005)	for	a	philosopher's	take	on	these	debates.

(28)	See	Sotiriou	and	Faraoni	(2010)	for	a	review	of	one	approach	to	modifying	GR,	namely	by	adding	higher-order

curvature	invariants	to	the	Einstein-Hilbert	action.	These	so-called	“f	(R)	theories”	(the	Ricci	scalar	R	appearing	in

the	action	is	replaced	by	a	function	f	(R))	have	been	explored	extensively	within	the	last	five	years,	but	it	has

proven	to	be	difficult	to	satisfy	a	number	of	seemingly	reasonable	con	straints.	Uzan	(2010)	gives	a	brief	overview

of	other	ways	of	modifying	GR	in	light	of	the	observed	acceleration.

(29)	The	mass	estimates	differ	both	in	total	amount	of	mass	present	and	its	spatial	distribution.	Estimating	the	mass

based	on	the	amount	of	electromagnetic	radiation	received	(photometric	observations)	requires	a	number	of

further	assumptions	regarding	the	nature	of	the	objects	emitting	the	radiation	and	the	effects	of	intervening	matter,

such	as	scattering	and	absorption	(extinction).

(30)	This	behavior	is	usually	described	using	the	rotation	curve,	a	plot	of	orbital	velocity	as	a	function	of	the

−1
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distance	from	the	galactic	center.	The	“expected”	behavior	(dropping	as	r 	after	an	initial	maximum)	follows

from	Newtonian	gravity	with	the	assumption	that	all	the	mass	is	concentrated	in	the	central	region,	like	the	luminous

matter.	The	discrepancy	cannot	be	evaded	by	adding	dark	matter	with	the	same	distribution	as	the	luminous

matter;	in	order	to	produce	the	observed	rotation	curves,	the	dark	matter	has	to	be	distributed	as	a	halo	around

the	galaxy.

(31)	In	a	seminal	paper,	Ostriker	and	Peebles	(1973)	argued	in	favor	of	a	dark	matter	halo	based	on	an	N	body

simulation,	extending	earlier	results	regarding	the	stability	of	rotating	systems	in	Newtonian	gravity	to	galaxies.

These	earlier	results	established	a	criterion	for	the	stability	of	rotating	systems:	if	the	rotational	energy	in	the

system	is	above	a	critical	value,	compared	to	the	kinetic	energy	in	random	motions,	then	the	system	is	unstable.

The	instability	arises,	roughly	speaking,	because	the	formation	of	an	elongated	bar	shape	leads	to	a	larger	moment

of	inertia	and	a	lower	rotational	energy.	Considering	the	luminous	matter	alone,	spiral	galaxies	appear	to	satisfy	this

criterion	for	instability;	Ostriker	and	Peebles	(1973)	argued	that	the	addition	of	a	large,	spheroidal	dark	matter	halo

would	stabilize	the	luminous	matter.

(32)	This	assumption	has	been	challenged;	see	Cooperstock	and	Tieu	(2007)	for	a	review	of	their	controversial

proposal	that	a	relativistic	effect	important	in	galactic	dynamics,	yet	absent	from	the	Newtonian	limit,	eliminates	the

need	for	dark	matter.

(33)	Gravitational	lensing	occurs	when	light	from	a	background	object	such	as	a	quasar	is	deflected	due	to	the

spacetime	curvature	produced,	according	to	GR,	by	a	foreground	object,	leading	to	multiple	images	of	a	single

object.	The	detailed	pattern	of	these	multiple	images	and	their	relative	luminosity	can	be	used	to	constrain	the

distribution	of	mass	in	the	foreground	object.

(34)	See,	in	particular,	Weinberg	(1989)	for	an	influential	review	of	the	cosmological	constant	problem	prior	to	the

discovery	of	dark	energy,	and,	e.g.,	Polchinski	(2006)	for	a	more	recent	discussion.

(35)	Energy	conditions	place	restrictions	on	the	stress-energy	tensor	appearing	in	EFE.	They	are	useful	in	proving

theorems	for	a	range	of	different	types	of	matter	with	some	common	properties,	such	as	“having	positive	energy

density”	or	“having	energy-momentum	flow	on	or	within	the	light	cone.”	In	this	case	the	strong	energy	condition	is

violated;	for	the	case	of	an	ideal	fluid	discussed	above,	the	strong	energy	condition	holds	iff	ρ	+3p	≥	0.	Cf,	for

example,	chapter	9	of	Wald	(1984)	for	definitions	of	other	energy	conditions.

(36)	In	more	detail,	the	relevant	integral	is

For	a	Planck	scale	cutoff,	ℓ 	≍	1.6	×	10 	m,	the	resulting	vacuum	energy	density	is	given	by	ρ 	≍	2	×	10

erg/cm ,	compared	to	observational	constraints	on	the	cosmological	constant—ρʌ	≍2×	10 	erg/cm .	Choosing

a	much	lower	cutoff	scale,	such	as	the	electroweak	scale	ℓ 	≍	10 	m,	is	not	enough	to	eliminate	the	huge

discrepancy	(still	55	orders	of	magnitude).	Reformulated	in	terms	of	the	effective	field	theory	approach,	the

cosmological	constant	violates	the	technical	condition	of	“naturalness.”	Defining	an	effective	theory	for	a	given

domain	requires	integrating	out	higher	energy	modes,	leading	to	a	rescaling	of	the	constants	appearing	in	the

theory	This	rescaling	would	be	expected	to	drive	the	value	of	terms	like	the	cosmological	constant	up	to	the	scale

of	the	cutoff;	a	smaller	value,	such	as	what	is	observed,	apparently	requires	an	exquisitely	fine-tuned	choice	of	the

bare	value	to	compensate	for	this	scaling	behavior,	given	that	there	are	no	symmetry	principles	or	other

mechanisms	to	preserve	a	low	value.

(37)	See,	in	particular,	Rugh	and	Zinkernagel	(2002)	for	a	thorough	critical	evaluation	of	the	cosmological	constant

problem,	as	well	as	Earman	(2001),	Saunders	(2002),	and	Bianchi	and	Rovelli	(2010).

(38)	See	?	for	an	overview	of	the	use	of	inhomogeneous	models	as	an	alternative	to	dark	energy.

(39)	The	pronouncements	of	the	steady	state	theorists	drew	a	number	of	philosophers	into	debates	regarding

cosmology	in	the	1960s.	See	Kragh	(1996)	for	a	historical	account	of	the	steady-state	theory,	and	the	rejection	of	it

in	favor	of	the	big	bang	theory	by	the	scientific	community,	and	Balashov	(2002)	for	a	discussion	of	their	views

regarding	laws.
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(40)	See	Pauri	(1991);	Scheibe	(1991);	Torretti	(2000)	for	discussions	of	the	implications	of	uniqueness	and	the

status	of	laws	in	cosmology.

(41)	This	is	the	first	of	two	principles	Smolin	advocates	as	necessary	to	resolve	the	problem	of	time,	and	he	further

argues	that	they	bring	cosmological	theorizing	more	in	line	with	scientific	practice.

(42)	That	is,	for	any	open	set	O	of	the	spacetime	manifold	M,	if	〈M,g ,	T 〉	is	a	solution	of	EFE,	then	so	is	〈O,	g

|O,	T |O〉	taken	as	a	spacetime	in	its	own	right.

(43)	The	Weyl	tensor	represents,	roughly	speaking,	the	gravitational	degrees	of	freedom	in	GR	with	the	degrees	of

freedom	for	the	source	terms	removed.	Penrose's	hypothesis	holds	that	this	tensor	vanishes	in	the	limit	as	one

approaches	the	initial	singularity.

(44)	This	mistake	also	underlies	much	of	the	discussion	of	“ceteris	paribus”	laws,	and	here	I	draw	on	the	line	of

argument	due	to	Smith	(2002);	Earman	and	Roberts	(1999).

(45)	There	may	be	other	philosophical	requirements	on	an	account	of	laws	of	nature	that	do	draw	a	distinction

between	laws	of	physics	and	laws	of	the	universe.

(46)	In	Minkowski	spacetime,	this	set	is	the	past	lobe	of	the	light	cone	at	p,	including	interior	points	and	the	point	p

itself.	A	point	p	causally	precedes	q	(p	〈	q),	if	there	is	a	future-directed	curve	from	p	to	q	with	tangent	vectors	that

are	timelike	or	null	at	every	point.	The	sets	J	 	(p)	are	defined	in	terms	of	this	relation:	J (p)	=	q	:	q	〈	p,	J (p)	=	q

:	p	〈	q,	the	causal	past	and	future	of	the	point	p,	and	the	definition	generalizes	immediately	to	spacetime	regions.

(47)	The	Gauss-Codacci	constraint	equations	do	impose	some	restrictions	on	spacelike	separated	regions,

although	these	would	not	make	it	possible	to	determine	the	state	of	one	region	from	the	other;	see	Ellis	and	Sciama

(1972).

(48)	A	local	property	of	a	spacetime	is	one	that	is	shared	by	locally	isometric	spacetimes,	whereas	global

properties	are	not.	(Two	spacetimes	are	locally	isometric	iff	for	any	point	p	in	the	first	spacetime,	there	is	an	open

neighborhood	of	the	point	such	that	it	can	be	mapped	to	an	isometric	open	neighborhood	of	the	second	spacetime

(and	vice	versa).)

(49)	The	underdetermination	problem	still	arises	if	we	consider	the	past	of	future-inextendible	curves;	see	Glymour

(1977);	Malament	(1977)	for	discussion.

(50)	Malament	(1977)	reviews	several	different	definitions	of	observational	indistinguishability	and	gives	a	series	of

constructions	of	OI	spacetimes	lacking	specific	global	properties.	Note	that	Malament	defines	OI	in	terms	of	the

chronological	rather	than	causal	sets,	which	include	the	interior	of	the	light	cone	but	not	the	cone	itself	(The

definition	follows	the	one	given	in	footnote	46,	dropping	the	phrase	“or	null.”)	Manchak	(2009)	proves	that

Malament's	technique	for	constructing	such	spacetimes	fails	only	in	the	exceptional	case	noted	in	the	text.	Cf

Norton	(2011),	who	argues	that	the	inductive	generalizations	from	J 	(p)	to	other	regions	of	spacetime	lack	clear

justification.

(51)	As	Malament	emphasizes,	this	includes	the	failure	of	the	causality	conditions	to	hold.

(52)	Pick	a	point	in	p	∈	M	such	that	p	lies	in	∑	and	its	image	ϕ	(p)	∈	M′	under	the	isometric	imbedding	map	ϕ.	If

homogeneity	holds,	then	M′	must	include	an	isometric	“copy”	∑′	of	the	entire	Cauchy	surface	∑	along	with	its	entire

causal	past.	Take	ξ	to	be	an	isometry	of	the	spatial	metric	defined	on	∑,	and	ξ′	an	isometry	on	∑′.	Since	ϕ	◦ξ(p)	=	ξ′

◦ϕ(p),	and	any	point	q	∈	∑	can	be	reached	via	∑,	it	follows	that	∑′	is	isometric	to	E′.	Mapping	points	along	an

inextendible	timelike	curve	from	M	into	M	eventually	leads	to	an	isometric	copy	of	our	original	spacetime,	assuming

that	both	spacetimes	are	inextendible.	Turning	this	into	a	proof	that	OI	counterparts	are	completely	eliminated

requires	further	assumptions	about	the	topology	of	the	solutions.	(de	Sitter	spactime	and	its	unrolled	covering

space	are	both	inextendible	and	homogeneous	yet	have	distinct	global	topology,	as	John	Manchak	reminded	me.)

(53)	See	Beisbart	(2009)	for	a	thorough	discussion	of	different	attempts	to	justify	the	cosmological	principle.

(54)	Recent	work	has	clarified	the	extent	to	which	this	result	depends	on	the	various	exact	claims	made	in	the

antecedent.	The	fundamental	observers	do	not	need	to	measure	exact	isotropy	for	a	version	of	the	theorem	to	go
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through:	Stoeger,	Maarten,	and	Ellis	have	further	shown	that	almost	isotropic	CMBR	measurements	imply	that	the

spacetime	is	an	almost	FLRW	model,	in	a	sense	that	can	be	made	precise;	see	Clarkson	and	Maartens	(2010)	for	a

review.

(55)	Their	model	replaces	temporal	evolution	in	the	Standard	Model	with	spatial	variation,	with	spherical	sym	metry

around	a	preferred	axis.	They	construct	the	model	to	recapture	the	observational	results	of	the	Standard	Model	for

observers	situated	near	the	axis	of	symmetry.	Such	a	preferred	location	is	exactly	what	the	Copernican	principle

rules	out.

(56)	The	Sunyaev-Zel'dovich	effect	refers	to	the	distortion	of	the	spectrum	of	CBR	photons	that	results	from

scattering	by	hot	gases	in	galaxy	clusters.	Due	to	the	scattering	by	the	hot	gas	the	CBR	spectrum	will	have	an

excess	of	high-energy	photons	and	a	deficit	of	low-energy	photons;	measurements	of	this	distortion	can	in

principle	be	used	to	measure	the	temperature	and	mass	of	the	gas	in	the	cluster.

(57)	For	example,	topological	properties	such	as	temporal	orientability,	which	allows	for	a	globally	consistent

choice	of	the	direction	of	time,	seem	to	be	presupposed	in	formulating	local	dynamical	laws.

(58)	Here	I	am	adopting	the	usual	way	of	describing	the	objection,	although	this	language	can	be	quite	misleading

as	it	implicitly	assumes	that	the	singularity	can	be	“localized”	in	some	sense.	There	are	convincing	arguments	in

favor	of	taking	singular	as	an	adjective	describing	spacetime	as	a	whole;	see	Curiel	(1999),	Geroch,	Can-bin,	and

Wald	(1982).

(59)	Following	Rindler	(1956),	a	horizon	is	the	surface	in	a	time	slice	t0	separating	particles	moving	along

geodesics	that	could	have	been	observed	from	a	worldline	γ	by	t 	from	those	which	could	not.	The	distance	to	this

surface,	for	signals	emitted	at	a	time	t ,	is	given	by:	((3))

Different	“horizons”	correspond	to	different	choices	of	limits	of	integration,	with	the	“particle	horizon”	defined	as

the	limit	t 	→	0.	The	integral	converges	for	R(t)	∝	t 	with	n	〈	1,	which	holds	for	matter	or	radiation-dominated

expansion,	leading	to	a	finite	horizon	distance.	See	Ellis	and	Rothman	(1993)	for	a	clear	introduction	to	horizons.

(60)	 ,	where	the	critical	density	is	the	value	of	ρ	for	the	flat	FLRW	model,	 .

(61)	It	follows	from	the	FLRW	dynamics	that	 .	γ	〉	2/3	if	the	strong	energy	condition	holds,	and	in

that	case	an	initial	value	of	Ω	not	equal	to	1	is	driven	rapidly	away	from	1.

(62)	One	can	evolve	observed	fluctuations	backward	to	determine	the	amplitude	of	the	fluctuation	spectrum	at	a

given	“initial”	time	t .	For	t 	on	the	order	of	the	Planck	time,	for	example,	Blau	and	Guth	(1987)	calculate	that	the

fluctuations	obtained	by	evolving	backward	from	the	time	of	recombination	imply	a	density	contrast	of	≍	10 	at

t ,	nine	orders	of	magnitude	smaller	than	thermal	fluctuations.	The	comparison	depends	on	the	choice	of	the	time	t :

if	this	is	treated	as	a	free	variable,	then	there	will	be	some	time	at	which	the	fluctuations	are	comparable	to	thermal

fluctuations.

(63)	For	any	reasonable	choice	of	measure	over	the	space	of	solutions,	these	models	are	presumably	a	measure-

zero	subset.

(64)	Inflation	solves	the	horizon	problem	because	the	horizon	distance	increases	exponentially	during	inflation;	for

a	sufficiently	long	period	of	inflation,	all	the	points	on	the	surface	of	last	scattering	will	have	overlapping	past	light

cones.	The	inflationary	phase	also	reverses	the	dynamical	feature	of	the	FLRW	models	responsible	for	the	flatness

problem.	Because	γ	=	0	(in	the	equation	in	f	n.	61)	for	most	models	of	inflation,	inflationary	expansion	drives	Ω

toward	1,	enlarging	the	range	of	choices	Ω	(t )	compatible	with	observations.

(65)	One	of	the	main	lines	of	criticism	of	inflation	is	due	to	Roger	Penrose;	see	Penrose	(2004,	ch.	28)	for	a	recent

exposition.	See	Earman	and	Mosterin	(1999)	for	a	philosopher's	take	on	inflation,	Linde	(2007),	for	example,	for	a

recent	review	and	Turok	(2002)	for	a	critical	assessment.
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(66)	For	further	discussion,	see,	e.g.,	Callender	(2004a);	?);	Wald	(2006);	Wallace	(2011).

(67)	For	further	discussion	of	causality	in	relation	to	the	horizon	problem,	see	Earman	(1995),	and	for	a	critical

assessment	of	unification	claims,	see	Zinkernagel	(2002).

(68)	See	Price	(2004)	for	a	defense	of	the	opposing	point	of	view,	in	an	exchange	with	Callender	(2004a,b).

(69)	Barrow	and	Tipler	(1986)	is	an	influential	early	survey	of	the	field;	see	Carr	(2007)	for	a	recent	collection	of

essays.

(70)	These	necessary	conditions	are:	(1)	that	main	sequence	stars	are	still	burning,	and	(2)	that	an	earlier

generation	of	red	giants	had	time	to	produce	carbon	in	supernovae.

(71)	Bayesians	can	account	for	this	by	explicitly	conditionalizing	on	some	claim	characterizing	the	selection	effect

A:	P (·)	=	P(·	\A).	The	selection	effect	may	render	an	originally	“informative”	piece	of	evidence	E	useless,	in	that

P (E\H)	≍	P (E\	H).	In	these	terms,	Dicke's	argument	shows	that	P (LN\H )	P (LN\H )	1,	where	LN	is	the	large

number	coincidence,	H 	is	Dirac's	cosmological	theory,	and	H 	M	is	the	Standard	Model.

(72)	This	is	not	to	say	that	Weinberg's	paper	is	the	first	appearance	of	this	kind	of	anthropic	reasoning	in

contemporary	cosmology;	Collins	and	Hawking	(1973)	is	an	earlier	influential	example,	in	which	similar	reasoning	is

used	to	account	for	the	isotropy	of	the	universe.

(73)	More	precisely,	the	upper	bound	relates	the	λ	term	to	the	total	energy	density	in	matter	at	the	time	when	most

galaxies	formed;	the	upper	bound	on	λ	is	200	times	the	present	matter	density	Considering	variation	of	multiple

parameters	may	undermine	this	bound;	larger	values	of	λ	can	be	tolerated	if	one	increases	the	amplitude	of	the

initial	spectrum	of	density	perturbations,	for	example.	See	Aguirre	(2007)	for	a	discussion	of	the	problems

associated	with	considering	a	single	parameter.

(74)	Weinberg	(1987)	did	not	base	his	suggestion	on	a	particular	multiverse	proposal,	instead	listing	four	proposals

that	would	provide	a	suitable	setting	for	his	argument.

(75)	There	have	been	calculations	for	the	prior	probability	distribution	over	λ	in	different	proposed	multiverses;	the

assumption	holds	in	some	but	not	all	of	them	(see,	e.g.,	Garriga	and	Vilenkin	2000).

(76)	This	is	a	vast	improvement	on	the	estimates	produced	by	particle	physics,	which	are	off	by	up	to	120	orders

of	magnitude.	In	a	later	treatment,	Weinberg	argues	for	a	lower	anthropic	bound,	such	that	the	probability	assigned

to	current	observations	is	either	5	or	12%	(depending	on	other	assumptions);	see	Weinberg	(2007)	for	an	overview

and	references.

(77)	See,	e.g.,	Vilenkin	(1995);	Bostrom	(2002).

(78)	Obviously	this	argument	requires	some	assumptions	regarding	methodology;	it	is	typically	formulated	within	a

Bayesian	approach,	and	the	conclusion	need	not	follow	on	other	accounts	of	inductive	method.	Shortly	I	will	return

to	the	question	of	whether	this	is	a	good	argument	even	on	a	Bayesian	approach.

(79)	There	are	various	different	formulations	of	the	argument	(see	Bostrom	2002	for	an	entry	point	into	this

literature).	One	formulation	starts	with	the	assumption	that	the	probability	of	one's	own	birth	rank	being	r	is	given	by

Pr(r	\	N)	=	1/N,	where	N	is	the	total	number	of	humans	ever	born	(assuming	that	N	≥	r).	If	one	further	assigns	a

prior	probability	Pr(N)	=	k/N	(with	a	constant	k),	then	the	posterior	probability	obtained	using	Bayes's	theorem	is

Pr(N\r)	=	k/N.	It	follows	that	there	is	a	less	than	5%	probability	that	the	total	number	of	humans	ever	born	will

exceed	20r.	The	argument	is	entirely	general	and	results	from	invoking	the	PM	in	choosing	a	time	within	a	process

that	extends	over	some	finite	duration.

(80)	See	Bostrom	(2002)	and	Neal	(2006)	for	discussions	of	the	different	versions	of	“anthropic	reasoning”	and	the

various	puzzles	they	are	meant	to	address.

(81)	This	was	proposed	by	Dieks	(1992)	in	response	to	the	Doomsday	argument;	see	Bostrom	(2002)	and	Dieks

(2007)	for	further	discussion.	The	idea	has	also	been	discussed	in	light	of	Elga's	(2000)	Sleeping	Beauty	problem.
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(82)	Hence	the	Presumptuous	Philosopher	(see	Bostrom	2002),	whose	posterior	probability	in	the	theory	with	more

observers	remains	high	despite	receiving	disconfirming	evidence.

(83)	This	is	not	to	say	that	various	considerations	emphasized	in	the	anthropic	literature,	such	as	the	number	of

observers	predicted	to	exist	in	a	particular	situation,	are	irrelevant.	Rather,	such	factors	can	be	accounted	for	in	a

Bayesian	approach	by	paying	careful	attention	to	the	details	without	adding	further	general	principles.

(84)	How	to	calculate	this	fraction	depends	upon	the	measure	assigned	over	the	multiverse,	so	that	one	can	count

regions.	Here	for	the	sake	of	illustration	I	will	simply	assume	that	such	a	fraction	is	well	defined	and	that	it	yields	a

finite	result.

(85)	Note	that	arguments	to	this	effect	usually	involve	a	lot	of	hand-waving.

(86)	The	Everett	interpretation	of	quantum	mechanics	attributes	a	branching	structure	to	the	universal	wave

function	of	the	universe,	and	the	individual	branches	can	be	regarded	as	something	akin	to	pocket	universes	(see

Wallace,	this	volume,	for	a	discussion	of	the	Everett	interpretation).	However,	unlike	the	other	accounts	the	laws	of

physics	do	not	vary	in	the	different	branches.	There	is	a	clear	distinction	between	the	two	cases,	although	recently

there	has	been	interest	in	exploring	connections	between	these	two	lines	of	thought.

(87)	See	Tegmark	(2009)	for	an	influential	classification	of	four	different	types	or	levels	of	the	multiverse.

(88)	This	line	of	argument	has	appeared	numerous	times	in	the	literature;	see,	e.g.,	Livio	and	Rees	(2005)	for	a

clear	formulation.

(89)	Here	I	am	indebted	to	discussions	with	John	Earman.

(90)	The	explanation	may	also	be	path-dependent	in	the	sense	of	depending	not	just	on	an	initial	state,	but	on

various	stochastic	processes	leading	to	the	formation	of	the	pocket	universe.
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structure,	role	of,	470–74

“superposition	state,”	462

wave	packets,	461

Expanding	universe	models,	609–14

Explanatory	irreducibility,	phase	transitions,	210–14

Explanatory	progress,	hydrodynamics,	27–30

components	of	explanation,	28–29

heterogeneous	specializations,	30

homogeneous	specializations,	30

pragmatic	definition	of,	29–30

sources	of,	27–28

Extended	singularities

Ising	model,	152

matter,	infinities	and	renormalization,	183

Extended	singularity	theorem,	Ising	model,	154–55

Extensivity,	phase	transitions,	201n2

“False	facts,”	classical	mechanics,	47

Fecundity	and	generality,	trade-off	between,	335n13

Fermi	EFT	of	weak	force	effective	field	theory	(EFT),	245

Fermilab's	Tevatron,	305

Fermions,	indistinguishability,	364–65

Ferromagnetic	phase	transitions,	192

Ferromagnets,	145

Ising	model,	156

the	tyranny	of	scales,	265–66,	278

spontaneous	magnetization,	265

unitary	inequivalence,	as	example	of,	508,	509

Feynman,	R.,	119

anti-particles,	294n10

diagrams,	indistinguishability,	367,	368

the	tyranny	of	scales,	256

unitary	equivalence,	492
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50-50	volume	mixture,	the	tyranny	of	scales,	268

Fine-graining,	indistinguishability,	346

Finiteness	condition,	radiation	theory,	124

First-order	phase	transition,	147

Fisher,	Michael,	166,	170,	208

Fixed	points

matter,	infinities	and	renormalization,	178

renormalization	group	theory,	177

Flatness	problem,	early	universe	cosmology,	635

Flexible	beam,	classical	mechanics,	44

Flexible	bodies,	classical	mechanics,	44

Flows	and	flow	diagrams

matter,	infinities	and	renormalization,	180–81

one-dimensional	Ising	model,	180

two-dimensional	Ising	model,	181

Fluctuations

boiling,	151

critical	opalescence,	151–52

liquid	gas,	150n6,	151

Fluid	mechanics.	See	Hydrodynamics,	philosophy	of

Fluid	motion,	hydrodynamics,	13–14,	22

Fluids

mean	field	theory,	165

velocity,	hydrodynamics,	13

Forced	closed,	rigid	body	mechanics,	70n27

Force	of	rolling	friction,	axiomatic	presentation,	54,	54

Forces,	rigid	body	mechanics,	73–74

Foundational	point	of	view,	axiomatic	presentation,	48–49

Four-force,	relativity,	554

Fourier	space,	renormalization	group	theory,	172–74

Fourier	transformations

advanced	Green's	functions,	111

dispersion	theory,	133,	135

effective	field	theory	(EFT),	239

radiation	theory,	126–27

retarded	Green's	functions,	113,	114

Fraser,	D.,	251

Free	body	diagrams,	rigid	body	mechanics,	73,	74

Freeze	out	of	particles,	Standard	Model,	614

Freezing	to	a	scale	level,	55

Friedman-Lemaitre-Robertson-Walker	(FLRW)	models,	610,	612–13,	614n16,	617,	623

early	universe	cosmology,	634–36

global	structure,	cosmology,	631–33

Friedman,	Michael,	548
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causation	in	classical	mechanics,	108nn7	and	9,	109n10

dispersion	relations,	132

dispersion	theory,	135–37

point-particle	electrodynamics,	130–31

Froude,	William

boundary	layers,	24–26

surface	waves,	16

turbulence,	21

Fruitless	definition,	symmetry	and	equivalence,	322

Future	Cauchy	horizon,	relativistic	spacetime,	592

Future-directed	curve,	relativistic	spacetime,	589

Future	distinguishability	condition,	spacetime	properties,	596

Future	domain	of	dependence,	relativistic	spacetime,	592

Future	endpoint,	relativistic	spacetime,	592

Future	incomplete,	spacetime	properties,	598

Galaxies	and	clusters	of	galaxies,	length	scale,	613

Galilean	boosts,	symmetry	and	equivalence,	327,	331

Galilean	covariance

spacetime,	substantivalist	and	relationalist	approaches	to,	523

Galilean	idealization,	210n7

Galilean	invariance,	527–31

dynamical	symmetries,	spacetime	and,	527–29

dynamical	symmetry	group,	529

Euclidean	coordinate	systems,	528,	529

Galilei	group,	529

kinematically	privileged	systems,	527

kinematic	shift	argument,	529–30

Leibniz	group	of	transformations,	528

Leibnizian	relationalism,	527–28,	530

Newton	group,	528

Principle	of	Sufficient	Reason	(PSR),	530n14

relative	particle	configurations,	527

spacetime	symmetry	groups,	528

Galilean	spacetime

have-it-all	relationalism,	570

Hole	Argument	(Einstein),	576n104

spacetime	substantivalism,	531

Galilei	group

enriched	relationalism,	classical	mechanics,	549–50

physical	equivalence,	330

spacetime,	substantivalist	and	relationalist	approaches	to,	529,	533

symmetries,	spacetime	substantivalism,	534

Galileo,	Church's	condemnation	of,	524n3

Games	and	gambling,	the	tyranny	of	scales,	275–76,	277	“
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Lagrangian,	298–99

kinetic	component,	300n17

Gauge	hierarchy	problem

electroweak	theory,	404

Gauge	theories,	symmetry,	300–303

continuous	symmetry,	299

dynamical	account,	302n22

“Eightfold	Way,”	302n22

Gell-Mann	“strangeness,”	302

Glashow-Salam-Weinberg	(GSW)	model,	303

“gluing”	role,	301

isospin	idea,	301

Lorentz	invariant,	299

“power	of	the	gauge,”	299

quantum	chromodynamics	(QCD),	302

weak	neutral	currents,	302n24

Gauss-Codacci	constraint	equations,	629n47

Gaussian	bell	curves,	quantum	mechanics,	432

Gaussian	distribution,	the	tyranny	of	scales,	276,	279

Gaussian	wave	packets,	quantum	mechanics,	432–34

Gauss's	Law,	effective	field	theory	(EFT),	231–32

Gell-Mann/Low	formulation,	effective	field	theory	(EFT),	408–9

Gell-Mann,	M.

gauge	theories,	302

“Eightfold	Way,”	302n22

omega	minus	hadron,	prediction	of,	306

prediction,	totalitarian	principle,	309n39

symmetry,	predictive	reasoning,	308–9

Gell-Mann	“strangeness,”	302

Generalized	coordinates,	rigid	body	mechanics,	71

Generally	covariant	equations,	symmetries,	533

General	relativity	(GR),	325,	537–39,	541,	543–44

dark	matter	and	dark	energy,	619

have-it-all	relationalism,	568–69

Hole	Argument	(Einstein),	573–75,	578

Machian	relationalism,	563–64

unification	in	physics,	383

Georgi,	H.,	238–39,	411n25
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Gibbs,	J.	Willard.	See	also	Boltzmann-Gibbs	formulation

Elementary	Principles	in	Statistical	Mechanics,	352–53

on	indistinguishability,	341–52.	See	also	Indistinguishability

phase	transitions

infinite	idealization,	207
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thermodynamic	treatment,	191
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thermodynamics,	142,	145

Gibbs	paradox,	indistinguishability,	378

Ginzburg,	Vitaly,	167.	See	also	Landau-Ginzburg-Wilson	free	energy

Glashow	model,	electroweak	theory,	397

Glashow,	S.	See	Glashow	model;	Glashow-Salam-Weinberg	(GSW)	model

Glashow-Salam-Weinberg	(GSW)	model,	303

Gleason,	A.	M.,	422,	425,	449

Global	continuous	symmetry,	295–97

Global	hyperbolic	spacetime,	10,	597,	629

Global	isotropy,	reduction	of,	611

Global	spacetime	structure,	10,	587–606

Big	Bang	singularity,	600

boundary	conditions,	600

compactly	generated	Cauchy	horizon,	602

hole-freeness,	603

Klein-Gordon	fields,	601

manifold	M,	588–90

compact	manifold,	588

Hausdorff,	588

metric,	588–90

Lorentzian	metric,	588

Minkowski	spacetime

singularities,	601,	601

time	travel,	603

Misner	spacetime,	603

nakedly	singular	spacetime,	601

reasonable	properties,	598–603

Big	Bang	singularity,	600

boundary	conditions,	600

compactly	generated	Cauchy	horizon,	602

hole-freeness,	603

Klein-Gordon	fields,	601

Minkowski	spacetime,	601,	603

Misner	spacetime,	603

nakedly	singular	spacetime,	601

singularities,	598–601

time	travel,	601–3

trapped	surface,	600

relativistic	spacetime,	587–93

causal	curve,	591

causal	future,	590–91

chronology	violating	region	of	spacetime,	591
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closed	causal	curve,	591

conformal	factor,	592

cylindrical	Minkowski	spacetime,	591

dependence,	590–93

future	Cauchy	horizon,	592

future-directed	curve,	589

future	domain	of	dependence,	592

future	endpoint,	592

influence,	590–93

isometric	spacetimes,	589–90

locally	isometric	spacetime,	590

manifold	M,	588–90

maximal	spacetimes,	590

metric,	588–90

Minkowski	spacetime,	591,	591–93,	592

Möbius	strip,	589

null	vectors,	589,	589

past	Cauchy	horizon,	592

past-directed	curve,	589

past	domain	of	dependence,	592

past	endpoint,	592

spacelike	surface,	592

spacelike	vectors,	589,	589

temporarily	orientable	spacetime,	589

timelike	future,	590–91

timelike	vectors,	589,	589

singularities,	598–601

spacetime	properties,	593–98

Cauchy	surface,	597

causal	continuity	condition,	597

causal	simplicity	condition,	597

causal	structure,	596

chronology	condition,	596

constraint	solutions,	595

convex	normal,	593

distinguishability	conditions,	596

dominant	energy	conditions,	595

Einstein's	equation,	595

Einstein	tensor,	594

energy-momentum	tensor,	594

future	distinguishability	condition,	596

future	incomplete,	598

global	hyporbolicity,	597

global	properties,	596–98

local	properties,	593–95
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Minkowski	spacetime,	597

null	geodesic	incompleteness,	598

past	distinguishability,	596

past	incomplete,	598

Ricci	tensor,	594

singularities,	596

spacelike	geodesic	incompleteness,	598

stable	causality	condition,	596–97

strong	causality	condition,	596

strong	energy	conditions,	595

timelike	geodesically	incomplete,	598

time	travel,	601–3

trapped	surface,	600

Global	structure,	cosmology,	628–33

Big	Bang	model,	631

Cauchy	surface,	629

“causality	conditions,”	629

“chaotic	cosmology”	program,	631–32

Copernican	principle,	631–32

cosmic	background	radiation	(CBR),	632

“cosmological	principle,”	630

Ehlers-Geren-Sachs	(EGS)	theorem,	630–32

Einstein	Field	Equations	(EFEs),	628–29

Friedman-Lemaitre-Robertson-Walker	(FLRW)	models,	631–33

Gauss-Codacci	constraint	equations,	629n47

global	hyperbolic	spacetime,	10,	629

homogeneity,	630

local	property	of	spacetime,	629n48

Minkowski	spacetime,	628n46,	629

observationally	indistinguishable	(OI)	spacetime,	629–30

spacetime	geometry,	628

Sunyaey-Zel'dovich	effect,	632

“Gluing”	role,	symmetry,	301

Glymour,	Clark,	496,	499n9

Goldstone	boson,	symmetry,	304

GR.	See	General	relativity	(GR)

Gravitational	wave,	relativity,	556

Green,	George,	269

Green,	Melville,	168

Green's	functions,	point-mass	mechanics,	67

Greenwood,	Donald,	80–82

Greenwood's	proofs,	rigid	body	mechanics,	80–82

Group	orbits,	Machian	relationalism,	559

Group	theory,	symmetry,	289

Guggenheim,	E.	A.
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corresponding	states,	principle	of,	162

mean	field	theory,	165

Guns,	Germs	and	Steel	(Diamond),	141

Guth,	Alan,	634,	636

Haag,	Rudolph,	492

Hacking,	Ian,	13

Haecceitism,	indistinguishability,	356–60

Hagen,	Gotthilf,	20

Hamel,	Georg,	48

Hamiltonian	equations,	symmetry,	289

Hamiltonian	function

block	transforms	and	scaling,	171

free	energy,	173

Ising	model,	153

matter,	infinities	and	renormalization,	146

flows	and	flow	diagrams,	180,	181

mean	field	theory,	157

naming	of	function,	146n3

phase	transitions,	190

statistical	mechanical	treatment,	193

renormalization	group	theory,	196–97

and	statistical	mechanics,	146

the	tyranny	of	scales,	276

universality	classes,	178

Hamiltonians,	effective	field	theory	(EFT),	410

Hamiltonian	symmetries

outlook,	334

and	physical	equivalence,	331–32

symmetry	and	equivalence,	326–28

Hamiltonian	systems,	“uniqueness	results,”	493–94

Hamiltonian	theory,	unitary	inequivalence,	507

Hamilton's	“Principle	of	the	Least	Action,”	295

Hamilton,	William	Rowan.	See	Hamiltonian	equations;	Hamiltonian	function

Hausdorff,	588

Have-it-all	relationalism

Best	Systems	prescription,	566

dynamical	approach	to	relativity,	569–74

dynamical	laws,	565

Galilean	spacetime,	570

general	relativity	(GR),	568–69

homogeneous	matter,	573–74

Humean	approach,	566

Leibnizian	relationalism,	567–68

Lorentz	contract,	570n92,	572

Mill-Ramsey-Lewis's	Best	Systems	prescription,	566
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regularity	approach,	564–69

rod,	constituents	of,	570

rotation	disks	argument,	566

Hawking	radiation	exterior,	518

Hawking,	Stephen,	599,	613

Heat	capacity	as	measured,	mean	field	theory,	166

Heat	transfer,	indistinguishability,	344–45

Heisenberg	model	of	ferromagnetism,	163

Heisenberg's	“cut,”	quantum	mechanics,	440–42

Copenhagen	interpretation,	441n30

Heisenberg,	Werner,	20

gauge	theories,	301

quantum	mechanics

classical	regime,	430–31

particle	tracks,	439

Helmholtz	equation,	radiation	theory,	123,	125–27,	129–30

Helmholtz,	Hermann

boundary	layers,	23

and	explanatory	progress,	28–29

instabilities,	20

thermodynamic	calculations,	146

turbulence,	21

vortex	motion,	18–19

Helmholtz-Kelvin	instability,	19

Hermann,	Grete,	422

Heterogeneous	specializations,	30

Hierarchy	problem,	effective	field	theory	(EFT),	228n6

Higgs	boson

electroweak	theory,	394–95,	403–6

symmetry,	291

Higgs	field,	electroweak	theory,	398–401

Higgs	mechanism,	symmetry,	303–6

Higgs	particle,	unification	in	physics,	381–82

Higgs	term,	effective	field	theory	(EFT),	228n6

High-energy	particle	acceleration,	funding	for,	2

Higher-order	ontology,	Everett	interpretation,	470–74

“Higher	or	lower”	pairs,	rigid	body	mechanics,	70n28

Hilbert,	David,	104

axiomatic	encapsulations,	56

choice	of	length	scale,	50

decompositional	programs,	53,	53

degeneration,	53

dispersion	theory,	134,	136

homogenization,	53
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ontology,	369

list	of	problems,	47–48,	81–82

sixth	problem,	52–53

symmetry,	289

Hilbert	space

Everett	interpretation,	464,	467n8

indistinguishability,	359

quantum	mechanics,	420–21,	425–26

environment,	434

ideal	spin	measurements,	443

measurement,	417,	450n38

unitary	equivalence,	physical	equivalence	and,	9,	489–90,	503n12,	510,	518

competing	criteria	of	equivalence,	513

“uniqueness	results,”	494–95

unitary	inequivalence,	as	example	of,	503

Hofstader,	Douglas,	471

Hole	Argument	(Einstein),	300n17,	523,	574–79

and	dynamical	symmetries,	576

Euclidean	symmetries,	577

and	Galilean	spacetime,	576n104

general	relativity	(GR),	573–75,	578

hole	diffeomorphism,	575

individualistic	facts,	577n108

and	kinematic	shift	argument,	576

Leibniz	and	Clarke	correspondence,	577n106

Machian	3-space	approach,	578

and	Maxwell	group,	576n104,	578

Newton-Cartan	theory,	576–77

pseudo-Reimannian	metric	field,	574n100,	578

sophisticated	substantivalism,	575

structural	realist	interpretation	of	spacetime,	577

Hole-freeness,	global	spacetime	structure,	603

Homogeneity

global	structure,	630

have-it-all	relationalism,	573–74

Homogeneous	specializations,	30

Homogenization

axiomatic	presentation,	51,	53,	55

the	tyranny	of	scales,	256,	280–83

averaging	and	homogenization,	differences,	277–78

limit,	281

Hooke's	law

continuum	mechanics,	99

steel	beams,	258
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Horizon	problem,	early	universe	cosmology,	634–35,	635

“Hot”	versus	“cold,”	dark	matter	and	dark	energy,	618n24

Hubble,	E.,	613

Hubble	radius,	617n21

Huggett,	Nick

effective	field	theory	(EFT),	234

enriched	relationalism,	classical	mechanics,	548

have-it-all	relationalism,	564–69,	571–72,	573n97

indistinguishability,	haecceitism,	356

regularity	approach	to	relationalism,	564–69,	571–72

relationalism,	545

relational	spacetime,	544

Hume,	David,	56,	107

have-it-all	relationalism,	566

Hydrodynamics,	philosophy	of,	12–42

approximation	methods,	31

articulation,	13

Bernoulli's	Law,	15–16,	27

boundary	layers,	13,	23–27

airplane	wings,	26

discontinuity	surface,	24

eddy	resistance,	24,	25

and	modules,	37

ships,	24

skin	resistance,	24

wave	resistance,	24

calculation,	13

computational	templates,	32–33n41

explanatory	progress,	27–30

components	of	explanation,	28–29

heterogeneous	specializations,	30

homogeneous	specializations,	30

pragmatic	definition	of,	29–30

sources	of,	27–28

fluid	motion,	13–14,	22

fluid	velocity,	13

history,	13–27

Bernoulli's	Law,	15–16,	27

boundary	layers,	13,	23–27

fluid	motion,	13–14,	22

fluid	velocity,	13

instabilities,	19–21

kinetic	theory	of	gases,	22

“losses	of	head,”	16

nonviscous	fluid,	13
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pipe	flow,	20

plane	parallel	flow,	20

plane	Poiseuille	flow,	21

surface	waves,	16–17

turbulence,	21–23

vortex	motion,	17–19

instabilities,	19–21

interpretive	schemes,	31

kinetic	theory	of	gases,	22

“losses	of	head,”	16

modules,	33–38

correspondence	principle,	35–36

defining,	33

idealizing	modules,	33

and	models,	36–38

reducing	modules,	34,	36n46

shared	module,	36

specializing	modules,	33

structure,	35

nonviscous	fluid,	13

overview,	3

physical	theories,	31–32

pipe	flow,	20

plane	parallel	flow,	20

plane	Poiseuille	flow,	21

surface	waves,	16–17

symbolic	universe,	31

theoretical	laws,	31

theory	articulation,	13

turbulence,	21–23

the	tyranny	of	scales,	279

vortex	motion,	17–19

wing	theory	(Prandtl),	13,	30

Ideal	spin	measurements,	quantum	mechanics,	443–44

Identity	conditions,	indistinguishability,	372–76

Imprecision,	Ising	model,	155n10

Improper	mixtures,	quantum	mechanics,	427

indistinguishability	from	proper	mixtures,	429

Incoming	waves,	radiation	theory,	127

Indexical	uncertainty,	Everett	interpretation,	476

Indistinguishability,	340–80

“account	of	equality,”	372

asymmetry,	365n33

classical	indistinguishability,	argument	against,	354–56

classical	particle	indistinguishability,	355–56
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coarse-graining

equilibrium	entropy,	348

statistical	mechanics,	346

conventions,	system	of,	246

Ehrenfest-Trkal-van	Kampen	approach,	350–51,	366

eliminativism,	376–78

and	Gibbs	paradox,	378

Pauli	exclusion	principle,	377

“preferred	basis	problem,”	377

quantum	fields,	377–78

entropy,	343–45

Boltzmann	definition	of,	346–47

equilibrium	entropy,	348–49

coarse-graining,	348

fermions,	364–65

Feynman	diagrams,	367,	368

fine-graining,	346

Gibbs	paradox,	7,	341–52

Ehrenfest-Trkal-van	Kampen	approach,	350–51,	366

and	eliminativism,	378

equilibrium	entropy,	348–49

Feynman	diagrams,	367,	368

haecceitism,	356

N!	puzzle,	349–52

ontology,	366–69

permutable	coins,	366–67,	368

quantum,	indistinguishability	and,	341–43

statistical	mechanics,	346–47

thermodynamics,	343–46

uniform	symmetry,	352–53

haecceitism,	356–60

Hilbert	space,	359,	362,	363

identity	conditions,	372–76

Leibniz's	principle,	373–74

Maxwell-Boltzmann	statistics,	371n42

N!	puzzle,	349–52

ontology,	365–78

“account	of	equality,”	372

eliminativism,	376–78

Gibbs	paradox,	366–69

identity	conditions,	372–76

Leibniz's	principle,	373–74

Maxwell-Boltzmann	statistics,	371n42

permutability	of	objects,	369–70

philosophical	logic,	369–72
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quantities	invariant,	365

quantum	particles,	371–72

spin,	375
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Second	Law,	77–78,	433

third	law,	63–64,	66,	81,	552

“natural	coordinates,”	63

planets,	treatment	of,	55

Principia,	523

Scholium,	523,	525n4,	526

rotation,	48

spacetime,	substantivalist	and	relationalist	approaches	to

diametrical	symmetries,	527–29

dynamical	symmetries,	spacetime	and,	527–31

Galilean	invariance,	527–31

have-it-all	relationalism,	564–74

Hole	Argument	(Einstein),	574–79

inertia,	spacetime	explanation	of,	541–44

kinematic	shift	argument,	529–30

Machian	relationalism,	557–64

neo-Newtonian	spacetime,	531–33

Newton's	bucket,	523–27

rationality,	failure	of,	539–40

relationalism,	varieties	of,	544–74

Newton's	bucket,	523–27

Noether,	Emmy,	289,	291

electroweak	theory,	396–97

“gauge	argument,”	291

obituary	(by	Einstein),	297

symmetry

continuous	symmetry,	295–97

global	continuous	symmetry,	295–97

local	symmetry,	324–25

symmetry	and	equivalence

differential	equations,	symmetries	of,	324–25,	328

Hamiltonian	symmetries,	328

No-go	theorem	for	safe	bit	commitment	protocols,	430

No-hidden	variables	theorem,	422

Non-Abelian	case,	electroweak	theory,	396,	401

Noninertial	motion,	542

Non-interacting	particles,	Everett	interpretation,	463n5

Non-relativistic	QCD,	effective	field	theory	(EFT),	229n7

Nonsimultaneous	events,	enriched	relationalism,	549

Nontrivial	spin	properties,	quantum	mechanics,	428

Nonviscous	fluid,	hydrodynamics,	13

Normalization,	quantum	mechanics,	422n10
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Normal	science,	hydrodynamics,	30n38

Norton,	John	D.

anthropic	reasoning,	642–43

have-it-all	relationalism,	572–73

Hole	Argument	(Einstein),	523,	575

No-signaling	theorem,	quantum	mechanics,	425

N!	puzzle,	indistinguishability,	349–52

NRQCD.	See	Non-relativistic	QCD

Null	geodesic	incompleteness,	spacetime	properties,	598

Null	vectors,	relativistic	spacetime,	589,	589

Objective-probability	role,	Everett	interpretation,	479n17

Observationally	indistinguishable	(OI)	spacetime,	629–30

Ockham's	razor,	523,	539

ODEs.	See	Ordinary	differential	equations	(ODEs)

“Old”	cosmological	constant	problem,	dark	matter	and	dark	energy,	621–22

Oldenburg	group,	infinite	idealization,	209

Olver,	P.,	322n10

Omega	minus	hadron,	symmetry,	307

One-dimensional	Ising	model,	180

One	spin,	mean	field	theory,	157

Onnes,	Heike	Kamerlingh,	165

“On	Physical	Lines	of	Force”	(Maxwell),	387–93

Onsager,	Lars,	165–67,	166,	195

Ontology	and	ontological	issues

classical	mechanics,	44n2

ontologically	mixed	circumstances,	44n2

effective	field	theory	(EFT),	239–43

antifoundationalism,	240

antireductionism,	240

approximations,	EFTs	and,	243

cutoff,	realistic	interpretations	of,	241–43

decoupling,	240–41

quantum	field	theory	(QFT),	240–43

quasi-autonomous	domains,	240–41

Wilsonian	approach,	240

Everett	interpretation,	higher-order	ontology,	470–74

indistinguishability,	365–78,	374

“account	of	equality,”	372

eliminativism,	376–78

Gibbs	paradox,	366–69

identity	conditions,	372–76

Leibniz's	principle,	373–74

Maxwell-Boltzmann	statistics,	371n42

permutability	of	objects,	369–70

philosophical	logic,	369–72
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quantities	invariant,	365

quantum	particles,	371–72

spin,	375

total	symmetry,	369

infinite	idealization,	phase	transitions,	214–17

retarded	Green's	functions,	contours	for	damped	oscillator,	115

symmetry,	306–7

Open	channel	flow,	28

Order	parameters

matter,	infinities	and	renormalization,	144–45

mean	field	theory,	order	parameter	jump,	162

orientation	of	order	parameter,	144

Ordinary	differential	equations	(ODEs)

continuous	variables,	lift	from,	55n14

and	foundational	principles,	45n4

PDE's	distinguished,	45

and	Schrödinger	equation,	46

and	spin,	45n5

tasks	governed	by,	49

Ordinary	QM

unitary	equivalence,	physical	equivalence	and,	495,	496,	500–502,	504,	510–13

unitary	inequivalence,	as	example	of,	508

Ornstein,	Leonard,	152,	158

Ornstein-Zernike	infinity,	Ising	model,	156

Ostriker,	P.,	620n31

Our	Knowledge	of	the	“External	World	(Russell),	96n43

Outgoing	waves,	radiation	theory,	127

“Overlapping	domains”	argument,	early	universe	cosmology,	633

Pairs	of	solutions,	symmetry	and	equivalence,	333n55

Parallelly	transported	vector,	spacetime	properties,	593

Parallel	tradition,	Everett	interpretation,	478n16

Paramagnetism,	192

Parastatistics,	indistinguishability,	364n32

Parity,	symmetry,	293n9

Partial	differential	equations	(PDEs)

and	foundational	principles,	45n4

ODE's	distinguished,	45

Particle	spin,	Ising	model,	154

Passivity	and	causality,	dispersion	theory,	137

Past	Cauchy	horizon,	relativistic	spacetime,	592

Past-directed	curve,	relativistic	spacetime,	589

Past	distinguishability,	spacetime	properties,	596

Past	domain	of	dependence,	relativistic	spacetime,	592

Past	endpoint,	relativistic	spacetime,	592

Past	incomplete,	spacetime	properties,	598
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PAS,	unitary	equivalence,	504,	508,	514

Patashinskii,	Alexander,	168–69

Patrizi,	Francesco,	526

Pauli	relations,	unitary	equivalence,	494

Pauli	spins,	as	example	of	unitary	inequivalence,	494,	501–4

Pauli,	Wolfgang,	310,	377

Pearson,	Karl,	271

Peebles,	Phillip	James	Edward,	620n31

Penrose,	Roger,	601,	613,	626,	637

Permutability	of	objects,	indistinguishability,	369–70

Permutable	coins,	indistinguishability,	366–67,	368

PEV,	unitary	equivalence,	496–500,	496n6,	504,	508,	514

Phase	diagram,	Ising	model,	156

Phase	space

matter,	infinities	and	renormalization,	146

quantum	statistics,	explanation	of,	361–62

reduced	phase	space,	361–62,	362

symmetry	and	equivalence,	327

Phase	transformation,	electroweak	theory,	396n13

Phase	transitions,	189–223

additivity,	201n2

boiling,	147

conceptual	novelty,	199–200

defined,	189

emergence	of,	197–204

ensemble	equivalent,	207

experimental	studies,	147

explanatory	irreducibility,	210–14

extensivity,	201n2

infinite	idealization,	204–17

back-bending,	206–8,	207

Bose-Einstein,	206,	208

caloric	curve,	back-bending	of,	207

complex	inverse	temperature,	209

conceptual	novelty,	204–10

distribution	of	zeros,	208–10

and	emergence	of	phase	transitions,	202

explanatory	irreducibility,	210–14

Galilean	idealization,	210n7

liquid-gas	system,	215

Monte	Carlo	method,	211–12

Oldenburg	group,	209

ontological	irreducibility,	214–17

renormalization	group,	216–23

smooth	phase	transitions,	206
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Yang-Lee	theorem,	208

intensive	properties,	201

irreducibility,	199,	203

explanatory	irreducibility,	210–14

infinite	idealization,	221

materials,	discovery	and	invention	of,	141–42

multiple	realization,	198n1

Nagel's	theory,	198

ontological	irreducibility,	214–17

paramagnetism,	192

and	reduction,	198–201

as	reductionism	in	the	core	sense	of,	198

renormalization	group,	infinite	idealization	in,	216–23

critical	behavior	of	particular	systems,	218

crossover	theory,	220–21

irreducibility,	221

universality,	217–18

renormalization	group	theory,	195–97

coarse-graining,	197

and	Hamiltonian	function,	196–97

spin,	193–94

statistical	mechanical	treatment,	193–95

and	Hamiltonian	function,	193

spin,	193–94

Yang-Lee	theorem,	195

and	thermodynamic	properties,	201

thermodynamic	treatment,	191–93

continuous	phase	transitions,	191–92

critical	exponent,	193

ferromagnetic	transitions,	192

first-order	phase	transitions,	191

Helmholtz	free	energy,	192

order-disorder	transitions,	192

order	parameter,	192–93

U.S.	National	Bureau	of	Standards	conference,	168

word	“phase,”	use	of,	141n1

Phenomenological	arrow	of	time,	quantum	mechanics,	433n22

Phenomenological	theories,	generally,	2

Phillips,	Rob,	272–73,	284–85

Physical	equivalence

symmetry	and	equivalence,	328–33

differential	equation,	329–30

D2,	329–30

Galilei	group,	330

Hamiltonian	symmetries,	331–32
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Kepler	problem,	332

Lagrangian	treatment,	331

and	Newtonian	theory,	328

pairs	of	solutions,	333n55

spacetime	symmetries,	331–32n49,	332

and	unitary	equivalence.	See	Unitary	equivalence,	physical	equivalence	and

Physical	motivation,	retarded	Green's	functions,	113

Physical	space,	renormalization	group	theory,	172–74

Pickering,	Andy,	302n24

Pilot-wave	theories,	quantum	mechanics,	440,	482

“Pinned	constraint,”	rigid	body	mechanics,	71

Pipe	flow,	hydrodynamics,	20

Planck,	M.

on	indistinguishability,	7,	340

N!	puzzle,	350

quantum,	indistinguishability	and,	341–43

quantum	statistics,	explanation	of,	360

unitary	equivalence,	494

Planck	scale

dark	matter	and	dark	energy,	621

electroweak	theory,	403

Plane	parallel	flow,	hydrodynamics,	20

Plane	Poiseuille	flow,	hydrodynamics,	21

Plücker,	Julius,	49

Poincaré	relativity,	292,	423

Poincaré	sphere,	423

effective	field	theory	(EFT),	238

quantum	mechanics,	423

rationality,	failure	of,	539

Point-mass	mechanics,	44–46,	57–69

billiard	collisions,	68–69,	69

Cartesian	locations,	63

Cassini	space	probe	to	Saturn,	61,	61

coefficient	of	restitution,	69

constitutive	modeling	conditions,	66,	82

inertial	reaction,	65

isolated	point	mass,	59

Lennard-Jones	potential,	60

magnitude	F,	65,	65

matched	asymptotics,	69

methodologies	of	avoidance,	62

“natural	coordinates,”	63

purely	elastic	collision,	69n26

representative	center,	59

rigid	body	mechanics,	71
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rotating	rigid	objects,	58

special	force	laws,	63

steel	ball	pendulums,	64–65,	64–66

Point-mass	swarm,	axiomatic	presentation,	51

Point-particle	electrodynamics,	129–32

Points,	axiomatic	presentation,	49–50

Poisson	bracket

unitary	equivalence,	physical	equivalence	and,	493–94

unitary	inequivalence,	as	example	of,	505–6

Poisson,	Siméon	Denis

point-mass	mechanics,	67–68

rigid	body	mechanics,	83

surface	waves,	17

“two	constant,”	67

Pokrovsky,	Valery,	168–69

Polarization	of	a	system,	502

Polchinski,	J.,	227

Poncelet,	Jean	Victor,	22,	23

Possibility	and	Everett	interpretation,	475–77

Post	facto	strategy,	the	tyranny	of	scales,	263

Post,	H.,	357

POV	measure,	quantum	mechanics,	8,	448–49,	454

Power	laws,	representing	critical	behavior	by,	159–60

Prandtl,	Ludwig

boundary-layer	theory,	13,	25–27,	37,	53n12

explanatory	progress,	28–29

instabilities,	20

turbulence,	22

wing	theory,	13,	30

Prediction	and	predictability

effective	field	theory	(EFT),	232–35

symmetry

from	multiplet	scheme,	307–9

Neptune,	prediction	of,	310

of	omega	minus	hadron,	306

spin-3/2	baryon	decuplet,	307–8,	309

“Preferred	basis	problem”

eliminativism,	377

Everett	interpretation,	466–68

and	many-exact	worlds	theories,	467–68

and	many-minds	theories,	467–68

overview,	461

Pressures,	rigid	body	mechanics,	74

A	Primer	on	Determinism	(Earman),	1

Principia	(Newton),	523
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Scholium,	523,	525n4,	526

Principle	of	Equivalence	(Einstein),	537

Principle	of	Limiting	Amplitude,	128

“Principle	of	mediocrity”	(PM),	639–42

Principle	of	Sufficient	Reason	(PSR),	530n14

Principle	of	virtual	work,	rigid	body	mechanics,	79

Privileging,	retarded	Green's	functions,	113–20

Probabilities

Everett	interpretation,	466,	474–77

objective-probability	role,	479n17

parallel	tradition,	478n16

philosophical	aspects	of	probability,	474–75

and	possibility,	475–77

probability	simpliciter,	475

and	uncertainty,	475–77

quantum	mechanics,	446

rigid	body	mechanics,	76

Probability	simpliciter,	475

Problem	of	the	Physical	Infinitesimal,	86,	90,	93

Projection	postulate,	quantum	mechanics,	417

Proper	mixtures,	quantum	mechanics,	423–28

indistinguishability	from	proper	mixtures,	429

Pseudo-Reimannian	metric	field,	Hole	Argument	(Einstein),	574n100,	578

Punctiform	point	of	view,	rigid	body	mechanics,	79,	80

Purely	elastic	collision,	point-mass	mechanics,	69n26

Puzzle	solving,	hydrodynamics,	30n38

PV	measures,	quantum	mechanics,	446n34

Quantitative	problem,	Everett	interpretation,	477–79

Quantizing,	unitary	equivalence,	492–94

Quantum	chromodynamics	(QCD)

electroweak	theory,	394,	402–3

symmetry,	302

Quantum	electrodynamics	(QED)

effective	field	theory	(EFT),	411

unification	in	physics,	396–97

Quantum	fields,	eliminativism,	377–78

Quantum	field	theory	(QFT),	240–43

dark	matter	and	dark	energy,	621–22

effective	field	theory	(EFT),	240–43,	251

unification	in	physics,	382,	408–10,	412–13

uniqueness	of	universe,	626

unitary	equivalence,	physical	equivalence	and,	491,	518

Quantum,	indistinguishability	and,	341–43

“light	quanta,”	342

microstate,	342n3
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and	“permutable,”	342n4

Quantum	locality,	1

Quantum	mechanics

bit	commitment	problem,	429–30

Bloch	sphere,	423

Born	rule,	8,	417,	419,	431

consistency,	442

general	phenomenology	of	measurements,	446,	448

measurement,	451–52,	454

proper	mixtures,	424

unsharp	spin	measurements,	445

Broglie-Bohm	theory,	431,	440,	482

Brownian	particle,	437

cat	example	(Schrödinger),	435,	440

classical	dynamical	behavior,	438

classical	regime,	8,	416–59

Born	rule,	8,	417,	419,	431

Brownian	particle,	437

cat	example	(Schrödinger),	435,	440

classical	dynamical	behavior,	438

coherent	states,	432–34

Ehrenfest's	theorem,	432–34

environment,	entanglement	with,	434–37

Gaussian	bell	curves,	432

Gaussian	wave	packets,	432–34

Heisenberg's	“cut,”	440–42

macromechanics,	430

micromechanics,	430

overview,	8

phenomenological	arrow	of	time,	433n22

pilot-wave	theories,	440

uniqueness	of,	439n28

coherent	states,	432–34

collapse	postulate,	8,	417,	418,	424,	454

density	operators,	425

Copenhagen	interpretation,	420

decoherence,	437–41

continuous	models	of,	438–39

Everett	interpretation.	See	Everett	interpretation

Newtonian	behavior,	439

density	operators,	420–23

bit	commitment	problem,	429–30

collapse	postulate,	425

entangled	states,	427

Hilbert	space,	425–26

PDF Compressor Free Version 



Index

Page 61 of 112

Hilbert-space	vectors,	420–21

improper	mixtures,	427

no-go	theorem	for	safe	bit	commitment	protocols,	430

no-hidden	variables	theorem,	422

nontrivial	spin	properties,	428

normalization,	422n10

no-signaling	theorem,	425–26

proper	mixtures,	423–28

reduced	states,	424

simplex,	423–24

spin-1/2	systems,	422–23,	425,	443

Dirac-von	Neumann	interpretation,	419

discretized	position	measurements,	443

Ehrenfest's	theorem,	432–34

entangled	states,	427

environment,	entanglement	with,	434–37

Everett	interpretation.	See	Everett	interpretation

Gaussian	bell	curves,	432

Gaussian	wave	packets,	432–34

generally,	1,	45

Gleason's	theorem,	449

Heisenberg's	“cut,”	440

Copenhagen	interpretation,	441n30

Hilbert	space,	425–26,	450n38

environment,	434

ideal	spin	measurements,	443

Hilbert-space	vectors,	419n7,	420–21

ideal	spin	measurements,	443–44

improper	mixtures,	427

indistinguishability	from	proper	mixtures,	429

linear	operators,	417n4

macromechanics,	430

Many	Worlds	Theory.	See	Everett	interpretation

Maxwell	equations,	446

measurement,	8,	416–59

Born	rule,	451–52,	454

Broglie-Bohm	theory,	482

collapse	postulate,	417,	418,	454

discretized	position	measurements,	443

eigenvectors,	418

Everett	interpretation.	See	Everett	interpretation

Gleason's	theorem,	449

Hilbert	space,	417,	450n38

ideal	spin	measurements,	443–44

linear	operators,	417n4
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Maxwell	equations,	446

Naimark	dilation,	448

phenomenology	of,	417–19,	446–49

POV	measure,	8,	448–49,	454

probabilities,	446

problem,	451–55

projection	postulate,	417

PV	measures,	446n34

Schrödinger	equation,	420,	451–52

self-adjoint	operators,	417–18

statistical	algorithm	of	quantum	mechanics,	417

Stern-Gerlach	magnetic	field,	418,	419n6,	442–44,	446,	453

subspace,	417–18

transformation,	446

“unsharp”	spin	measurements,	444–446

up	and	down	spin	states,	418–19

micromechanics,	430

minimal	interpretation,	419–20

Naimark	dilation,	448

no-go	theorem	for	safe	bit	commitment	protocols,	430

no-hidden	variables	theorem,	422

nontrivial	spin	properties,	428

normalization,	422n10

no-signaling	theorem,	425

phenomenological	arrow	of	time,	433n22

pilot-wave	theories,	440,	482

Poincaré	sphere,	423

POV	measure,	8,	448–49,	454

probabilities,	446

projection	postulate,	417

proper	mixtures,	423–28

indistinguishability	from	proper	mixtures,	429

PV	measures,	446n34

radioactive	decay,	437

reduced	states,	420–30

resolution	of	the	identity,	446

Schrödinger	equation,	420,	451–52

ideal	spin	measurements,	444

Schrödinger	evolution,	418

self-adjoint	operators,	417–18

simplex,	423–24

spin-1/2	systems,	422–23,	425,	443

standard	interpretation,	419–20

statistical	algorithm	of	quantum	mechanics,	417

Stern-Gerlach	magnetic	field,	418,	419n6,	442–44,	446,	453
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subspace,	417–18

transformation,	446

uniqueness	of,	439n28

“unsharp”	spin	measurements,	444–446

up	and	down	spin	states,	418–19

Quantum	particles,	indistinguishability,	371–72

Quantum	statistical	mechanics	(QSM),	491

Quantum	statistics

explanation	of

Hilbert	space,	362,	363

phase	space	dimension,	361–62

subspace	dimension,	362–63

volume	measures,	362–63

weighting,	361,	362

indistinguishability	and,	360–64

Quasi-autonomous	domains,	effective	field	theory	(EFT),	240–41,	243

and	emergence,	244

Wilsonian	approach,	241

Quasi	particles,	Everett	interpretation,	473–74

Quine,	W.	van,	340–41

Radiation	theory,	123–29

boundary	conditions,	123–24

description,	109

finiteness	condition,	124

Fourier	transformation	technique,	126–27

Helmholtz	equation,	123,	125–27,	129–30

incoming	waves,	127

Laplace	transform	technique,	125

outgoing	waves,	127

Principle	of	Limiting	Amplitude,	128

reasons	for,	123–29

reduced	wave	equation,	125.	See	also	Helmholtz	equation

Sommerfeld	radiation	condition.	See	Sommerfeld	radiation	condition

time	dependent	boundary	condition,	124

time-harmonic	waves,	127–29

waveguide,	124

Radioactive	decay,	437

Radioactive	scattering,	52

Ramsey,	Jeffrey,	13,	30

Random	variables,	the	tyranny	of	scales,	278

Rankine,	William	John	Macquorn,	24–25

“Rari-constancy”	theorists,	270

Raychaudhuri	equation,	611

Rayleigh,	Lord

boundary	layers,	23–24
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instabilities,	20

surface	waves,	17

Reasonable	properties,	global	spacetime	structure.	See	Global	spacetime	structure

“Re-combination,”	Standard	Model,	615

Redirection	of	thrust,	rigid	body	mechanics,	71

Reduced	phase	space,	361–62,	362

Reduced	states,	quantum	mechanics,	420–30

Reduced	wave	equation,	radiation	theory,	125.	See	also	Helmholtz	equation

Reduction

phase	transitions,	198–201

the	tyranny	of	scales,	260

Reductionism

effective	field	theory	(EFT),	411n25

phase	transitions,	198

Reductive	unity,	unification	in	physics,	385–93

Regularity	approach,	564–69

Reichenbach,	H.,	358–59,	637

Reimannian	3-metrics,	561–62

Relationalism

Barbour's	Machian	relationalism,	557–64

dynamical	approach	to	relativity,	569–74

enriched	relationalism,	545–57
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indistinguishability,	343–46

conventions,	system	of,	246

entropy,	343–45

heat	transfer,	344–45

PDF Compressor Free Version 



Index

Page 81 of 112

limits,	259–69

phases,	142

reduction	of,	260

Thermodynamic	treatment,	phase	transitions,	191–93

continuous	phase	transitions,	191–92

critical	exponent,	193

ferromagnetic	transitions,	192

first-order	phase	transitions,	191

Helmholtz	free	energy,	192

order-disorder	transitions,	192

order	parameter,	192–93

Thomson,	J.	J.,	30

Thomson,	William	(Lord	Kelvin)

explanatory	progress,	28

Helmholtz-Kelvin	instability,	19

instabilities,	20

surface	waves,	17

Treatise	on	Natural	Philosophy,	59,	66

unified	theory,	387

vortex	motion,	17

Tidal	forces,	539n34

Time	dependent	boundary	condition,	radiation	theory,	124

Time-harmonic	waves,	radiation	theory,	127–29

Timelike	future,	relativistic	spacetime,	590–91

Timelike	geodesically	incomplete,	spacetime	properties,	598

Timelike	vectors,	relativistic	spacetime,	589,	589

Time-reversal

causation,	136n37

symmetry,	292–94

Time	travel,	601–3

Todhunter,	Isaac,	271

Tollmien,	Walter,	20

Toothpaste,	continuum	mechanics,	89,	89

Top-down	approach

effective	field	theory	(EFT)

naturalness,	hypothesis	of,	228

overview,	225–29

quantum	chromodynamics	(QCD),	228–29

symmetry	considerations,	228

Wilsonian	approach,	228–29

“rari-constancy”	theorists,	270

the	tyranny	of	scales,	257

Torque	r,	77,	78

Totalitarian	principle,	symmetry,	309n39

Traction	forces,	rigid	body	mechanics,	73

PDF Compressor Free Version 



Index

Page 82 of 112

Traction	vectors,	93

continuum	mechanics,	83,	83–84

Trajectories	of	force-free	bodies,	spacetime	as,	542n41

Transformation,	quantum	mechanics,	446

Transtemporal	structure,	spacetime	substantivalism,	531

Trapped	surface,	global	spacetime	structure,	600

Treatise	on	Electricity	and	Magnesium	(Maxwell),	391

Treatise	on	Natural	Philosophy	(Tait	and	Thomson),	59,	66,	105

Truesdell,	Clifford,	93

Turbulence

hydrodynamics,	21–23

mean	field	theory,	167

Turning	moment,	rigid	body	mechanics,	77,	78	“

Twin	paradox”	scenario,	relativistic	spacetimes,	536

Two-dimensional	Ising	model,	153,	181

Tyndall,	John,	20

Type	Ia	supernovae,	609,	618n25

The	tyranny	of	scales,	255–86

ab	initio	strategy,	263–64

averaging	and	homogenization,	differences,	277–78

“between”	scale	structures,	256,	284

bottom-up	approach,	257

bubbles	within	bubbles,	267,	284

Cauchy's	equation,	270–75

continuum	mechanics,	“material	particles,”	270n18

continuum	model	equations,	256–57

controversy,	269–73

Cauchy's	equation,	270–75

Navier-Stokes	equations,	269–70

empirical	investigation	of	means,	276

Euler's	recipes,	273–75

and	Cauchy,	Augustin,	273–75

continuum,	273–74,	278

discrete,	273–74

and	Navier-Stokes	equations,	275

and	Young's	modulus,	275

ferromagnet	model,	265–66,	278

spontaneous	magnetization,	265

50-50	volume	mixture,	268

games	and	gambling,	275–76,	277

Gaussian	distribution,	276,	279

Hamiltonian	function,	276

homogenization,	256,	280–83

averaging	and	homogenization,	differences,	277–78

limit,	281

PDF Compressor Free Version 



Index

Page 83 of 112

hydrodynamic	theory,	279

infinite	limits,	261–62

“material	particles,”	270n18

mean	field	calculations,	266

Navier-Stokes	equations,	269–70,	275

Navier-Stokes	theory,	278–79

overview,	5–6

post	facto	strategy,	263

random	variables,	277

reduction,	260

renormalization	group	(RG),	264–66,	269,	275,	280

representative	volume	element	(REV),	264,	267–68,	280,	284

resolution	to,	275–83

averaging	and	homogenization,	differences,	277–78

“between”	scale	structures,	284

empirical	investigation	of	means,	276

Euler's	continuum	recipe,	278

games	and	gambling,	275–76,	277

Gaussian	distribution,	276,	279

Hamiltonian	function,	276

homogenization,	280–83

hydrodynamic	theory,	279

Navier-Stokes	theory,	278–79

random	variables,	277

renormalization	group	(RG),	280

representative	volume	element	(REV),	280,	284

steel,	Gaussian	and,	279

steel	beams,	258–59,	264,	278,	279

steel,	Gaussian	and,	279

thermodynamic	limits,	259–69

top-down	approach,	257

and	Young's	modulus,	272,	275

Uhlenbeck,	George,	162,	163

Uncertainty,	Everett	interpretation	and,	475–77

Undamped	harmonic	oscillator

advanced	Green's	functions,	110

retarded	Green's	functions,	110

Unification	in	physics,	381–415

condensed	matter	physics,	383–84

effective	field	theory	(EFT),	384,	406–13

Gell-Mann/Low	formulation,	408–9

Hamiltonians,	410

quantum	electrodynamics	(QED),	411

reductionism,	problems	of,	411n25

Wilson-Kadanoff	model,	412

PDF Compressor Free Version 



Index

Page 84 of 112

electroweak	theory,	393–401

Big	Bang,	303,	403

“big	dessert”	assumption,	404

Cabibbo-Kobayashi-Maskawa	framework,	402

CP	symmetry,	402–3

gauge	hierarchy	problem,	404

Glashow	model,	397

Higgs	boson,	394–95,	403–6

Higgs	field,	398–401

isospin,	396n14

Lagrangian,	395

Lagrangian	invariance,	397–99

Large	Hadron	Collider	(LHC),	405–6

Lie	group,	395

loop	quantum	gravity	(LQG),	405

from	mathematics	to	physics,	397–401

and	Maxwell's	theory,	395,	399

multiplets,	396

naturalness,	404n19

Noether's	theorem,	396–97

non-Abelian	case,	396,	401

phase	transformation,	396n13

Planck	scale,	403

problems	with,	403–6

QCD	vacuum,	394

quantum	chromodynamics	(QCD),	402–3

Schrödinger	equation,	395

Standard	Model,	394,	402–6

string	theory,	405

SU(2)	and	SU(3)	color	groups,	394,	396–97

supersymmetry	(SUSY),	405

symmetry	as	tool	for	unification,	395–97

Theory	of	Everything	(TOE),	405

Yukawa	couplings,	402

Yukawa	interaction,	402n17

General	Relativity,	383

Higgs	particle,	6,	381–82

Large	Hadron	Collider	(LHC),	381–82,	384

future	output,	406

Maxwell's	electrodynamics,	385–93

Ampère	law,	389

chain	reaction,	387–88

currents,	induction	of,	386n5

d'Alembert's	principle,	389–90

displacement,	391n9

PDF Compressor Free Version 



Index

Page 85 of 112

displacement	current,	386–89

electrodynamics,	386–87

and	Faraday's	account	of	electromagnetism,	385,	387

and	fictional	models,	387–93

Lagrangian	mechanics,	386–87,	390

Maxwell's	theory,	383

Newtonian	mechanics,	406

overview,	7–8

physical	problem,	analysis	of,	384n3

possibility	of	reduction,	384

quantum	electrodynamics	(QED),	396–97

quantum	field	theory	(QFT),	382,	408–10,	412–13

reductive	unity,	385–93

renormalization,	406–13

renormalization	groups	(RGs),	382,	385,	407,	410

Standard	Model,	381,	383

string	theory,	406

superconductivity,	384

superfluidity,	384

supersymmetry	(SUSY),	383

symmetry,	303–6

synthetic	unity,	393–401

Theory	of	Everything	(TOE),	381,	383

universal	behavior,	384

universality	class,	412

“Unified	theory.”	See	Unification	in	physics

Uniform	symmetry,	indistinguishability	as,	352–65

classical	indistinguishability,	argument	against,	354–56

fermions,	364–65

Gibbs'	solution,	352–53

haecceitism,	356–60

quantum	statistics,	explanation	of,	360–64

Uniqueness	of	universe,	624–27

“ceteris	paribus”	laws,	626n44

and	“Laws	of	Physics,”	625

Mars's	motion,	626–27

and	quantum	field	theory	(QFT),	626

and	relativistic	cosmology,	625–26

Sun's	gravitational	field,	626–27

Uniqueness	results,	unitary	equivalence,	491–501

action	principle,	491

analyzing	physical	equivalence,	496–501
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PDF Compressor Free Version 



Index

Page 86 of 112

kinematic	pair,	495–96

kinematics,	492

Lagrangian,	492

ordinary	QM,	495,	496,	500–502,	504

Pauli	relations,	494
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mean	field	theory,	152

replacement	theory,	164

on	renormalization	group	theory,	172–77

calculational	method,	174–75
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e-expansion,	176–77

elementary	particles,	176

fixed-points,	177

Fourier	space,	172–74

Landau-Ginzburg-Wilson	free	energy,	173–74

physical	space,	172–74

running	coupling	constants,	175–76

Wing	theory,	13,	30

airplane	wings,	26

Xia,	Zhihong,	62,	68

Yang,	C.	N.,	166

Yang-Lee	theorem,	195,	208

Yang-Mills	theory

“gauge	argument,	299,	301,	302n22

unification	in	physics,	397

unitary	inequivalence,	as	example	of,	507

Young's	modulus,	272,	275

Yukawa	couplings,	electroweak	theory,	402

Yukawa	interaction,	electroweak	theory,	402n17

Zemanian,	A.,	137

Zernike,	Frederik,	152,	158

Zero	field	strength,	Machian	relationalism,	557n75

“Zodiacal	masses,”	619

Notes:

(1)	A	“standard	candle”	is	an	object	whose	intrinsic	luminosity	can	be	determined;	the

observed	apparent	magnitude	then	provides	an	accurate	measurement	of	the	distance	to	the

object.

(1)	Strictly	speaking,	the	controversy	has	concerned	two	candidate	entities.	Prior	to

Minkowski's	reformulation	of	Einstein's	special	theory	of	relativity	in	four-dimensional	form,	the

debate	was	about	the	existence	of	space.	Since	then,	the	debate	has	been	about	the

existence	of	spacetime.	For	the	sake	of	brevity,	I	will	often	only	mention	spacetime,	leaving	the

“and/or	space”	implicit.

(1)	The	word	“phase”	is	interesting.	According	to	the	Oxford	Dictionary	of	Word	Histories

(and	the	Oxford	English	Dictionary)	it	entered	English	language	in	the	nineteenth	century	to

describes	the	phases	of	the	moon.	The	Oxford	English	Dictionary	lists	a	very	early	use	in	J.

Willard	Gibbs's	writings	about	thermodynamics	as	the	“phases	of	matter.”	Apparently	Gibbs

then	extended	the	meaning	to	get	“extension	in	phase”	that	then	got	further	extended	into	the

modern	usages	“phase	transition”	and	“phase	space.”

(1)	As	an	example,	consider	multiple	realization,	often	presented	as	a	failure	of	reduction.

However,	it	is	only	a	failure	if	we	believe	that	a	lower-level	explanation	of	the	higher-level	law

must	be	unified	(i.e.,	the	explanation	must	be	the	same	for	every	instance	of	the	higher-level
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law).	If	we	are	willing	to	allow	for	disunified	explanation,	then	we	may	indeed	have	a	genuine

lower-level	explanation	of	the	higher-level	law,	preserving	the	core	sense	of	reduction.

(2)	Strictly	speaking,	additivity	and	extensivity	are	different	properties;	see	Touchette	(2002).

Since	they	overlap	for	many	real	systems,	they	are	commonly	run	together;	however,	it	is	a

mistake	to	do	so	in	general,	for	some	quantities	scale	with	particle	number	N	(and	hence	are

extensive),	yet	are	not	additive.

(2)	In	textbooks,	ontologically	mixed	circumstances	(a	point	mass	sliding	upon	a	rigid	plane)

often	appear.	Usually	these	need	to	be	viewed	as	degenerations	of	dimensionally	consistent

schemes	(i.e.,	a	ball	sliding	on	a	plane	or	a	free	mass	floating	above	a	lattice	of	strongly

attracting	masses).

(2)	See	Earman	(2008)	for	a	discussion	of	this	condition.

(2)	This	is	also	known	as	the	“equal	areas”	law:	a	segment	connecting	the	Sun	and	a	planet

on	an	elliptical	orbit	sweeps	out	equal	areas	in	equal	time	intervals.

(3)	If	a	mathematical	treatment	happens	to	make	two	point	masses	coincide,	that	occurrence	is

generally	viewed	as	a	blowup	(=	breakdown	of	the	formalism)	rather	than	a	true	contact.	It	is

often	possible	to	push	one's	treatment	through	such	blowups	through	appeal	to	sundry

conservation	laws	and	the	rationale	for	these	popular	procedures	will	be	scrutinized	in	section

3.

(3)	Consider,	again,	scalar	field	theory	From	note	2,	the	dimension	of	a	scalar	fields	is	given	by

D/2	−	1;	hence,	in	general,	an	operator	 	constructed	from	Mϕ's	and	N	derivatives	will	have

dimension	δ 	=	M(D/2	−	1)	+	N.	For	D	≥	3,	there	are	only	a	finite	number	of	ways	in	which	Si	〈

D	and	δ 	=	D.

(3)	In	1633,	on	hearing	of	the	Church's	condemnation	of	Galileo	for	claiming	that	the	Earth

moved,	Descartes	suppressed	an	early	statement	of	his	physics,	which	did	not	contain	his

later	relational	claims	about	the	nature	of	motion.	It	is	frequently	(and	plausibly)	conjectured

that	Descartes's	official	views	on	motion	were	devised	to	avoid	Church	censure.	However,	the

precise	manner	in	which	Descartes's	definitions	secure	the	Earth's	lack	of	true	motion	suggest

that	he	was	genuinely	committed	to	a	relational	conception	of	motion.	What	does	the	work	in

securing	the	Earth's	rest	is	not	that,	in	Descartes's	cosmology,	there	is	no	relative	motion	with

respect	to	immediately	contiguous	bodies	(Descartes	explicitly	says	there	is	such	motion;

ibid.,	III:	28);	it	is	that	Cartesian	true	motion	is	motion	with	respect	to	those	contiguous	bodies

that	are	regarded	as	at	rest.

(3)	This	function	is	named	after	William	Rowan	Hamilton	who	described	how	to	formulate

classical	mechanics	using	this	Hamiltonian	function.

(3)	A	microstate	as	just	defined	can	be	specified	as	a	string	of	N 	symbols	“p”	and	C 	−	1

symbols	“|”	(thus,	for	example,	N 	=	3,	C 	=	4,	the	string	p||pp|	corresponds	to	one	particle	in

the	first	cell,	none	in	the	second,	two	in	the	third,	and	none	in	the	fourth).	The	number	of

distinct	strings	is	(N 	+	C 	−	1)!	divided	by	(C 	−	1)!N 	!,	because	permutations	of	the	symbol

“|”	among	themselves	or	the	symbol	“p”	among	themselves	give	the	same	string.	(This
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derivation	of	(1)	was	given	by	Ehrenfest	in	1912.)

(3)	Dyson	(1964,	129)	reports	a	conversation	between	O.	Veblen	and	J.	Jeans	in	1910	about

the	reformation	of	the	mathematics	curriculum	at	Princeton.	Jeans	was	of	the	opinion	that	“we

may	as	well	cut	out	group	theory.	This	is	a	subject	which	will	never	be	of	any	use	in	physics.”

(3)	Perhaps	the	most	cited	problem	with	string	theory	is	that	it	has	a	huge	number	of	equally

possible	solutions,	called	string	vacu,	that	may	be	sufficiently	diverse	to	explain	almost	any

phenomena	one	might	observe	at	lower	energies.	If	so,	it	would	have	little	or	no	predictive

power	for	low-energy	particle	physics	experiments.	Other	criticisms	include	the	fact	that	it	is

background	dependent,	requiring	a	specific	starting	point.	This	is	incompatible	with	general

relativity,	which	is	background	independent.	The	problems	associated	with	loop	quantum

gravity	also	involve	computational	difficulties	in	making	predictions	directly	from	the	theory

and	the	fact	that	its	description	of	spacetime	at	the	Planck	scale	has	a	continuum	limit	that	is

not	compatible	with	general	relativity.	Obviously,	there	are	many	more	detailed	issues	here

that	I	have	not	mentioned.	For	more	discussion,	see	Dine	(2007)	on	string	theory	and

supersymmetry	and	Rovelli	(2007)	on	quantum	gravity.	See	Smolin	(2001)	for	a	popular

account	of	the	latter.

(3)	Note	once	and	for	all	that	we	are	not	necessarily	assuming	that	these	subspaces	are	one-

dimensional.	Alternatively,	one	can	think	of	testing	them	in	succession,	in	any	order.	Explicit

application	of	the	collapse	postulate	and	the	Born	rule	will	show	that	one	will	obtain	the	same

results	with	the	same	probabilities	and	the	same	final	state,	irrespectively	of	the	order	in	which

the	tests	are	performed.

(4)	Modern	investigations	have	shown	that	true	ODEs	and	PDEs	are	usually	the	resultants	of

foundational	principles	that	require	more	sophisticated	mathematical	constructions	for	their

proper	expression	(integro-differential	equations;	variational	principles,	weak	solutions,	etc.).

We	shall	briefly	survey	some	of	the	reasons	for	these	complications	when	we	discuss	continua

in	section	4	(although	such	concerns	can	even	affect	point-mass	mechanics	as	well).	For	the

most	part,	the	simple	rule	“ODEs	=	point	masses	or	rigid	bodies;	PDEs	=	continua”	remains	a

valuable	guide	to	basic	mathematical	character.

(4)	I	take	“indistinguishable”	and	“permutable”	to	mean	the	same.	But	others	take

“indistinguishable”	to	have	a	broader	meaning,	so	I	will	give	up	that	word	and	use

“permutable”	instead.

(4)	Linear	operators	are	mappings	on	the	Hilbert	space	(or	a	subspace	thereof)	that	map

superpositions	into	the	corresponding	superpositions.	The	adjoint	of	a	linear	operator	A	is	a

linear	operator	A 	such	that	〈A ψ|φ〉	=	〈ψ|Aφ〉	for	all	vectors	|ψ〉,	|φ〉	for	which	the	two

expressions	are	well-defined.	An	operator	is	self-adjoint	iff	A	=	A .	A	projection	operator	P	is	a

self-adjoint	operator	such	that	P 	=	P.	For	ease	of	exposition,	we	shall	mostly	confine

ourselves	to	the	case	of	operators	with	“discrete	spectrum”	(the	sum	in	(2)	is	discrete),	or

even	to	finite-dimensional	Hilbert	spaces.

(4)	The	word	“canonical”	seems	to	be	a	somewhat	old-fashioned	usage	for	something	set	to	a

given	order	or	rule.	The	Oxford	English	Dictionary	traces	it	back	to	Chaucer.

* *

*
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(4)	The	paragraph	describing	the	bucket	experiment	completes	Newton's	arguments	for	his

account	of	true	motion	in	terms	of	absolute	space	but	it	is	not	the	end	the	Scholium.	After	a

brief	paragraph	that	explicitly	concludes:	“Hence	relative	quantities	are	not	the	quantities

themselves,	whose	names	they	bear,	but	are	only	sensible	measures	of	them,”	there	follows	a

long,	final	paragraph	describing	a	thought	experiment	involving	two	globes	attached	by	a	cord

in	a	universe	in	which	no	other	observable	objects	exist.	The	purpose	of	this	thought

experiment	is	not	to	further	argue	for	absolute	space	by,	e.g.,	describing	a	situation	in	which

there	is	absolute	motion	(revealed	by	a	tension	in	the	cord)	and	yet	no	relative	motion

whatsoever.	Instead,	Newton's	purpose	is	to	demonstrate	how	true	motion	can	(partially)	be

empirically	determined,	despite	the	imperceptibility	of	the	space	with	respect	to	which	it	is

defined:	the	tension	in	the	cord	is	a	measure	of	the	rate	of	rotation	and,	by	measuring	how	this

tension	changes	as	different	forces	are	applied	to	opposite	faces	of	the	globes,	one	can	also

determine	the	axis	and	sense	of	the	rotation.

(5)	Often	internal	variables	such	as	spin	are	tolerated	in	these	ODEs,	even	though	they	lack

clear	counterparts	within	true	classical	tradition.

(5)	In	the	case	of	dynamical-collapse	theories,	Tumulka	(2006)	has	produced	a	relativistically

covariant	theory	for	non-interacting	particles,	but	to	my	knowledge	there	is	no	dynamical-

collapse	theory	empirically	equivalent	to	any	relativistic	theory	with	interactions.	There	has

been	rather	more	progress	in	the	case	of	hidden	variable	theories	(perhaps	unsurprisingly,	as

these	supplement	but	do	not	modify	the	already-known	unitary	dynamics);	for	three	different

recent	approaches,	see	Dürr	et	al.	(2004,	2005)	(hidden	variables	are	particle	positions),

Struyve	and	Westman	(2006)	(hidden	variables	are	bosonic	field	strengths),	and	Colin	(2003)

and	Colin	and	Struyve	(2007)	(hidden	variables	are	local	fermion	numbers).	As	far	as	I	know,

no	such	approach	has	yet	been	demonstrated	to	be	empirically	equivalent	to	the	Standard

Model	to	the	satisfaction	of	the	wider	physics	community.

(5)	Maxwell	(1965,	1:	564).	The	experimental	facts	concerned	the	induction	of	currents	by

increases	or	decreases	in	neighboring	currents,	the	distribution	of	magnetic	intensity

according	to	variations	of	a	magnetic	potential	and	the	induction	of	statistical	electricity

through	dielectrics.

(5)	As	has	been	emphasized	by	Stein	(1967,	269–271);	the	argument	is	also	singled	out	by

Barbour	(1989,	616–617).

(6)	For	interesting	discussion	of	the	status	of	determinism	in	classical	physics,	see	Earman

(1986,	2007),	Norton	(2006,	2007a),	and	Wilson	(1989).	For	discussion	of	restrictions	on	the

velocity	of	propagation,	see	Earman	(1987)	and	Maudlin	(2002).	Obviously,	in	a	relativistic

context,	if	there	is	causation	over	spacelike	separation,	then	there	is	backward	causation	in

some	frames	of	reference	unless	one	“reinterprets”	the	direction	of	causation	in	such	frames.	I

will	limit	myself,	however,	to	cases	of	backward	causation	that	are	within	or	on	the	light	cone.

(6)	Perhaps	in	some	sense	there	are	multiple	interpretations	of	classical	electromagnetism:

perhaps	realists	could	agree	that	the	electromagnetic	field	is	physically	real	but	might	disagree

about	its	nature.	Some	might	think	that	it	was	a	property	of	spacetime	points;	others	might

regard	it	as	an	entity	in	its	own	right.	I	am	deeply	skeptical	as	to	whether	this	really	expresses
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a	distinction,	but	in	any	case,	I	take	it	this	is	not	the	problem	that	we	have	in	mind	when	we	talk

about	the	measurement	problem.

(6)	While	these	aspects	of	the	Standard	Model	suggest	it	can	be	viewed	as	a	natural	EFT,	other

aspects	famously	preclude	this	view.	In	particular,	terms	representing	massive	scalar	particles

like	the	Higgs	boson	are	not	protected	by	any	symmetry	and	thus	should	not	appear	in	an	EFT.

That	they	do,	and	that	the	order	of	the	Higgs	term	is	proportional	to	the	electroweak	cutoff,

generates	the	“hierarchy	problem”	for	the	Standard	Model.

(6)	In	fact,	the	liquid–gas	case	is	one	of	the	most	subtle	of	the	phase	transitions	since	the

symmetry	between	the	two	phases,	gas	and	liquid,	is	only	an	approximate	one.	In	magnets	and

most	other	cases	the	symmetry	is	essentially	exact,	before	is	it	broken	by	the	phase	transition.

(6)	What	if	my	theory	differs	from	yours	only	in	a	trivial	scale	transformation?	That	is,	we	don't

satisfy	PEV,	but	there	are	bijections	i :	 	and	i 	:	 	such	that	(say)

i (ω)(i (A))	=	2	×	ω(A).	Wouldn't	it	be	mad	to	take	this	failure	to	satisfy	PEV	to	disqualify

our	theories	from	physical	equivalence?!	I	am	not	sure	it	would	be.	Notice	that	at	least	one	of

the	theories	entertains	only	states	that	fail	to	be	normalized.	And	notice	as	well	that	we	can

restore	unitary	equivalence	by	attributing	the	theorists	the	same	observable	algebra	but

different	conventions	for	coordinating	self-adjoint	elements	of	that	algebra	and	measurement

procedures.	(Thanks	to	Dave	Baker	and	Bryan	Roberts,	who	independently	raised	this	point.)

(6)	Incidentally,	note	that	whether	a	(classical	or	quantum)	particle	moves	up	or	down	in	a

Stern–Gerlach	magnetic	field	will	depend	also	on	whether	the	inhomogeneous	magnetic	field	is

stronger	at	the	north	pole	or	at	the	south	pole.	Inverting	either	the	gradient	or	the	polarity	of

the	field	will	invert	the	direction	of	deflection	of	a	particle.	(Since	rotating	the	apparatus	by	180

degrees	corresponds	to	inverting	both	the	gradient	and	the	polarity	it	has	no	net	effect	on	the

deflection.)	Thus	the	choice	of	the	words	“up”	and	“down”	for	labeling	the	results	is	rather

conventional.	(The	existence	of	these	two	different	set-ups	for	measuring	spin	in	the	same

direction	is	crucial	in	discussing	contextuality	and	nonlocality	in	pilot-wave	theory.)

(7)	Note	that	already	according	to	the	minimal	interpretation,	a	quantum	system	described	by	a

vector	in	Hilbert	space	has	a	set	of	dispositional	properties	to	elicit	specific	responses	with

given	probabilities	in	measurement	situations	(and	these	are	fixed	uniquely	by	the	sure-fire

disposition	to	elicit	a	certain	response	with	probability	1	in	a	suitable	measurement).	The

standard	interpretation	further	identifies	this	set	of	dispositions	with	an	intrinsic	property	of	the

system.

(7)	Another	example	is	Non-Relativistic	QCD	(NRQCD),	which	is	an	EFT	of	quark/gluon	bound

systems	for	which	the	relative	velocity	is	small.	The	low-energy	fields	are	obtained	by	splitting

the	gluon	field	into	four	modes	and	identify	three	of	these	as	light	variables.	Rothsein	(2003,

61)	describes	this	process	of	identification	as	an	“art	form”	as	opposed	to	a	systematic

procedure.

(7)	Mathias	Frisch	prefers	to	frame	the	principle	as	“the	cause	does	not	come	after	the	effect.”

This	way	of	stating	the	principle	seems	to	have	as	its	sole	motivation	the	desire	to	maintain	that

nothing	is	amiss	with	equations	like	Newton's	Second	Law,	f	=ma,	even	though	the	force	does

obs :  Q →iobs Q
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cause	the	acceleration	but	does	not	come	before	it,	since	they	are	simultaneous.	However,

because	I	will	not	discuss	alleged	cases	of	simultaneous	causation,	I	will	stick	with	the	more

standard	wording,	since	nothing	will	depend	upon	the	difference.

(7)	There	are	some	potential	connections	between	“explanatory	irreducibility”	and	notions	in

the	literature	on	idealization.	In	particular,	depending	upon	how	one	understands	Galilean

idealization,	it	is	possible	that	a	conceptual	novelty	is	explanatorily	irreducible	just	in	case	it	is

not	a	“harmless”	Galilean	idealization.	Coined	by	McMullin,	a	Galilean	idealization	in	a	scientific

model	is	a	deliberate	distortion	of	the	target	system	that	simplifies,	unifies	or	generally	makes

more	useful	or	applicable	the	model.	Crucially,	a	Galilean	idealization	is	also	one	that	allows	for

controlled	“de-idealization.”	In	other	words,	it	allows	for	adding	realism	to	the	model	(at	the

expense	of	simplicity	or	usefulness,	to	be	sure)	so	that	one	can	see	that	the	distortions	are

justified	by	convenience	and	are	not	ad	hoc.	Idealizations	like	this	are	sometimes	dubbed

“controllable”	idealizations	and	are	widely	viewed	as	harmless.	What	to	make	of	such	non-

Galilean	idealizations	is	an	ongoing	project	in	philosophy	of	science.	One	prominent	idea—see,

e.g.,	Cartwright	(1983)	or	Strevens	(2009)—is	that	the	model	may	faithfully	represent	the

significant	causal	relationships	involved	in	the	real	system.	The	departure	from	reality	need	not

then	accompany	a	corresponding	lack	of	faith	in	the	deliverances	of	the	model.	It	is	possible

that	we	could	understand	the	standard	explanation	of	phase	transitions	as	a	distortion	that

nonetheless	successfully	represents	the	causal	relationships	of	the	system.	Perhaps	the

thermodynamic	limit	is	legitimatized	by	the	fact	that	surface	effects	are	not	a	difference-maker

(in	the	sense	of	Strevens)	in	the	systems	of	interest.	We	will	leave	this	line	of	thought	to	others

to	develop.

(7)	As	pointed	out	to	me	by	Hans	van	Leeuwen,	the	opalescence	is	very	considerably

enhanced	by	the	difficulty	of	bringing	the	near-critical	system	to	equilibrium.	The	out-of-

equilibrium	system	tends	to	have	anomalously	large	droplets	analogous	to	those	produced	by

boiling.	These	droplets	then	produce	the	observed	turbidity.

(8)	Given	that	an	“observer”	is	represented	in	the	quantum	theory	by	some	Hilbert	space

many	of	whose	states	are	not	conscious	at	all,	and	that	conversely	almost	any	sufficiently

large	agglomeration	of	matter	can	be	formed	into	a	human	being,	it	would	be	more	accurate	to

say	that	we	have	a	consciousness	basis	for	all	systems,	but	one	with	many	elements	that

correspond	to	no	conscious	experience	at	all.

(9)	Frisch	has	appealed	to	nearly	all	of	these	items	from	physics	in	support	of	the	importance

of	causality	considerations	within	physics	(Frisch	2005,	2009a).

(9)	Clifton	and	Halvorson	(2001)	follow	Glymour's	analysis	of	physical	equivalence,	which

supposes	physical	theories	to	be	interpreted	as	axiomatic	systems.	For	Glymour,	such	theories

are	physically	equivalent	only	if	intertranslatable	in	such	a	way	that	axioms	get	translated	as

axioms	and	theorems	get	translated	as	theorems.	Roughly	speaking,	Clifton	and	Halvorson

assimilate	the	generators	of	an	observable	algebra	to	axioms	and	its	other	elements	to

theorems,	thereby	motivating	(7)	as	the	axiom-to-axiom	demand	and	PEV	as	the	theorem-to-

theorem	demand.	I	take	my	reconstruction	to	agree	in	spirit	with	theirs.

(9)	Coughlan	and	Dodd	(1991,	44–49)	provide	further	technical	details.	Parity	violation
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(demonstrated	experimentally	by	a	team	led	by	Wu,	in	1957)	has	reignited	the	interest	in	the

discussions	on	the	structure	of	physical	space	and	the	nature	of	chiral	objects,	going	back	to

Kant's	attempts	to	account	for	the	difference	between	the	“incongruent	counterparts”	by

appeal	to	their	relation	to	absolute	space	(“incongruent	counterparts”	are	objects	that	are

mirror	images	of	each	other	but	are	not	superposable	through	rigid	motion,	e.g.,	a	right	and	left

glove).	See	Nerlich	(1994)	for	an	introduction	and	Hoefer	(2000),	Huggett	(2003),	and	Pooley

(2003)	for	recent	discussions.

(9)	The	methods	used	in	“A	Dynamical	Theory”	were	extended	and	more	fully	developed	in

the	Treatise	on	Electricity	and	Magnetism	(TEM),	where	the	goal	was	to	examine	the

consequences	of	the	assumption	that	electric	currents	were	simply	moving	systems	whose

motion	was	communicated	to	each	of	the	parts	by	certain	forces,	the	nature	and	laws	of	which

“we	do	not	even	attempt	to	define,	because	we	can	eliminate	[them]	from	the	equations	of

motion	by	the	method	given	by	Lagrange	for	any	connected	system”	sect.	552).	Displacement,

magnetic	induction	and	electric	and	magnetic	forces	were	all	defined	in	the	Treatise	as	vector

quantities	(Maxwell	1873,	sect.	11,	12),	together	with	the	electrostatic	state,	which	was	termed

the	vector	potential.	All	were	fundamental	quantities	for	expression	of	the	energy	of	the	field

and	were	seen	as	replacing	the	lines	of	force.

(10)	One	can	recall	here	Feynman's	famous	proposal	to	understand	antiparticles	as	particles

moving	backward	in	time,	or,	in	other	words,	that	the	time-reversal	operation	applied	to	a

particle	state	would	turn	it	into	the	corresponding	antiparticle	state	(Feynman	1985).	For	details

and	criticism,	see	Arntzenius	and	Greaves	(2009).	This	discussion	is	related	to	an	earlier

debate	between	Albert	and	Malament	with	regard	to	classical	electromagnetism.	Albert	(2000)

argued	that	classical	electromagnetism	is	not	time-reversal	invariant,	while	Malament	(2004)

defended	the	standard	view,	according	to	which	the	theory	does	possess	this	feature.

(10)	Normalization	means	p(1)	=	1,	with	1	the	identity	operator	(i.e.,	the	projection	onto	the

whole	of	the	Hilbert	space).	The	theorem	holds	for	quantum	systems	with	Hilbert	space	of

dimension	at	least	3	(but	see	the	remark	at	the	end	of	section	4.4	below).

(10)	Frisch,	someone	who	thinks	that	causality	does	play	a	substantive	role	in	theorizing,

points	to	this	passage	among	others	(Frisch	2009a).

(10)	Imprecision	can	often	be	used	to	distinguish	between	the	mathematician	and	the

physicist.	The	former	tries	to	be	precise;	the	latter	sometimes	uses	vague	statements	that	can

then	be	extended	to	cover	more	cases.	However,	in	precisely	defined	situations,	for	example

the	situation	defined	by	the	Ising	model,	the	extended	similarity	“theorem”	is	actually	a

theorem	(Isakov	1984).

(10)	Don't	mathematicians	sometimes	offer	up	characterizations	of	symmetries	along	these

lines?	Yes—but	only	when	speaking	loosely	and	heuristically.	Thus	in	the	introduction	to

Olver's	influential	textbook	on	symmetries	of	differential	equations,	we	are	told	that:	“Roughly

speaking,	a	symmetry	group	of	a	system	of	differential	equations	is	a	group	which	transforms

solutions	of	the	system	to	other	solutions”	Olver	(1993,	xviii)—see	also,	e.g.,	Bluman	and	Anco

(2002,	2)	and	Klainerman	(2008,	457).	But	on	the	next	page	we	are	told	that	once	“one	has

determined	the	symmetry	group	of	a	system	of	differential	equations,	a	number	of	applications
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become	available.	To	start	with,	one	can	directly	use	the	defining	property	of	such	a	group

and	construct	new	solutions	to	the	system	from	known	ones.”	Of	course,	one	cannot	do	this	if

one's	notion	of	a	symmetry	is	given	by	the	Fruitless	Definition—one	needs	to	be	working	with

one	of	the	more	specialized	notions	that	are	the	focus	of	Olver's	book,	some	of	which	are

described	below.	And	likewise	for	the	other	applications	on	Olver's	list.

(12)	I	do	not	have	the	space	to	survey	such	modern	studies	here,	which	attempt	to,	for

example,	recover	the	tenets	of	rigid	body	mechanics	from	continuum	principles	by	allowing

certain	material	parameters	to	become	infinitely	stiff	(thus	“degeneration”).	Generally	the

results	are	quite	complex,	with	corrective	modeling	factors	emerging	in	the	manner	of	Prantdl's

boundary	layer	equations.	Sometimes	efforts	are	made	to	weld	our	different	foundational

approaches	into	unity	through	employing	tools	like	Stieltjes-Lesbeque	integration.	More

generally,	a	“homogenization”	recipe	smears	out	the	detailed	processes	occurring	across	a

wide	region	ΔW	in	an	“averaging”	kind	of	way,	whereas	“degeneration”	instead	concentrates

the	processes	within	ΔW	onto	a	spatially	singular	support	like	a	surface	(the	Riemann-Hugoniot

approach	to	shock	waves	provides	a	classic	exemplar).

(12)	Simon	expresses	a	commitment	to	the	tradition	as	he	launches	into	an	exposition	of	those

aspects	of	functional	analysis	he	considers	most	central	to	physics:	“Throughout,	all	our

Hilbert	spaces	will	be	separable	unless	otherwise	indicated.	Many	of	the	results	extend	to	non-

separable	spaces,	but	we	cannot	be	bothered	with	such	obscurities”	(1972,	18).	Although

there	are	some	ways	in	which	the	mathematics	of	separable	Hilbert	spaces	are	“nicer”	(for

instance,	some	operator	topologies	are	first-countable),	I	am	not	aware	of	a	canonical

explanation	of	the	tradition.

(12)	The	symmetry	of	the	phase	transition	is	reflected	in	the	nature	of	the	order	parameter,

whether	it	be	a	simple	number	(the	case	discussed	here),	a	complex	number

(superconductivity	and	superfluidity),	a	vector	(magnetism),	or	something	else.

(12)	Consider,	by	way	of	illustration,	the	Newtonian	theory	of	three	gravitating	point	particles	of

distinct	masses.	Here	a	point	in	the	space	of	kinematically	possible	fields,	 ,	essentially

assigns	each	of	the	particles	a	worldline	in	spacetime	(without	worrying	about	whether	these

worldlines	jointly	satisfy	the	Newtonian	laws	of	motion).	The	space	of	solutions,	 ,	is	the	18-

dimensional	submanifold	of	 	consisting	of	points	corresponding	to	particle	motions	obeying

Newton's	laws.	So	one	expects	that	any	diffeomorphism	from	 	itself	can	be	extended	to	a

suitably	nice	map	from	 	to	itself.	But	for	any	solutions	 ,	we	can	find	a

diffeomorphism	from	 	to	itself	that	maps	u 	to	u ,	so	we	again	find	that	arbitrary	pairs	of

solutions	are	related	by	symmetries.	This	seems	unacceptable,	since	we	ordinarily	think	of	this

theory	as	having	a	relatively	small	symmetry	group	(consisting	just	of	spacetime	symmetries).

(13)	These	can	also	be	thought	of	as	phase	transformations	where	the	phase	is	considered	a

matrix	quantity.	See	Aitchinson	and	Hey	(1989)	for	a	discussion	of	this	topic.

(13)	I	owe	this	turn	of	phrase	to	Jos	Uffink.

(14)	Strictly	speaking,	a	lift	to	continuous	variables	from	an	ODE-style	treatment	involving	a

large	number	of	discrete	variables	at	the	ΔL	level	should	not	be	called	a	“reduced	variable”
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treatment,	as	we	actually	increased	the	number	of	degrees	of	freedom	under	the	lift	(normally,

a	true	“reduced	variable”	treatment	will	supply	a	ΔL*	level	manifold	lying	near	to	some

submanifold	contained	within	the	ΔL	phase	space).	However,	the	descriptive	advantages	of	a

lift	to	continuous	variables	often	resembles	those	supplied	within	a	true	“reduced	variable”

treatment,	so	in	the	sequel	I	will	often	consider	both	forms	of	lift	under	a	common	heading.

(14)	Isospin	actually	refers	to	similar	kinds	of	particles	considered	as	two	states	of	the	same

particle	in	particular	types	of	interactions.	For	example,	the	strong	interactions	between	two

protons	and	two	neutrons	are	the	same,	which	suggests	that	for	strong	interactions	they	may

be	thought	of	as	two	states	of	the	same	particle.	So,	hadrons	with	similar	masses,	but	differing

in	terms	of	charge,	can	be	combined	into	groups	called	multiplets	and	regarded	as	different

states	of	the	same	object.	The	mathematical	treatment	of	this	characteristic	is	identical	with

that	used	for	spin	(angular	momentum).	The	SU(2)	group	is	the	isospin	group	and	is	also	the

symmetry	group	of	spatial	rotations	that	give	rise	to	angular	momentum.

(14)	In	his	correspondence	with	Clarke	(Alexander	1956),	Leibniz	is	sometimes	read	as	offering

kinematic-shift	arguments	somewhat	different	to	the	one	just	sketched.	The	idea	is	that

kinematically	shifted	possible	worlds	would	violate	the	Principle	of	Sufficient	Reason	(PSR)	and

the	Principle	of	the	Identity	of	Indiscernibles	(PII).	Since	these	principles	are	a	priori	true,

according	to	Leibniz,	there	can	be	no	such	plurality	of	possibilities.	A	“Leibnizian”	argument

from	the	PSR	would	ask	us	to	consider	what	reasons	God	could	have	had	for	creating	the

actual	universe	rather	than	one	of	its	kinematically	shifted	cousins.	An	argument	from	the	PII

would	claim	that,	since	kinematically	shifted	worlds	are	observationally	indistinguishable,	they

directly	violate	the	PII.	Neither	argument	is	convincing	(nor	is	either	faithful	to	Leibniz;	see

Pooley,	unpublished).	The	sense	of	indiscernibility	relevant	to	kinematic	shifts	is	not	that	which

has	been	the	focus	of	contemporary	discussion	of	the	PII.	This	takes	two	entities	to	be

indiscernible	just	if	they	share	all	their	(qualitative)	properties.	In	general,	two	kinematically

shifted	worlds	do	differ	qualitatively;	given	how	the	qualitative/nonqualitative	distinction	is

standardly	understood,	a	body's	absolute	speed	is	a	qualitative	property,	and	differences	in

absolute	velocity	are	(typically)	qualitative	differences.	Such	qualitative	differences	are

empirically	inaccessible	but,	theoretically,	they	could	ground	a	reason	for	an	all-seeing	God's

preference	for	one	possibility	over	another.	A	PSR	dilemma	for	God	is	created	if	we	consider

kinematically	shifted	worlds	that	differ,	not	in	terms	of	the	magnitude	of	their	objects'	absolute

velocities,	but	only	over	their	directions.	These	are	worlds	that	are	qualitatively

indistinguishable.	Discussion	of	how	the	substantivalist	should	treat	these	is	postponed	until

section	7.

(14)	There	are	exceptions.	Mean	field	theory	works	quite	well	whenever	the	forces	are

sufficiently	long-ranged	so	that	many	different	particles	will	interact	directly	with	any	given

particle.	By	this	criterion	mean	field	theory	works	well	for	the	usual	superconducting	materials

studied	up	through	the	1980s(7,	8),	except	extremely	close	to	the	critical	point.	However,

mean	field	theory	does	not	work	for	the	newer	“high-temperature	superconductors,”	a	class

discovered	in	1986	by	Georg	Bednorz	and	Alexander	Müller(9).

(16)	The	departures	from	equilibrium	are	described	using	the	Boltzmann	equation.	The

Boltzmann	equation	formulated	in	an	FLRW	spacetime	includes	an	expansion	term.	As	long	as
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the	collision	term	(for	some	collection	of	interacting	particles)	dominates	over	the	expansion

term	then	the	interactions	are	sufficient	to	maintain	equilibrium,	but	as	the	universe	cools,	the

collision	term	becomes	subdominant	to	the	expansion	term,	and	the	particles	decouple	from

the	plasma	and	fall	out	of	equilibrium.	To	find	the	number	density	at	the	end	of	this	freezing	out

process,	one	typically	has	to	solve	a	differential	equation	(or	a	coupled	set	of	differential

equations	for	multiple	particle	species)	derived	from	the	Boltzmann	equation.

(16)	For	reasons	of	space	I	omit	detailed	discussion	of	the	parallel	tradition	in	Everettian

quantum	mechanics	of	identifying	probability	via	long-run	relative	frequency	(notably	by

Everett	himself	(1957)	and	by	Farhi,	Goldstone,	and	Gutmann(1989).	I	discuss	this	program	in

detail	in	chapter	4	of	Wallace(2012);	my	conclusion	is	that	it	works	about	as	well,	or	as	badly,

as	equivalent	classical	attempts,	though	there	is	no	direct	Everettian	analogue	to	the	best-

systems	approach.

(17)	Note	that	it	is	the	“kinetic”	component	−1/4F F 	of	the	Lagrangian	for	the	full	theory

(also	featuring	an	“interacting”	component),	which,	as	Martin	nicely	puts	it,	“imbues	the	field

with	its	own	existence,	accounting	for	the	presence	of	non-zero	electromagnetic	fields,	for	the

propagation	of	free	photons”	(2003,	43).	See	Quigg	(1983,	45–48)	for	the	technical	details.

But,	technicalities	aside,	one	of	the	main	complaints	against	this	standard	story	has	been	that

this	generation	talk	is	misleading,	as	the	gauge	field	is	put	in	by	hand.	For	discussion,	see

Brown	(1999).	A	number	of	further	issues	arise,	having	to	do	with	the	(in)determinist	character

of	a	gauge	theory.	A	source	of	concern	is	the	identification	of	those	quantities	that	are	actually

“physical,”	as	opposed	to	mere	artifacts	of	description.	The	discussions	in	the	literature	focus

on	Einstein's	“hole	argument”	(Earman	and	Norton	1987;	Butterfield	1989;	Belot	1996,	esp.

chs.	5,	6,	7;	1998;	Saunders	2002;	etc.;	for	a	recent	introduction,	see	Norton	2008).	Equally

pressing	is	the	question	about	the	right	ontological	interpretation	that	should	be	given	to	those

quantities	that	are	not	gauge-invariant,	the	so-called	(by	Redhead	2003)	“surplus	structure.”

(17)	CP	is	a	symmetry	that	states	that	the	laws	of	physics	should	be	the	same	if	a	particle	were

interchanged	with	its	antiparticle	(C	symmetry,	or	charge	conjugation	symmetry),	and	left	and

right	were	swapped	(P	symmetry,	or	parity	symmetry).	In	addition	to	its	role	in	weak

interactions,	it	also	plays	an	important	role	in	the	attempts	of	cosmology	to	explain	the

dominance	of	matter	over	antimatter	in	the	Universe.

(17)	A	more	precise	way	of	stating	both	is	that	the	program	attempts	to	show	that	agents	are

rationally	required	to	act	as	if	mod-squared	amplitude	played	the	objective-probability	role	in

David	Lewis's	Principal	Principle;	cf.	Lewis	(1980).

(18)	Note	that	in	continuum	mechanics,	generally,	a	material	point	or	“material	particle”	is	not

an	atom	or	molecule	of	the	system;	rather	it	is	an	imaginary	region	that	is	large	enough	to

contain	many	atomic	subscales	(whether	or	not	they	really	exist)	and	small	enough	relative	to

the	scale	of	field	variables	characterizing	the	impressed	forces.	Of	course,	as	noted,	Navier's

derivation	did	make	reference	to	atoms.

(19)	This	need	not	be	a	problem	in	itself,	say	if	one	interprets	the	wave	function	along

Schrödinger's	lines	as	manifesting	itself	in	3-dimensional	space	as	a	charge	(or	mass)	density.

It	may	become	a	problem	if	the	“tails”	are	themselves	highly	structured,	as	will	happen	in

μν
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spontaneous	collapse	theories	in	the	case	of	measurements	or	Schrödinger	cats,	as	this

allows	for	an	Everettian-style	criticism	of	the	idea	that	such	a	wave	function	represents	a

single	copy	of	a	quasi-classical	system	(i.e.,	the	tail	is	itself	a	“tiny”	live	or	dead	cat).

(21)	To	get	a	feeling	for	what	this	means,	consider	the	sort	of	gauge	transformations	that

normally	arise	in	presentations	of	Maxwell's	theory:	if	we	take	the	vector	potential	A(x)	as	our

field,	then	the	theory	is	invariant	under	infinitesimal	transformations	of	the	form	A	↦	A	+	εdΛ

where	Λ(x)	is	a	real-valued	function	on	spacetime.	Now	suppose	that	A	is	a	map	then	when	fed

a	kinematically	possible	A	returns	a	real-valued	function	Λ	[A]	on	spacetime.	If	for	each

spacetime	point	x	and	each	A,	the	value	of	Λ	[A]	at	x	depends	only	on	x	and	on	A(x),	then	the

infinitesimal	transformation	A	↦	A	+	εd	Λ[A]	corresponds	to	a	classical	symmetry	of	Maxwell's

theory;	if	the	value	of	Λ	[A]	(x)	depends	also	on	a	finite	number	of	derivatives	of	A	at	x,	then

this	map	is	a	generalized	symmetry	of	Maxwell's	theory	See	the	discussion	of	generalized

gauge	symmetries	in	Pohjanpelto	(1995)	and	in	Torre	(1995).	For	a	thoroughly	worked-out

example	involving	only	finitely	many	degrees	of	freedom,	see	Cantwell	(2002,	§14.4.1).

(21)	More	precisely,	the	different	perturbation	modes	have	the	same	density	contrast	when

their	wavelength	equals	the	Hubble	radius,	H .

(22)	Cosmologists	use	“concordance	model”	to	refer	to	the	Standard	Model	of	cosmology	with

the	specified	contributions	of	different	types	of	matter.	The	case	in	favor	of	a	model	with

roughly	these	contributions	to	the	overall	energy	density	was	made	well	before	the	discovery

of	cosmic	acceleration	(see,	e.g.,	Ostriker	and	Steinhardt	(1995);	Krauss	and	Turner	(1999)).

Coles	and	Ellis	(1997)	give	a	useful	summary	of	the	opposing	arguments	(in	favor	of	a	model

without	a	dark	energy	component)	as	of	1997,	and	see	Frieman,	Turner,	and	Huterer	(2008)

for	a	more	recent	review.

(22)	To	clarify:	Gell-Mann's	so-called	“Eightfold	Way”	SU(3)-based	theory	mentioned	at	the

beginning	of	this	paragraph	is	not	QCD	as	developed	later	on.	The	degrees	of	freedom	of	the

Eightfold	Way	are	not	the	degrees	of	freedom	of	the	SU(3)-based	QCD—though	the	group	is

the	same,	SU(3).	This	later	theory	postulates	three	different	types	of	strong-force	charge	(the

red,	green,	and	blue	quarks).	The	former	SU(3)	space	(where	only	global	invariance	required)

is	a	different	entity	than	the	SU(3)	space	of	strong	charge,	which	is	under	the	constraint	of

local	(“gauge”)	invariance.	Within	the	former	theory,	we	only	categorize	nonfundamental

collections	of	quarks	(for	more,	see	section	5).	It	is	the	latter	theory	which	is	the	currently

accepted	dynamical	account	of	the	strong	nuclear	force.	Yang	and	Mills	(see	the	previous

paragraph)	attempted	to	make	a	dynamical	theory	out	of	the	SU(2)	isospin	space,	but	we	can

now	see	that	this	is	clearly	wrong-headed,	since	protons	and	neutrons	are	not	fundamental

particles.

(22)	A	string	is	an	object	with	a	finite	spatial	extent	that	has	an	intrinsic	tension	in	the	same

way	that	a	particle	has	intrinsic	mass.	The	presence	of	an	intrinsic	tension	means	that	string

theory	possesses	an	inherent	mass	scale,	a	fundamental	parameter	with	the	dimensions	of

mass	that	defines	the	energy	scale	at	which	“stringy”	effects	(effects	associated	to	the

oscillation	of	the	string)	become	important.	The	various	oscillation	modes	of	the	string	are

effectively	localized	in	its	immediate	neighborhood	and	behave	like	elementary	particles	with

−1
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different	masses	related	to	the	oscillation	frequency	of	the	string.	Because	a	string	is	like	a

collection	of	infinitely	many	point	particles,	constrained	to	fit	together	to	form	a	continuous

object,	it	has	infinitely	many	degrees	of	freedom.	Consequently,	its	associated	quantum	theory

required	the	existence	of	several	spatial	dimensions	(26).	The	invention	of	superstring	theory

—a	string	with	extra	degrees	of	freedom	that	make	it	supersymmetric—has	reduced	that

number	to	11.

(22)	Note	that	this	is	not	a	strict	result,	but	only	a	phenomenological	arrow	of	time,	since	the

Schrödinger	equation	is	time-symmetric.

(23)	‘Closing	in	the	uniform	topology’	means	adding	to	the	algebra	the	limit	points	of	all

uniformly	convergent	sequences	of	elements	that	have	made	their	way	into	the	algebra	by

other	means.

(24)	“Hot”	vs.	“cold”	refers	to	the	thermal	velocities	of	relic	particles	for	different	types	of	dark

matter.	Hot	dark	matter	decouples	while	still	“relativistic,”	in	the	sense	that	the	momentum	is

much	greater	than	the	rest	mass,	and	relics	at	late	times	would	still	have	large	quasi-thermal

velocities.	Cold	dark	matter	is	“non-relativistic”	when	it	decouples,	meaning	that	the

momentum	is	negligible	compared	to	the	rest	mass,	and	relics	have	effectively	zero	thermal

velocities.

(24)	Part	of	this	story	provided	social-constructivists	with	a	case	to	uphold	their	position.	As	we

will	see	below	(next	footnote),	the	experimental	demonstration	of	the	so-called	“weak	neutral

currents”	would	have	corroborated	the	unified	model.	Analyzing	this	episode,	Andy	Pickering

(1998,	136)	writes:	“There	I	argue	that	the	acceptability	of	the	weak	neutral	current	(and

hence	of	the	associated	interpretative	practices)	was	determined	by	the	opportunities	its

existence	offered	for	future	experimental	and	theoretical	practice	in	particle	physics.	Quite

simply,	particle	physicists	accepted	the	existence	of	the	neutral	current	because	they	could

see	how	to	ply	their	trade	more	profitably	in	a	world	in	which	the	neutral	current	was	real.	The

key	idea	here	is	that	of	a	symbiotic	relationship	between	experimenters	and	theorists,	the	two

distinct	professional	groupings	within	particle	physics.”

(25)	Type	Ia	supernovae	do	not	have	the	same	intrinsic	luminosity,	but	the	shape	of	the	light

curve	(the	luminosity	as	a	function	of	time	after	the	initial	explosion)	is	correlated	with	intrinsic

luminosity.	See	Kirshner	(2009)	for	an	overview	of	the	use	of	supernovae	in	cosmology.

(25)	This	subsection	is	mostly	based	on	my	entry	for	the	Stanford	Encyclopedia	of	Philosophy

(Bacciagaluppi	2003).

(26)	If	no	kinetic	energy	is	lost	to	heat	(a	so-called	“purely	elastic	collision”),	then	we	possess

enough	“conservation	laws”	(energy	and	linear	momentum)	to	guide	two	colliding	point

masses	uniquely	through	a	collision	(as	every	elementary	college	text	demonstrates).	But

these	principles	alone	are	not	adequate	to	three-way	collisions,	energetic	losses,	or	to	more

oblique	modes	of	scattering.

(26)	See	Stone	(2000,	204)	for	the	condensed	matter	context.	The	bare	parameters	are	the

parameters	of	the	theory	before	rescaling	is	performed	to	restore	the	cutoff	back	to	its	initial
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value	after	one	iteration	of	the	RG	transformations.	The	renormalized	parameters	are	the

rescaled	parameters.

(27)	Constraint	relationships	are	sometimes	maintained	through	factors	external	to	the	device

(such	as	the	pressures	of	an	ambient	fluid	or	the	gravitational	attraction	that	binds	a	cam	to	its

follower),	in	which	case	the	device	is	said	to	be	force	closed.	Descartes,	for	example,

essentially	dissected	the	universe	into	component	mechanisms,	but	they	were	usually	held

together	through	force	closure	rather	than	internal	pinning.

(28)	Such	contacts	are	further	classified	as	“higher	or	lower	pairs”	according	the	contacting

geometry	they	implement.

(28)	See	Sotiriou	and	Faraoni	(2010)	for	a	review	of	one	approach	to	modifying	GR,	namely	by

adding	higher-order	curvature	invariants	to	the	Einstein-Hilbert	action.	These	so-called	“f	(R)

theories”	(the	Ricci	scalar	R	appearing	in	the	action	is	replaced	by	a	function	f	(R))	have	been

explored	extensively	within	the	last	five	years,	but	it	has	proven	to	be	difficult	to	satisfy	a

number	of	seemingly	reasonable	con	straints.	Uzan	(2010)	gives	a	brief	overview	of	other

ways	of	modifying	GR	in	light	of	the	observed	acceleration.

(28)	The	question	of	uniqueness	of	a	classical	or	“quasi-classical”	regime	has	been	quite	hotly

debated	especially	in	the	“decoherent	histories”	literature,	and	it	appears	that	explicit

definitions	of	quasi-classicality	always	remain	too	permissive	to	identify	it	uniquely.	But	maybe

uniqueness	is	not	strictly	necessary	(as	nowadays	often	argued	in	the	context	of	the	Everett

interpretation).	For	these	issues,	see,	e.g.,	Wallace	(2008).

Attempts	to	enforce	uniqueness	in	other	ways	appear	to	overshoot	the	mark.	Indeed,	various

“modal”	interpretations	based	on	the	biorthogonal	decomposition	theorem,	the	polar

decomposition	theorem,	or	the	spectral	decomposition	theorem	for	density	operators,	select

histories	uniquely,	but	end	up	agreeing	with	the	results	of	decoherence	only	in	special	cases,

failing	to	ensure	classicality	in	general	(Donald	1998;	Bacciagaluppi	2000).

(30)	This	behavior	is	usually	described	using	the	rotation	curve,	a	plot	of	orbital	velocity	as	a

function	of	the	distance	from	the	galactic	center.	The	“expected”	behavior	(dropping	as	r

after	an	initial	maximum)	follows	from	Newtonian	gravity	with	the	assumption	that	all	the	mass	is

concentrated	in	the	central	region,	like	the	luminous	matter.	The	discrepancy	cannot	be

evaded	by	adding	dark	matter	with	the	same	distribution	as	the	luminous	matter;	in	order	to

produce	the	observed	rotation	curves,	the	dark	matter	has	to	be	distributed	as	a	halo	around

the	galaxy.

(30)	While	this	point	is	especially	clear	in	Heisenberg's	writings,	it	is	clear	that	it	was	espoused

also	by	other	main	exponents	of	what	is	known	collectively	as	the	Copenhagen	interpretation.

For	instance,	Bohr	often	applies	the	uncertainty	relations	to	macroscopic	pieces	of	apparatus

in	his	replies	to	Einstein's	critical	thought	experiments	of	the	period	1927–1935	(Bohr	1949).

And	Pauli,	commenting	to	Born	on	Einstein's	views,	is	adamant	that	under	the	appropriate

experimental	conditions	also	macroscopic	objects	would	display	interference	effects	(Pauli	to

Born,	31	March	1954,	reprinted	in	Born	1969).
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(31)	Under	such	approaches,	one	works	with	a	space	of	instantaneous	states	(which	will	be

infinite-dimensional	in	the	field-theoretic	case),	equips	this	space	with	a	real-valued	function,	L

(the	Lagrangian),	and	employs	a	variational	principle	to	find	those	curves	in	the	space	of

states	that	correspond	to	dynamically	possible	histories	of	the	system.

(31)	In	a	seminal	paper,	Ostriker	and	Peebles	(1973)	argued	in	favor	of	a	dark	matter	halo

based	on	an	N	body	simulation,	extending	earlier	results	regarding	the	stability	of	rotating

systems	in	Newtonian	gravity	to	galaxies.	These	earlier	results	established	a	criterion	for	the

stability	of	rotating	systems:	if	the	rotational	energy	in	the	system	is	above	a	critical	value,

compared	to	the	kinetic	energy	in	random	motions,	then	the	system	is	unstable.	The	instability

arises,	roughly	speaking,	because	the	formation	of	an	elongated	bar	shape	leads	to	a	larger

moment	of	inertia	and	a	lower	rotational	energy.	Considering	the	luminous	matter	alone,	spiral

galaxies	appear	to	satisfy	this	criterion	for	instability;	Ostriker	and	Peebles	(1973)	argued	that

the	addition	of	a	large,	spheroidal	dark	matter	halo	would	stabilize	the	luminous	matter.

(31)	Indeed,	von	Neumann's	aim	was	simply	to	show	that	there	always	exist	unitary	evolutions

that	will	produce	such	perfect	correlations,	in	order	to	establish	consistency	in	this	first	sense.

Heisen-berg's	discussion,	although	technically	somewhat	defective	(see	the	analysis	in

Bacciagaluppi	and	Crull	2009),	is	along	similar	lines.	Note,	however,	that	Heisenberg	is

particularly	interested	in	the	case	of	the	Heisenberg	microscope,	where	the	electron	interacts

with	a	microscopic	ancilla	(the	photon),	and	one	considers	alternative	measurements	on	the

ancilla.	For	Heisenberg's	purposes	it	is	thus	important	that	interference	is	still	present	and	that

decoherence	does	not	kick	in	until	later.

(32)	In	this	context,	“Euler's	First	Law”	is	often	viewed	as	simply	“Newton's	Second	Law”	in

application	to	rigid	bodies.	Credit	for	regarding	the	“F	=	ma”	scheme	as	a	framework	upon

which	“recipes”	for	differential	equations	for	both	forms	of	mechanics	can	be	built	is

historically	due	to	Euler,	not	Newton.	As	we	shall	see,	the	analogous	recipe	for	continua	relies

upon	a	formula	traditionally	called	“Cauchy's	Law,”	which	many	writers	regard	as	yet	“another

version	of	F	=	ma”	(although	it	actually	employs	the	tricky	notion	of	stress	that	Cauchy

originated).	The	similarities	of	these	three	“recipe”	formulas	support	the	strong	“family

resemblance”	character	of	“classical	mechanics.”	Terminological	issues	become	more

confusing	within	the	context	of	continua,	in	which	analogs	of	Euler's	two	laws	are	also	applied

to	the	sub-bodies	in	the	interior	of	container	blobs.	In	such	contexts,	these	analogs	are	often

dubbed	the	“balance	principles”	for	momentum	and	angular	momentum.	In	the	context	of	rigid

bodies,	once	specific	values	for	moments	of	inertia	et	al.	have	been	computed	with	respect	to

such	entities,	these	values	remain	the	same,	allowing	the	import	of	Euler's	principles	to	be

expressed	as	equations	of	ODE	type.	Within	flexible	bodies,	in	contrast	such	values	fluctuate

as	they	flex	and	so	PDEs	are	required	to	capture	the	requisite	relationships.

(32)	This	is	to	rule	out	parastatistics—representations	of	the	permutation	group	that	are	not

one-dimensional	(see,	e.g.,	Greiner	and	Müller	1994).	This	would	be	desirable	(since

parastatistics	have	not	been	observed,	except	in	2-dimensions,	where	special	considerations

apply),	but	I	doubt	that	it	has	really	been	explained.

(33)	The	situation	is	a	little	more	complicated,	as	antisymmetry	in	the	spin	partof	the	overall
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state	forces	symmetry	in	the	spatial	part—which	can	lead	to	spatial	bunching	(this	is	the	origin

of	the	homopolar	bond	in	quantum	chemistry).

(33)	Although	I	have	quoted	Lagrange's	principle	in	its	standard	textbook	form,	it	conceals	a

subtle	ambiguity;	specifically	as	to	whether	the	“r”	cited	is	a	true	position	coordinate	or	rather

represents	something	“generalized”	like	an	angle.	If	the	latter	(which	is	usually	what	is

needed),	then	the	corresponding	“mass”	terms	“m”	must	be	read	as	moments	of	inertia,	etc.

Presumably,	we	require	some	instruction	in	how	these	“generalized	inertial	terms”	are	to	be

found.	Such	unnoticed	shifts	are	often	sites	of	significant	“lifts”	(and	sometimes	outright	errors,

which	are	common	in	this	branch	of	mechanics).

The	restriction	to	“virtual	variations”	is	necessary	because	the	mechanical	advantages	of

most	mechanisms	continuously	adjust	as	they	move	through	their	cycles.	This	means	that

inputted	forces	F ,	F ,	F 	on	our	crane	will	not	be	able	to	balance	quite	the	same	output	force

F 	when	the	machine	stands	in	a	different	configuration.	But	the	“instantaneous	work”

performed	by	the	input	forces	will	always	equal	the	“instantaneous	work”	expended	at	the

outputs,	which	is	the	key	idea	that	we	need	to	capture	in	our	“virtual	work”	formula	for	static

situations.

(33)	On	scale	transformations,	see	Olver	(1993,	255).	A	standard	remedy	is	to	introduce	the

notion	of	a	divergence	symmetry,	a	transformation	that	leaves	the	Lagrangian	invariant	up	to

a	total	divergence;	many	interesting	symmetries	are	divergence	symmetries	but	not	variational

symmetries,	including	boosts	of	Newtonian	systems	and	the	conformal	symmetries	of	the	wave

equation;	see	Olver	(1993,	278–281).	Scaling	symmetries	are	more	subtle.	Scale

transformations	are	symmetries	of	general	relativity,	but	are	neither	variational	nor	divergence

symmetries;	see	Anderson	and	Torre	(1996,	§2.B).	Rescaling	of	space	and	time	is	a	symmetry

of	the	wave	equation	that	is	neither	a	variational	nor	a	divergence	symmetry,	although	there	is

a	related	scale	transformation	that	acts	on	the	dependent	variables,	as	well	as	the

independent	variables,	which	is	a	divergence	symmetry	(but	not	a	variational	symmetry);	see

Olver	(1993,	Examples	2.43,	4.15,	and	4.36).

(33)	The	literature	on	the	(Wignerian)	group	theoretic	approach	to	the	constitution	of	physical

objects	has	been	growing	in	the	last	decade,	when	a	variety	of	approaches	have	been

attempted.	See	Castellani	(1998)	and	especially	the	work	on	ontic	structural	realism	by	French

(1998),	French	and	Ladyman	(2010),	and	Ladyman	(2009),	esp.	sect.	4	and	the	bibliography

therein.

(34)	But:	certain	types	of	variational	(or	divergence)	symmetries	of	theories	whose	initial	value

problems	are	ill-posed	are	associated	with	so-called	trivial	conservation	laws;	see	Olver	(1993,

342–346)	on	Noether's	second	theorem.	And:	there	exist	techniques	for	associating

conservation	laws	with	symmetries	that	do	not	rely	on	Noether's	theorem;	see,	e.g.,	Bluman

(2005).

(34)	Instead	of	talking	of	resolutions	of	the	identity,	one	can	also	talk	of	PV	“measures,”	in	the

sense	that	(analogously	to	a	probability	measure),	one	can	assign	to	each	“event”	(subset	I	of

the	indices	labeling	the	results)	a	corresponding	projection	 .	One	will	talk	similarly	of
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POV	measures	when	the	requirement	that	the	elements	of	the	resolution	of	the	identity	be

projections	is	relaxed.

(34)	Some	authors	favor	talk	of	“tidal	forces”	or	state	that	there	is	a	real	“gravitational	field”

just	where	the	Riemann	tensor	is	nonzero	(e.g.,	Synge,	1960,	ix).	As	far	as	I	can	see,	this	is

simply	a	misleading	way	of	talking	about	spacetime	curvature	and	(typically)	nothing	of

conceptual	substance	is	intended	by	it.	For	a	discussion	of	some	of	the	pros	and	cons	of

identifying	various	geometrical	structures	with	the	“gravitational	field,”	see	Lehmkuhl	(2008,

91–98).	Lehmkuhl	regards	the	metric	g 	as	the	best	candidate.	My	own	view	is	that

consideration	of	the	Newtonian	limit	(e.g.,	Misner	et	al.,	1973,	445–446)	favors	a	candidate	not

on	his	list,	viz.,	deviation	of	the	metric	from	flatness:	h ,	where	g 	=	η 	+	h .	That	this	split

is	not	precisely	defined	and	does	not	correspond	to	anything	fundamental	in	classical	GR

underscores	the	point	that,	in	GR,	talk	of	the	“gravitational	field”	is	at	best	unhelpful	and	at

worst	confused.	The	distinction	between	background	geometry	and	the	graviton	modes	of	the

quantum	field	propagating	against	that	geometry	is	fundamental	to	perturbative	string	theory,

but	this	is	a	feature	that	one	might	hope	will	not	survive	in	a	more	fundamental	“background-

independent”	formulation.

(34)	In	particular,	physicists	associate	these	labels	(e.g.	-1/2	and	+1/2	in	the	isospin	case)	with

the	values	of	the	invariant	properties	(isospin)	characterizing	physical	systems	(in	this	case,

the	doublet	neutron-proton).	Wigner	(1959)	derives	a	formula	that	encodes	the	general	form	of

the	representations.	For	a	more	modern	approach,	see	Joshi	(1982,	131).

(35)	Energy	conditions	place	restrictions	on	the	stress-energy	tensor	appearing	in	EFE.	They

are	useful	in	proving	theorems	for	a	range	of	different	types	of	matter	with	some	common

properties,	such	as	“having	positive	energy	density”	or	“having	energy-momentum	flow	on	or

within	the	light	cone.”	In	this	case	the	strong	energy	condition	is	violated;	for	the	case	of	an

ideal	fluid	discussed	above,	the	strong	energy	condition	holds	iff	ρ	+3p	≥	0.	Cf,	for	example,

chapter	9	of	Wald	(1984)	for	definitions	of	other	energy	conditions.

(35)	Instantaneous	relative	distances	and	their	first	derivatives	are	the	natural	Leibnizian

relational	data.	As	reviewed	in	section	6.2,	Barbour's	preferred	framework	for	understanding

classical	mechanics	also	dispenses	with	a	primitive	temporal	metric	and	an	absolute	length

scale.	With	respect	to	these	more	frugal	initial	data,	five,	not	three,	additional	numbers	are

needed.	See	Barbour	(2011,	§2.2).

(35)	The	diversity	and	the	large	number	of	particles	had	always	bothered	the	high-energy

physicists.	Willis	Lamb	voiced	this	uneasiness	in	his	Nobel	speech,	in	which	he	reminded	the

public	of	a	popular	saying	in	the	particle	physics	community:	anyone	who	discovers	a	new

particle	ought	be	punished	by	a	$10,000	fine	(instead	of	being	awarded	a	Nobel	Prize!)

(35)	ω	is	a	symplectic	form—a	closed,	nondegenerate	two-form.	ω	and	H	determine	a	vector

field	X 	on	 :	X 	is	the	vector	field	that	when	contracted	with	ω	yields	the	one-form	dH.

Integrating	this	vector	field	gives	the	curves	mentioned	in	the	text.	Note	that	there	is	a

canonical	recipe	for	constructing	 ,	H,	and	ω	given	a	Lagrangian	treatment	of	the	theory.

(36)	Note	that	the	symplectic	space	 	has	a	vast	family	of	symmetries.	Suppose	that	we
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are	interested	in	a	Newtonian	theory	of	finitely	many	particles.	Then	 	is	finite-dimensional,

but	the	family	of	smooth	permutations	of	 	that	preserve	ω	is	infinite-dimensional—it	is	only

when	we	restrict	attention	to	transformations	that	also	preserve	H	that	we	end	up	with

something	like	what	we	want.	Something	similar	is	of	course	true	in	ordinary	quantum

mechanics:	while	the	family	of	unitary	transformations	of	a	Hilbert	space	will	be	very	large,	the

family	of	such	transformations	that	preserve	a	given	Hamiltonian	will	be	quite	small—and	only

the	latter	is	a	good	candidate	for	the	symmetry	group	of	a	theory.	The	situation	is	more

perplexing	in	the	case	of	fancier	quantum	theories.	On	the	one	hand,	an	arbitrary	C 	-algebra

automorphism	is	pretty	clearly	the	analogue	of	an	arbitrary	symplectic	or	unitary

transformation	and	so	is	not	a	good	candidate	to	be	a	symmetry	of	a	theory:	indeed,	in	many

cases	of	interest	any	two	states	are	related	by	such	an	automorphism;	see	Kishimoto,	Ozawa,

and	Sakai	(2003).	On	the	other	hand,	in	some	contexts	it	is	not	possible	to	identify	symmetries

of	a	theory	with	those	C 	-algebra	automorphisms	that	preserve	the	Hamiltonian	because	there

is	no	Hamiltonian	operator	available	at	the	C 	-algebra	level;	on	this	point,	see	Ruetsche

(2011,	§12.3).

(37)	Time-reversal	invariance	does	not	hold	in	fundamental	physics.	However,	the	failure	of

time-reversal	invari-ance	in	the	decay	of	neutral	K	mesons	is	not	thought	to	be	responsible	for

the	sort	of	damping	that	makes	Jackson's	model	viable	nor	for	thermodynamical	behavior	more

generally.

(37)	De	Sitter	first	pointed	out	to	Einstein	that,	in	addition	to	specification	of	T ,	one	needs	to

specify	boundary	conditions	at	infinity	in	order	to	determine	g .	This	prompted	Einstein	to

search	for	spatially	compact	solutions	to	the	EFEs	and	to	introduce	the	cosmological	constant

to	allow	for	a	static,	spatially	closed	universe.	This	in	turn	led	de	Sitter	to	the	discovery	of	the

de	Sitter	universe:	a	spatially	compact	vacuum	solution	to	the	modified	EFEs.	See	Janssen

(2008,	§5)	for	a	summary	of	this	episode	and	for	further	references.

(38)	Note	that	the	corresponding	subspace	in	the	apparatus	Hilbert	space	need	not	be	one-

dimensional:	in	the	case	of	the	spin	measurements	of	section	4.2,	we	had	infinite-dimensional

projections	onto	the	upper	or	lower	half	of	the	detection	screen.	Given	that	the	“apparatus”

will	usually	be	a	macroscopic	system,	the	idea	that	a	reading	should	correspond	to	a	large

subspace	of	its	state	space	rather	than	to	a	single	state	is	quite	appealing.	A	reading	ought	to

correspond	rather	to	a	macroscopic	state	of	the	apparatus	than	to	a	microscopic	state,	and	a

macroscopic	state	could	well	be	represented	by	an	appropriate	subspace	P .

(38)	Kuhn	1962,	24.	Hilary	Putnam	similarly	criticized	another	of	Kuhn's	characterizations	of

normal	science:	“The	term	‘puzzle	solving’	is	unfortunately	trivializing;	searching	for

explanations	of	phenomena	and	for	ways	to	harness	nature	is	too	important	a	part	of	human

life	to	be	demeaned”	(Putnam	1974,	261).

(39)	The	so-called	“totalitarian	principle”	(attributed	to	Gell-Mann),	according	to	which	“what	is

not	forbidden	must	occur”	is	of	notoriety	in	the	particle	physics	community.	It	is	unclear,

however,	whether	this	dictum	(reminiscent	of	the	ancient	Principle	of	Plenitude—stating,

roughly,	that	given	an	infinite	time,	all	genuine	possibilities	actualize)	played	an	important	role

in	this	episode.	Its	converse—when	it	seems	that	an	event	can	happen	but	it	does	not,	look	for
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a	conservation	law	that	precludes	it—is	also	a	well-known	heuristic	tool.

(39)	One	can	witness	some	of	this	struggle	in	Kant's	Metaphysical	Foundations	of	Natural

Science	(Cambridge:	Cambridge	University	Press,	2004)	where	he	is	plainly	aware	that	some

source	of	sheer	is	needed	to	make	sense	of	conventional	“solidity,”	but	cannot	find	a	way	to

incorporate	such	a	quantity	into	his	descriptive	framework.

(40)	I	have	patterned	my	first	Bernoulli-Euler	“element”	after	a	diagram	that	Leibniz	provides

for	a	loaded	beam.	Cf.	Clifford	Truesdell,	The	Rational	Mechanics	of	Flexible	or	Elastic	Bodies

1638–1788,	(editor's	introduction	to	Euler,	Opera	Omnia	II,	vol.	12)	(Lausanne:	1954).

(41)	A	more	detailed	discussion	is	given	in	Darrigol	2008.	Interpretive	schemes	supplemented

with	the	requirement	of	computability	are	similar	to	Humphreys's	“computational	templates.”

According	to	Humphreys	2004,	it	is	at	the	level	of	computational	templates	that	questions

about	theoretical	representation,	empirical	fitness,	realism,	and	so	on	must	be	discussed;

knowledge	“in	principle”	must	be	subordinated	to	knowledge	“in	practice,”	which	involves	the

available	technologies	of	measurement	and	calculation.

(41)	The	idea	that	spacetime	geodesics	are	defined	as	the	trajectories	of	force-free	bodies	is

defended	by	DiSalle	(1995,	327),	whom	Brown	quotes	approvingly.	Elsewhere	Brown,

ostensibly	to	make	a	point	against	the	substantivalist	explanation	of	inertia,	stresses	that	the

principle	that	the	trajectories	of	force-free	bodies	are	geodesics	in	fact	has	limited	validity	in

GR	(Brown	2005,	141,	see	also	161–168).	What	this	observation	in	fact	undermines	is	a

relationalist	approach	to	spacetime	geometry	that	tries	to	define	geodesics	in	terms	of	“basic

physical	laws”	(DiSalle	1995,	325).	More	recently,	DiSalle	makes	clear	that	he	differs	from	the

logical	positivists	in	not	regarding	the	coordination	of	geodesics	with	free-fall	trajectories	as	a

matter	of	arbitrary	stipulation.	Instead	it	is	said	to	be	“a	kind	of	discovery,	at	once	physical	and

mathematical,	that	…	the	only	objectively	distinguishable	state	of	motion	corresponds	to	the

only	geometrically	distinctive	path	in	a	generally	covariant	geometry”	(DiSalle,	2006,	131–

132).	Nothing	in	the	substantivalist's	metaphysics	is	inconsistent	with	this	position;	it	is	less

clear	what	other	metaphysical	views	are	compatible	with	it.	DiSalle	does	not	share	the

substantivalist's	and	relationalist's	preoccupation	with	ontological	questions	but	nor	does	he

offer	reasons	to	see	such	questions	as	illegitimate.

(42)	This	construction	was	overlooked	by	Dieks	and	Lubberdink	(2011)	in	their	criticisms	of	the

concept	of	classical	indistinguishable	particles.	They	go	further,	rejecting	indistinguishability

even	in	the	quantum	case	(they	consider	that	particles	only	emerge	in	quantum	mechanics	in

the	limit	where	Maxwell-Boltzmann	statistics	hold	sway-where	individuating	predicates	in	our

sense	can	be	defined.

(42)	Philosophers	new	to	the	peculiar	world	of	continuum	physics	parlance	should	prepare

themselves	for	phraseology	such	as	“dimensionless	point	cube”	(J.	D.	Reddy,	An	Introduction

to	Continuum	Mechanics	(Cambridge:	Cambridge	University	Press,	2008),	126—an	excellent

book,	by	the	way).

(43)	A.	N.	Whitehead	did	some	foundational	work	in	mechanics	at	the	turn	of	the	twentieth

century	and	his	“method	of	extensive	abstraction”	was	later	popularized	by	Bertrand	Russell
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in	Our	Knowledge	of	the	External	World	(London:	Routledge,	2009).	I	am	not	sure	how

Whitehead	understood	his	construction	(which	shrinks	in	on	points	through	decreasing

volumes),	but	Russell	plainly	regarded	the	technique	entirely	as	a	logical	procedure	for

“defining	away	points.”	Russell's	misunderstanding	of	the	underlying	physical	problematic

continues	to	reverberate	within	the	halls	of	analytic	philosophy.	For	a	survey,	see	Mark	Wilson,

“Beware	of	the	Blob,”	in	Dean	Zimmerman,	ed.,	Oxford	Studies	in	Metaphysics	(Oxford:

Oxford	University	Press,	2008).

A	subtle	point	:	when	we	combine	our	stress	and	strain	information,	should	our	resultant

vectors	situate	themselves	on	the	reference	or	the	response	planes?	This	matter	becomes

important	in	nonlinear	elasticity	and	requires	the	careful	delineation	of	different	stress	tensors

(“Piola-Kirchhoff”	versus	“Cauchy”)	that	one	finds	in	modern	textbooks.

(44)	This	mistake	also	underlies	much	of	the	discussion	of	“ceteris	paribus”	laws,	and	here	I

draw	on	the	line	of	argument	due	to	Smith	(2002);	Earman	and	Roberts	(1999).

(44)	ρg,	it	will	be	recalled,	captures	the	summed	body	forces	acting	upon	q.	In	following	this

standard	representation,	we	are	tacitly	ignoring	the	third	law	demands	that	persuaded	us	to

distinguish	V(q)	from	V (q )	earlier	(the	mathematics	of	continua	is	rough	enough	without

fussing	about	that!).	It	is	important	to	realize	that	the	accelerative	term	behaves

mathematically	very	much	like	g	and	is	often	called	an	“inertial	force”	as	a	result	(some	of	the

third	law	ambiguities	surveyed	earlier	trace	to	this	drift	in	the	significance	of	“force”).	And	an

important	symmetry	with	respect	to	constitutive	equations	is	relevant	as	well:	materials

(usually)	respond	to	an	applied	schedule	of	accelerations	by	exactly	the	same	rules	as	they

react	to	a	comparable	array	of	genuine	forces	(this	requirement	is	called	“material	frame

indifference”	or	“objectivity”).

(44)	More	exactly,	the	low-density	gas	specialization	of	the	Navier-Stokes	theory	is	an

approximating	module	of	the	kinetic	theory	of	gases,	of	which	the	mechanics	of	a	set	of

interacting	molecules	is	a	reducing	module.

(46)	Brown's	thesis	that	inertia	receives	a	dynamical	explanation	only	in	GR	has	recently	been

defended	by	Sus	(2011).	Sus	emphasizes	that	in	GR	the	metric	is	a	genuinely	dynamical	entity

and	that	one	can	derive	∇ 	T 	=	0	from	the	very	equations	that	govern	the	metric's	behavior.

In	contrast,	SR,	as	standardly	conceived,	involves	fixed	inertial	structure	whose	properties	are

postulated	by	fiat.	However,	this	difference	between	the	theoriesis	compatible	with	the	theories

agreeing	on	the	fundamental	reasons	why	force-free	bodies	are	related	to	inertial	structure	in

just	the	way	they	are.

(46)	In	Minkowski	spacetime,	this	set	is	the	past	lobe	of	the	light	cone	at	p,	including	interior

points	and	the	point	p	itself.	A	point	p	causally	precedes	q	(p	〈	q),	if	there	is	a	future-directed

curve	from	p	to	q	with	tangent	vectors	that	are	timelike	or	null	at	every	point.	The	sets	J	 	(p)

are	defined	in	terms	of	this	relation:	J (p)	=	q	:	q	〈	p,	J (p)	=	q	:	p	〈	q,	the	causal	past	and

future	of	the	point	p,	and	the	definition	generalizes	immediately	to	spacetime	regions.

(46)	In	conformity	with	the	physicists’	usage,	Morrison	and	Morgan	also	call	“models”	what	I

call	a	“reducing	module.”	For	instance,	Maxwell's	mechanical	model	of	1862	for	the
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electromagnetic	field	is	a	model	in	this	sense.	This	kind	of	model	widely	differs	from	ad	hoc

models	for	limited	classes	of	phenomena.

(47)	The	Gauss-Codacci	constraint	equations	do	impose	some	restrictions	on	spacelike

separated	regions,	although	these	would	not	make	it	possible	to	determine	the	state	of	one

region	from	the	other;	see	Ellis	and	Sciama	(1972).

(48)	A	local	property	of	a	spacetime	is	one	that	is	shared	by	locally	isometric	spacetimes,

whereas	global	properties	are	not.	(Two	spacetimes	are	locally	isometric	iff	for	any	point	p	in

the	first	spacetime,	there	is	an	open	neighborhood	of	the	point	such	that	it	can	be	mapped	to

an	isometric	open	neighborhood	of	the	second	spacetime	(and	vice	versa).)

(49)	Related	versions	of	relationalism,	according	to	which	absolute	velocity	(or	even	absolute

position)	is	inter	preted	as	a	primitive,	monadic	property	of	particles,	have	been	discussed	by

Horwich	(1978,	403)	and	Friedman	(1983,	235)	(see	also	Teller,	1987).	In	addition	to	being	less

natural	than	the	form	of	Newtonian	relationalism	identified	by	Maudlin,	they	are	vulnerable	(like

Newtonian	relationalism)	to	the	kinematic	shift	argument.	The	absolute	position	version	is	also

vulnerable	to	the	static	shift	argument	mentioned	in	section	7.

(49)	Just	as	one	might	move	from	variational	symmetries	to	divergence	symmetries	(see	fn.	33

above),	one	might	consider	transformations	of	a	system's	phase	space	that	leave	invariant	the

set	of	Hamiltonian	trajectories	without	worrying	about	whether	they	also	leave	the	Hamiltonian

itself	invariant.	Suitably	interpreted,	this	should	manage	to	capture	Galilean	boosts	in

Newtonian	mechanics	and	the	scaling	symmetry	of	the	Kepler	problem;	see	Abraham	and

Marsden	(1985,	446	f.)	and	Prince	and	Eliezer	(1981,	§5).	Of	course,	it	also	includes	the

various	undesirable	characters	that	already	count	as	Hamiltonian	symmetries	(see	below).

(50)	Malament	(1977)	reviews	several	different	definitions	of	observational	indistinguishability

and	gives	a	series	of	constructions	of	OI	spacetimes	lacking	specific	global	properties.	Note

that	Malament	defines	OI	in	terms	of	the	chronological	rather	than	causal	sets,	which	include

the	interior	of	the	light	cone	but	not	the	cone	itself	(The	definition	follows	the	one	given	in

footnote	46,	dropping	the	phrase	“or	null.”)	Manchak	(2009)	proves	that	Malament's	technique

for	constructing	such	spacetimes	fails	only	in	the	exceptional	case	noted	in	the	text.	Cf	Norton

(2011),	who	argues	that	the	inductive	generalizations	from	J 	(p)	to	other	regions	of	spacetime

lack	clear	justification.

(55)	In	the	examples	just	considered,	it	is	pretty	clear	that	one	does	not	want	to	count	every

pair	of	solutions	related	by	a	generalized	symmetry	as	being	physically	equivalent.	Does	one

ever	want	to	count	solutions	as	physically	equivalent	that	are	related	by	a	generalized

symmetry	that	is	not	a	classical	symmetry?	Yes—for	instance,	when	the	solutions	in	question

are	also	related	by	a	respectable	classical	symmetry.	Consider,	e.g.,	the	generalized	gauge

transformations	described	in	fn.	21	above—if	two	solutions	are	related	by	such	a	symmetry,

then	they	are	also	related	by	an	ordinary	gauge	transformation.

Are	there	pairs	of	solutions	related	by	a	generalized	symmetry	(but	not	by	any	classical

symmetry)	that	one	would	want	to	consider	physically	equivalent?	That	appears	to	be	a	more

difficult	question.	Part	of	the	difficulty	lies	in	the	fact	that	what	one	has	in	practice	are	the

−

PDF Compressor Free Version 



Index

Page 110 of 112

infinitesimal	generators	of	generalized	symmetries:	it	is	in	general	a	nontrivial	task	to	find	the

corresponding	group	actions;	see,	e.g.,	Olver	(1993,	297ff.).	Further,	even	in	cases	where	the

corresponding	groups	of	transformations	can	be	determined,	their	physical	interpretation	can

be	obscure;	see,	e.g.,	Olver	(1984,	136f.).

(64)	Inflation	solves	the	horizon	problem	because	the	horizon	distance	increases

exponentially	during	inflation;	for	a	sufficiently	long	period	of	inflation,	all	the	points	on	the

surface	of	last	scattering	will	have	overlapping	past	light	cones.	The	inflationary	phase	also

reverses	the	dynamical	feature	of	the	FLRW	models	responsible	for	the	flatness	problem.

Because	γ	=	0	(in	the	equation	in	f	n.	61)	for	most	models	of	inflation,	inflationary	expansion

drives	Ω	toward	1,	enlarging	the	range	of	choices	Ω	(t )	compatible	with	observations.

(75)	For	related	reasons,	Earman	defines	Machian	spacetime	to	be	spacetime	with	simultaneity

structure	and	Euclidean	metrical	structure	on	its	simultaneity	surfaces	but	with	no	temporal

metric	(Earman	1989,	27–30).

(86)	The	Everett	interpretation	of	quantum	mechanics	attributes	a	branching	structure	to	the

universal	wave	function	of	the	universe,	and	the	individual	branches	can	be	regarded	as

something	akin	to	pocket	universes	(see	Wallace,	this	volume,	for	a	discussion	of	the	Everett

interpretation).	However,	unlike	the	other	accounts	the	laws	of	physics	do	not	vary	in	the

different	branches.	There	is	a	clear	distinction	between	the	two	cases,	although	recently	there

has	been	interest	in	exploring	connections	between	these	two	lines	of	thought.

(91)	This	is	not	to	say	that	every	explanatory	question	one	might	ask	about	the	phenomenon

of	length	contraction	requires	an	appeal	to	dynamical	laws;	in	some	contexts	it	is	enough	to

cite	the	relevant	geometrical	facts	in	order	to	provide	an	explanation.	This	is	a	point	explicitly

emphasized	in	Brown	and	Pooley	(2006,	78–79,	82),	where	paradigm	explanatory	uses	of

Minkowski	diagrams	(e.g.,	to	highlight	that	observers	in	relative	motion	consider	different

cross-sections	of	a	rod's	world	tube	when	judging	its	length)	are	said	to	constitute	“perfectly

acceptable	explanations	(perhaps	the	only	acceptable	explanations)	of	the	explananda	in

question.”	Our	emphasis	of	this	fact	seems	to	have	been	overlooked	by	some	authors	(Skow

2006,	Frisch	2011).

(92)	As	it	was	put	in	Brown	and	Pooley	(2006,	82):	“it	is	sufficient	for	these	bodies	to	undergo

Lorentz	contraction	that	the	laws	(whatever	they	are)	that	govern	the	behavior	of	their

microphysical	constituents	are	Lorentz	covariant.	It	is	the	fact	that	the	laws	are	Lorentz

covariant	…that	explains	why	the	bodies	Lorentz	contract.	To	appeal	to	any	further	details	of

the	laws	that	govern	the	cohesion	of	these	bodies	would	be	a	mistake.”	Janssen's	(2009)

carefully	argued	case	that	phenomena	recognized	to	be	kinematical	(in	his	sense)	should	not

be	explained	in	terms	of	the	details	of	their	dynamics	is	therefore	one	that	we	had

antecedently	conceded.	The	explanation	of	the	phenomena	in	terms	of	symmetries

nonetheless	deserves	the	label	“dynamical”	(though	not,	as	acknowledged	in	Brown	and

Pooley	(2006,	83),	“constructive”)	because	the	explanantia	are	(in	the	first	instance)	the

dynamical	symmetries	of	the	laws	governing	the	material	systems	manifesting	the	phenomena.

(97)	More	radical	options	could	also	be	pursued.	Starting	with	the	idea	that	there	are	no

primitive	facts	about	the	contiguity	or	otherwise	of	distinct	material	events,	one	might
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nonetheless	map	them	into	a	single	copy	of	ℝ .	The	coincidence	of	events	(which	events	are

to	be	mapped	to	the	same	element	in	ℝ )	is	then	to	be	thought	of	as	determined	in	the	same

manner	as	the	spacetime	interval,	that	is,	determined	by	those	coordinatizations	that	yield	total

descriptions	of	all	events	that	satisfy	some	simple	set	of	equations.	Perhaps	one	could	even

view	the	value	of	n	(that	is,	the	dimensionality	of	spacetime	itself)	as	determined	in	this	way

too.	As	with	generalizations	of	Huggett's	proposal	(see	footnote	88),	the	more	one	views	as

grounded	via	some	kind	of	Best	System	prescription,	the	more	unconstrained	the	problem

becomes;	it	ceases	to	be	plausible	that	the	complexity	of	the	postulated	supervenience	base

will	be	sufficient	to	underwrite	the	target	quantities	and	the	laws	they	obey.

(100)	Recall	(section	4)	that	the	pseudo-Riemannian	metric	tensor	g 	encodes	all	of	the

geometrical	properties	of	spacetime,	itself	represented	by	the	four-dimensional	manifold	M.

Strictly	speaking,	the	stress–energy	tensor	T 	does	not	directly	represent	the	fundamental

matter	content	of	the	model.	This	will	be	represented	by	other	fields,	in	terms	of	which	T 	is

defined.

(104)	Note	one	parallel	between	the	Hole	Argument	and	the	argument	against	Galilean

spacetime	that	exploits	the	Maxwell	group.	The	fact	that	the	Maxwell	group	involves	a

parameter	that	is	an	arbitrary	function	of	time	means	that	the	Galilean	substantivalist

interpretation	of	the	models	of	a	Maxwellian	invariant	theory	involves	regarding	the	theory	as

indeterministic	(cf	Stein	1977,	Saunders,	2003a).	The	fact	that	the	indeterminism	involves

qualitative	differences	(according	to	the	Galilean	substantivalist)	arguably	makes	the	argument

more	effective	against	Galilean	substantivalism	than	the	Hole	Argument	is	against	GR.

(106)	An	argument	like	this	was	made	by	Leibniz	in	his	correspondence	with	Clarke

(Alexander,	1956).	That	Leibniz	makes	a	precisely	parallel	argument,	exploiting	permutation

invariance,	against	the	existence	of	atoms,	should	give	those	sympathetic	to	the	static	shift

argument	pause	for	thought.	Consistency	should	lead	one	either	to	embrace	or	reject	both

conclusions.

(108)	I	am	attracted	to	the	view	that	sees	individualistic	facts	as	grounded	in	general	facts

(Pooley,	unpublished).	However,	as	Dasgupta	(whose	terminology	I	adopt)	has	recently

stressed	(Dasgupta,	2011,	131–134),	this	requires	that	one's	understanding	of	general	facts

does	not	presuppose	individualistic	facts.	Since	the	stan	dard	understanding	of	general	facts

arguably	does	take	individualistic	facts	for	granted,	the	spacetime	structuralist/sophisticated

substantivalist	must	show	that	they	are	not	illicitly	making	the	same	presupposi	tion.

(Dasgupta's	own	view	is	that	something	quite	radical	is	needed	(2011,	147–152).)	The	recent

literature	on	“weak	discernibility”	(see,	e.g.,	Saunders,	2003b)	has	made	much	of	the	fact	that

numerical	diversity	facts	can	supervene	on	facts	statable	without	the	identity	predicate	even

when	traditional	forms	of	the	Principle	of	the	Identity	of	Indiscernibles	are	violated.	Note,

however,	that	merely	showing	that	one	set	of	facts	supervene	on	another	set	of	facts	is	not

sufficient	to	show	that	the	former	are	grounded	in	the	latter	(or	even	that	it	is	possible	to	think

of	them	as	so	grounded).
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